import { parentPort, MessagePort, receiveMessageOnPort, workerData } from 'worker_threads'; import { pathToFileURL } from 'url'; import { commonState, ReadyMessage, RequestMessage, ResponseMessage, StartupMessage, kResponseCountField, kRequestCountField, isMovable, kTransferable, kValue } from './common'; commonState.isWorkerThread = true; commonState.workerData = workerData; const handlerCache : Map = new Map(); let useAtomics : boolean = true; // Get `import(x)` as a function that isn't transpiled to `require(x)` by // TypeScript for dual ESM/CJS support. // Load this lazily, so that there is no warning about the ESM loader being // experimental (on Node v12.x) until we actually try to use it. let importESMCached : (specifier : string) => Promise | undefined; function getImportESM () { if (importESMCached === undefined) { // eslint-disable-next-line no-eval importESMCached = eval('(specifier) => import(specifier)'); } return importESMCached; } // Look up the handler function that we call when a task is posted. // This is either going to be "the" export from a file, or the default export. async function getHandler (filename : string, name : string) : Promise { let handler = handlerCache.get(`${filename}/${name}`); if (handler !== undefined) { return handler; } try { // With our current set of TypeScript options, this is transpiled to // `require(filename)`. handler = await import(filename); if (typeof handler !== 'function') { handler = await ((handler as any)[name]); } } catch {} if (typeof handler !== 'function') { handler = await getImportESM()(pathToFileURL(filename).href); if (typeof handler !== 'function') { handler = await ((handler as any)[name]); } } if (typeof handler !== 'function') { return null; } // Limit the handler cache size. This should not usually be an issue and is // only provided for pathological cases. if (handlerCache.size > 1000) { const [[key]] = handlerCache; handlerCache.delete(key); } handlerCache.set(`${filename}/${name}`, handler); return handler; } // We should only receive this message once, when the Worker starts. It gives // us the MessagePort used for receiving tasks, a SharedArrayBuffer for fast // communication using Atomics, and the name of the default filename for tasks // (so we can pre-load and cache the handler). parentPort!.on('message', (message : StartupMessage) => { useAtomics = message.useAtomics; const { port, sharedBuffer, filename, name, niceIncrement } = message; (async function () { try { if (niceIncrement !== 0 && process.platform === 'linux') { // ts-ignore because the dependency is not installed on Windows. // @ts-ignore (await import('nice-napi')).default(niceIncrement); } } catch {} if (filename !== null) { await getHandler(filename, name); } const readyMessage : ReadyMessage = { ready: true }; parentPort!.postMessage(readyMessage); port.on('message', onMessage.bind(null, port, sharedBuffer)); atomicsWaitLoop(port, sharedBuffer); })().catch(throwInNextTick); }); let currentTasks : number = 0; let lastSeenRequestCount : number = 0; function atomicsWaitLoop (port : MessagePort, sharedBuffer : Int32Array) { if (!useAtomics) return; // This function is entered either after receiving the startup message, or // when we are done with a task. In those situations, the *only* thing we // expect to happen next is a 'message' on `port`. // That call would come with the overhead of a C++ → JS boundary crossing, // including async tracking. So, instead, if there is no task currently // running, we wait for a signal from the parent thread using Atomics.wait(), // and read the message from the port instead of generating an event, // in order to avoid that overhead. // The one catch is that this stops asynchronous operations that are still // running from proceeding. Generally, tasks should not spawn asynchronous // operations without waiting for them to finish, though. while (currentTasks === 0) { // Check whether there are new messages by testing whether the current // number of requests posted by the parent thread matches the number of // requests received. Atomics.wait(sharedBuffer, kRequestCountField, lastSeenRequestCount); lastSeenRequestCount = Atomics.load(sharedBuffer, kRequestCountField); // We have to read messages *after* updating lastSeenRequestCount in order // to avoid race conditions. let entry; while ((entry = receiveMessageOnPort(port)) !== undefined) { onMessage(port, sharedBuffer, entry.message); } } } function onMessage ( port : MessagePort, sharedBuffer : Int32Array, message : RequestMessage) { currentTasks++; const { taskId, task, filename, name } = message; (async function () { let response : ResponseMessage; const transferList : any[] = []; try { const handler = await getHandler(filename, name); if (handler === null) { throw new Error(`No handler function exported from ${filename}`); } let result = await handler(task); if (isMovable(result)) { transferList.concat(result[kTransferable]); result = result[kValue]; } response = { taskId, result: result, error: null }; // If the task used e.g. console.log(), wait for the stream to drain // before potentially entering the `Atomics.wait()` loop, and before // returning the result so that messages will always be printed even // if the process would otherwise be ready to exit. if (process.stdout.writableLength > 0) { await new Promise((resolve) => process.stdout.write('', resolve)); } if (process.stderr.writableLength > 0) { await new Promise((resolve) => process.stderr.write('', resolve)); } } catch (error) { response = { taskId, result: null, // It may be worth taking a look at the error cloning algorithm we // use in Node.js core here, it's quite a bit more flexible error }; } currentTasks--; // Post the response to the parent thread, and let it know that we have // an additional message available. If possible, use Atomics.wait() // to wait for the next message. port.postMessage(response, transferList); Atomics.add(sharedBuffer, kResponseCountField, 1); atomicsWaitLoop(port, sharedBuffer); })().catch(throwInNextTick); } function throwInNextTick (error : Error) { process.nextTick(() => { throw error; }); }