source: trip-planner-front/node_modules/svgo/plugins/_path.js@ 571e0df

Last change on this file since 571e0df was 6a3a178, checked in by Ema <ema_spirova@…>, 3 years ago

initial commit

  • Property mode set to 100644
File size: 20.9 KB
RevLine 
[6a3a178]1'use strict';
2
3/**
4 * @typedef {import('../lib/types').XastElement} XastElement
5 * @typedef {import('../lib/types').PathDataItem} PathDataItem
6 */
7
8const { parsePathData, stringifyPathData } = require('../lib/path.js');
9
10/**
11 * @type {[number, number]}
12 */
13var prevCtrlPoint;
14
15/**
16 * Convert path string to JS representation.
17 *
18 * @type {(path: XastElement) => Array<PathDataItem>}
19 */
20const path2js = (path) => {
21 // @ts-ignore legacy
22 if (path.pathJS) return path.pathJS;
23 /**
24 * @type {Array<PathDataItem>}
25 */
26 const pathData = []; // JS representation of the path data
27 const newPathData = parsePathData(path.attributes.d);
28 for (const { command, args } of newPathData) {
29 pathData.push({ command, args });
30 }
31 // First moveto is actually absolute. Subsequent coordinates were separated above.
32 if (pathData.length && pathData[0].command == 'm') {
33 pathData[0].command = 'M';
34 }
35 // @ts-ignore legacy
36 path.pathJS = pathData;
37 return pathData;
38};
39exports.path2js = path2js;
40
41/**
42 * Convert relative Path data to absolute.
43 *
44 * @type {(data: Array<PathDataItem>) => Array<PathDataItem>}
45 *
46 */
47const convertRelativeToAbsolute = (data) => {
48 /**
49 * @type {Array<PathDataItem>}
50 */
51 const newData = [];
52 let start = [0, 0];
53 let cursor = [0, 0];
54
55 for (let { command, args } of data) {
56 args = args.slice();
57
58 // moveto (x y)
59 if (command === 'm') {
60 args[0] += cursor[0];
61 args[1] += cursor[1];
62 command = 'M';
63 }
64 if (command === 'M') {
65 cursor[0] = args[0];
66 cursor[1] = args[1];
67 start[0] = cursor[0];
68 start[1] = cursor[1];
69 }
70
71 // horizontal lineto (x)
72 if (command === 'h') {
73 args[0] += cursor[0];
74 command = 'H';
75 }
76 if (command === 'H') {
77 cursor[0] = args[0];
78 }
79
80 // vertical lineto (y)
81 if (command === 'v') {
82 args[0] += cursor[1];
83 command = 'V';
84 }
85 if (command === 'V') {
86 cursor[1] = args[0];
87 }
88
89 // lineto (x y)
90 if (command === 'l') {
91 args[0] += cursor[0];
92 args[1] += cursor[1];
93 command = 'L';
94 }
95 if (command === 'L') {
96 cursor[0] = args[0];
97 cursor[1] = args[1];
98 }
99
100 // curveto (x1 y1 x2 y2 x y)
101 if (command === 'c') {
102 args[0] += cursor[0];
103 args[1] += cursor[1];
104 args[2] += cursor[0];
105 args[3] += cursor[1];
106 args[4] += cursor[0];
107 args[5] += cursor[1];
108 command = 'C';
109 }
110 if (command === 'C') {
111 cursor[0] = args[4];
112 cursor[1] = args[5];
113 }
114
115 // smooth curveto (x2 y2 x y)
116 if (command === 's') {
117 args[0] += cursor[0];
118 args[1] += cursor[1];
119 args[2] += cursor[0];
120 args[3] += cursor[1];
121 command = 'S';
122 }
123 if (command === 'S') {
124 cursor[0] = args[2];
125 cursor[1] = args[3];
126 }
127
128 // quadratic Bézier curveto (x1 y1 x y)
129 if (command === 'q') {
130 args[0] += cursor[0];
131 args[1] += cursor[1];
132 args[2] += cursor[0];
133 args[3] += cursor[1];
134 command = 'Q';
135 }
136 if (command === 'Q') {
137 cursor[0] = args[2];
138 cursor[1] = args[3];
139 }
140
141 // smooth quadratic Bézier curveto (x y)
142 if (command === 't') {
143 args[0] += cursor[0];
144 args[1] += cursor[1];
145 command = 'T';
146 }
147 if (command === 'T') {
148 cursor[0] = args[0];
149 cursor[1] = args[1];
150 }
151
152 // elliptical arc (rx ry x-axis-rotation large-arc-flag sweep-flag x y)
153 if (command === 'a') {
154 args[5] += cursor[0];
155 args[6] += cursor[1];
156 command = 'A';
157 }
158 if (command === 'A') {
159 cursor[0] = args[5];
160 cursor[1] = args[6];
161 }
162
163 // closepath
164 if (command === 'z' || command === 'Z') {
165 cursor[0] = start[0];
166 cursor[1] = start[1];
167 command = 'z';
168 }
169
170 newData.push({ command, args });
171 }
172 return newData;
173};
174
175/**
176 * @typedef {{ floatPrecision?: number, noSpaceAfterFlags?: boolean }} Js2PathParams
177 */
178
179/**
180 * Convert path array to string.
181 *
182 * @type {(path: XastElement, data: Array<PathDataItem>, params: Js2PathParams) => void}
183 */
184exports.js2path = function (path, data, params) {
185 // @ts-ignore legacy
186 path.pathJS = data;
187
188 const pathData = [];
189 for (const item of data) {
190 // remove moveto commands which are followed by moveto commands
191 if (
192 pathData.length !== 0 &&
193 (item.command === 'M' || item.command === 'm')
194 ) {
195 const last = pathData[pathData.length - 1];
196 if (last.command === 'M' || last.command === 'm') {
197 pathData.pop();
198 }
199 }
200 pathData.push({
201 command: item.command,
202 args: item.args,
203 });
204 }
205
206 path.attributes.d = stringifyPathData({
207 pathData,
208 precision: params.floatPrecision,
209 disableSpaceAfterFlags: params.noSpaceAfterFlags,
210 });
211};
212
213/**
214 * @type {(dest: Array<number>, source: Array<number>) => Array<number>}
215 */
216function set(dest, source) {
217 dest[0] = source[source.length - 2];
218 dest[1] = source[source.length - 1];
219 return dest;
220}
221
222/**
223 * Checks if two paths have an intersection by checking convex hulls
224 * collision using Gilbert-Johnson-Keerthi distance algorithm
225 * https://web.archive.org/web/20180822200027/http://entropyinteractive.com/2011/04/gjk-algorithm/
226 *
227 * @type {(path1: Array<PathDataItem>, path2: Array<PathDataItem>) => boolean}
228 */
229exports.intersects = function (path1, path2) {
230 // Collect points of every subpath.
231 const points1 = gatherPoints(convertRelativeToAbsolute(path1));
232 const points2 = gatherPoints(convertRelativeToAbsolute(path2));
233
234 // Axis-aligned bounding box check.
235 if (
236 points1.maxX <= points2.minX ||
237 points2.maxX <= points1.minX ||
238 points1.maxY <= points2.minY ||
239 points2.maxY <= points1.minY ||
240 points1.list.every((set1) => {
241 return points2.list.every((set2) => {
242 return (
243 set1.list[set1.maxX][0] <= set2.list[set2.minX][0] ||
244 set2.list[set2.maxX][0] <= set1.list[set1.minX][0] ||
245 set1.list[set1.maxY][1] <= set2.list[set2.minY][1] ||
246 set2.list[set2.maxY][1] <= set1.list[set1.minY][1]
247 );
248 });
249 })
250 )
251 return false;
252
253 // Get a convex hull from points of each subpath. Has the most complexity O(n·log n).
254 const hullNest1 = points1.list.map(convexHull);
255 const hullNest2 = points2.list.map(convexHull);
256
257 // Check intersection of every subpath of the first path with every subpath of the second.
258 return hullNest1.some(function (hull1) {
259 if (hull1.list.length < 3) return false;
260
261 return hullNest2.some(function (hull2) {
262 if (hull2.list.length < 3) return false;
263
264 var simplex = [getSupport(hull1, hull2, [1, 0])], // create the initial simplex
265 direction = minus(simplex[0]); // set the direction to point towards the origin
266
267 var iterations = 1e4; // infinite loop protection, 10 000 iterations is more than enough
268 // eslint-disable-next-line no-constant-condition
269 while (true) {
270 // eslint-disable-next-line no-constant-condition
271 if (iterations-- == 0) {
272 console.error(
273 'Error: infinite loop while processing mergePaths plugin.'
274 );
275 return true; // true is the safe value that means “do nothing with paths”
276 }
277 // add a new point
278 simplex.push(getSupport(hull1, hull2, direction));
279 // see if the new point was on the correct side of the origin
280 if (dot(direction, simplex[simplex.length - 1]) <= 0) return false;
281 // process the simplex
282 if (processSimplex(simplex, direction)) return true;
283 }
284 });
285 });
286
287 /**
288 * @type {(a: Point, b: Point, direction: Array<number>) => Array<number>}
289 */
290 function getSupport(a, b, direction) {
291 return sub(supportPoint(a, direction), supportPoint(b, minus(direction)));
292 }
293
294 // Computes farthest polygon point in particular direction.
295 // Thanks to knowledge of min/max x and y coordinates we can choose a quadrant to search in.
296 // Since we're working on convex hull, the dot product is increasing until we find the farthest point.
297 /**
298 * @type {(polygon: Point, direction: Array<number>) => Array<number>}
299 */
300 function supportPoint(polygon, direction) {
301 var index =
302 direction[1] >= 0
303 ? direction[0] < 0
304 ? polygon.maxY
305 : polygon.maxX
306 : direction[0] < 0
307 ? polygon.minX
308 : polygon.minY,
309 max = -Infinity,
310 value;
311 while ((value = dot(polygon.list[index], direction)) > max) {
312 max = value;
313 index = ++index % polygon.list.length;
314 }
315 return polygon.list[(index || polygon.list.length) - 1];
316 }
317};
318
319/**
320 * @type {(simplex: Array<Array<number>>, direction: Array<number>) => boolean}
321 */
322function processSimplex(simplex, direction) {
323 // we only need to handle to 1-simplex and 2-simplex
324 if (simplex.length == 2) {
325 // 1-simplex
326 let a = simplex[1],
327 b = simplex[0],
328 AO = minus(simplex[1]),
329 AB = sub(b, a);
330 // AO is in the same direction as AB
331 if (dot(AO, AB) > 0) {
332 // get the vector perpendicular to AB facing O
333 set(direction, orth(AB, a));
334 } else {
335 set(direction, AO);
336 // only A remains in the simplex
337 simplex.shift();
338 }
339 } else {
340 // 2-simplex
341 let a = simplex[2], // [a, b, c] = simplex
342 b = simplex[1],
343 c = simplex[0],
344 AB = sub(b, a),
345 AC = sub(c, a),
346 AO = minus(a),
347 ACB = orth(AB, AC), // the vector perpendicular to AB facing away from C
348 ABC = orth(AC, AB); // the vector perpendicular to AC facing away from B
349
350 if (dot(ACB, AO) > 0) {
351 if (dot(AB, AO) > 0) {
352 // region 4
353 set(direction, ACB);
354 simplex.shift(); // simplex = [b, a]
355 } else {
356 // region 5
357 set(direction, AO);
358 simplex.splice(0, 2); // simplex = [a]
359 }
360 } else if (dot(ABC, AO) > 0) {
361 if (dot(AC, AO) > 0) {
362 // region 6
363 set(direction, ABC);
364 simplex.splice(1, 1); // simplex = [c, a]
365 } else {
366 // region 5 (again)
367 set(direction, AO);
368 simplex.splice(0, 2); // simplex = [a]
369 }
370 } // region 7
371 else return true;
372 }
373 return false;
374}
375
376/**
377 * @type {(v: Array<number>) => Array<number>}
378 */
379function minus(v) {
380 return [-v[0], -v[1]];
381}
382
383/**
384 * @type {(v1: Array<number>, v2: Array<number>) => Array<number>}
385 */
386function sub(v1, v2) {
387 return [v1[0] - v2[0], v1[1] - v2[1]];
388}
389
390/**
391 * @type {(v1: Array<number>, v2: Array<number>) => number}
392 */
393function dot(v1, v2) {
394 return v1[0] * v2[0] + v1[1] * v2[1];
395}
396
397/**
398 * @type {(v1: Array<number>, v2: Array<number>) => Array<number>}
399 */
400function orth(v, from) {
401 var o = [-v[1], v[0]];
402 return dot(o, minus(from)) < 0 ? minus(o) : o;
403}
404
405/**
406 * @typedef {{
407 * list: Array<Array<number>>,
408 * minX: number,
409 * minY: number,
410 * maxX: number,
411 * maxY: number
412 * }} Point
413 */
414
415/**
416 * @typedef {{
417 * list: Array<Point>,
418 * minX: number,
419 * minY: number,
420 * maxX: number,
421 * maxY: number
422 * }} Points
423 */
424
425/**
426 * @type {(pathData: Array<PathDataItem>) => Points}
427 */
428function gatherPoints(pathData) {
429 /**
430 * @type {Points}
431 */
432 const points = { list: [], minX: 0, minY: 0, maxX: 0, maxY: 0 };
433
434 // Writes data about the extreme points on each axle
435 /**
436 * @type {(path: Point, point: Array<number>) => void}
437 */
438 const addPoint = (path, point) => {
439 if (!path.list.length || point[1] > path.list[path.maxY][1]) {
440 path.maxY = path.list.length;
441 points.maxY = points.list.length
442 ? Math.max(point[1], points.maxY)
443 : point[1];
444 }
445 if (!path.list.length || point[0] > path.list[path.maxX][0]) {
446 path.maxX = path.list.length;
447 points.maxX = points.list.length
448 ? Math.max(point[0], points.maxX)
449 : point[0];
450 }
451 if (!path.list.length || point[1] < path.list[path.minY][1]) {
452 path.minY = path.list.length;
453 points.minY = points.list.length
454 ? Math.min(point[1], points.minY)
455 : point[1];
456 }
457 if (!path.list.length || point[0] < path.list[path.minX][0]) {
458 path.minX = path.list.length;
459 points.minX = points.list.length
460 ? Math.min(point[0], points.minX)
461 : point[0];
462 }
463 path.list.push(point);
464 };
465
466 for (let i = 0; i < pathData.length; i += 1) {
467 const pathDataItem = pathData[i];
468 let subPath =
469 points.list.length === 0
470 ? { list: [], minX: 0, minY: 0, maxX: 0, maxY: 0 }
471 : points.list[points.list.length - 1];
472 let prev = i === 0 ? null : pathData[i - 1];
473 let basePoint =
474 subPath.list.length === 0 ? null : subPath.list[subPath.list.length - 1];
475 let data = pathDataItem.args;
476 let ctrlPoint = basePoint;
477
478 /**
479 * @type {(n: number, i: number) => number}
480 * TODO fix null hack
481 */
482 const toAbsolute = (n, i) => n + (basePoint == null ? 0 : basePoint[i % 2]);
483
484 switch (pathDataItem.command) {
485 case 'M':
486 subPath = { list: [], minX: 0, minY: 0, maxX: 0, maxY: 0 };
487 points.list.push(subPath);
488 break;
489
490 case 'H':
491 if (basePoint != null) {
492 addPoint(subPath, [data[0], basePoint[1]]);
493 }
494 break;
495
496 case 'V':
497 if (basePoint != null) {
498 addPoint(subPath, [basePoint[0], data[0]]);
499 }
500 break;
501
502 case 'Q':
503 addPoint(subPath, data.slice(0, 2));
504 prevCtrlPoint = [data[2] - data[0], data[3] - data[1]]; // Save control point for shorthand
505 break;
506
507 case 'T':
508 if (
509 basePoint != null &&
510 prev != null &&
511 (prev.command == 'Q' || prev.command == 'T')
512 ) {
513 ctrlPoint = [
514 basePoint[0] + prevCtrlPoint[0],
515 basePoint[1] + prevCtrlPoint[1],
516 ];
517 addPoint(subPath, ctrlPoint);
518 prevCtrlPoint = [data[0] - ctrlPoint[0], data[1] - ctrlPoint[1]];
519 }
520 break;
521
522 case 'C':
523 if (basePoint != null) {
524 // Approximate quibic Bezier curve with middle points between control points
525 addPoint(subPath, [
526 0.5 * (basePoint[0] + data[0]),
527 0.5 * (basePoint[1] + data[1]),
528 ]);
529 }
530 addPoint(subPath, [
531 0.5 * (data[0] + data[2]),
532 0.5 * (data[1] + data[3]),
533 ]);
534 addPoint(subPath, [
535 0.5 * (data[2] + data[4]),
536 0.5 * (data[3] + data[5]),
537 ]);
538 prevCtrlPoint = [data[4] - data[2], data[5] - data[3]]; // Save control point for shorthand
539 break;
540
541 case 'S':
542 if (
543 basePoint != null &&
544 prev != null &&
545 (prev.command == 'C' || prev.command == 'S')
546 ) {
547 addPoint(subPath, [
548 basePoint[0] + 0.5 * prevCtrlPoint[0],
549 basePoint[1] + 0.5 * prevCtrlPoint[1],
550 ]);
551 ctrlPoint = [
552 basePoint[0] + prevCtrlPoint[0],
553 basePoint[1] + prevCtrlPoint[1],
554 ];
555 }
556 if (ctrlPoint != null) {
557 addPoint(subPath, [
558 0.5 * (ctrlPoint[0] + data[0]),
559 0.5 * (ctrlPoint[1] + data[1]),
560 ]);
561 }
562 addPoint(subPath, [
563 0.5 * (data[0] + data[2]),
564 0.5 * (data[1] + data[3]),
565 ]);
566 prevCtrlPoint = [data[2] - data[0], data[3] - data[1]];
567 break;
568
569 case 'A':
570 if (basePoint != null) {
571 // Convert the arc to bezier curves and use the same approximation
572 // @ts-ignore no idea what's going on here
573 var curves = a2c.apply(0, basePoint.concat(data));
574 for (
575 var cData;
576 (cData = curves.splice(0, 6).map(toAbsolute)).length;
577
578 ) {
579 if (basePoint != null) {
580 addPoint(subPath, [
581 0.5 * (basePoint[0] + cData[0]),
582 0.5 * (basePoint[1] + cData[1]),
583 ]);
584 }
585 addPoint(subPath, [
586 0.5 * (cData[0] + cData[2]),
587 0.5 * (cData[1] + cData[3]),
588 ]);
589 addPoint(subPath, [
590 0.5 * (cData[2] + cData[4]),
591 0.5 * (cData[3] + cData[5]),
592 ]);
593 if (curves.length) addPoint(subPath, (basePoint = cData.slice(-2)));
594 }
595 }
596 break;
597 }
598
599 // Save final command coordinates
600 if (data.length >= 2) addPoint(subPath, data.slice(-2));
601 }
602
603 return points;
604}
605
606/**
607 * Forms a convex hull from set of points of every subpath using monotone chain convex hull algorithm.
608 * https://en.wikibooks.org/wiki/Algorithm_Implementation/Geometry/Convex_hull/Monotone_chain
609 *
610 * @type {(points: Point) => Point}
611 */
612function convexHull(points) {
613 points.list.sort(function (a, b) {
614 return a[0] == b[0] ? a[1] - b[1] : a[0] - b[0];
615 });
616
617 var lower = [],
618 minY = 0,
619 bottom = 0;
620 for (let i = 0; i < points.list.length; i++) {
621 while (
622 lower.length >= 2 &&
623 cross(lower[lower.length - 2], lower[lower.length - 1], points.list[i]) <=
624 0
625 ) {
626 lower.pop();
627 }
628 if (points.list[i][1] < points.list[minY][1]) {
629 minY = i;
630 bottom = lower.length;
631 }
632 lower.push(points.list[i]);
633 }
634
635 var upper = [],
636 maxY = points.list.length - 1,
637 top = 0;
638 for (let i = points.list.length; i--; ) {
639 while (
640 upper.length >= 2 &&
641 cross(upper[upper.length - 2], upper[upper.length - 1], points.list[i]) <=
642 0
643 ) {
644 upper.pop();
645 }
646 if (points.list[i][1] > points.list[maxY][1]) {
647 maxY = i;
648 top = upper.length;
649 }
650 upper.push(points.list[i]);
651 }
652
653 // last points are equal to starting points of the other part
654 upper.pop();
655 lower.pop();
656
657 const hullList = lower.concat(upper);
658
659 /**
660 * @type {Point}
661 */
662 const hull = {
663 list: hullList,
664 minX: 0, // by sorting
665 maxX: lower.length,
666 minY: bottom,
667 maxY: (lower.length + top) % hullList.length,
668 };
669
670 return hull;
671}
672
673/**
674 * @type {(o: Array<number>, a: Array<number>, b: Array<number>) => number}
675 */
676function cross(o, a, b) {
677 return (a[0] - o[0]) * (b[1] - o[1]) - (a[1] - o[1]) * (b[0] - o[0]);
678}
679
680/**
681 * Based on code from Snap.svg (Apache 2 license). http://snapsvg.io/
682 * Thanks to Dmitry Baranovskiy for his great work!
683 *
684 * @type {(
685 * x1: number,
686 * y1: number,
687 * rx: number,
688 * ry: number,
689 * angle: number,
690 * large_arc_flag: number,
691 * sweep_flag: number,
692 * x2: number,
693 * y2: number,
694 * recursive: Array<number>
695 * ) => Array<number>}
696 */
697const a2c = (
698 x1,
699 y1,
700 rx,
701 ry,
702 angle,
703 large_arc_flag,
704 sweep_flag,
705 x2,
706 y2,
707 recursive
708) => {
709 // for more information of where this Math came from visit:
710 // https://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes
711 const _120 = (Math.PI * 120) / 180;
712 const rad = (Math.PI / 180) * (+angle || 0);
713 /**
714 * @type {Array<number>}
715 */
716 let res = [];
717 /**
718 * @type {(x: number, y: number, rad: number) => number}
719 */
720 const rotateX = (x, y, rad) => {
721 return x * Math.cos(rad) - y * Math.sin(rad);
722 };
723 /**
724 * @type {(x: number, y: number, rad: number) => number}
725 */
726 const rotateY = (x, y, rad) => {
727 return x * Math.sin(rad) + y * Math.cos(rad);
728 };
729 if (!recursive) {
730 x1 = rotateX(x1, y1, -rad);
731 y1 = rotateY(x1, y1, -rad);
732 x2 = rotateX(x2, y2, -rad);
733 y2 = rotateY(x2, y2, -rad);
734 var x = (x1 - x2) / 2,
735 y = (y1 - y2) / 2;
736 var h = (x * x) / (rx * rx) + (y * y) / (ry * ry);
737 if (h > 1) {
738 h = Math.sqrt(h);
739 rx = h * rx;
740 ry = h * ry;
741 }
742 var rx2 = rx * rx;
743 var ry2 = ry * ry;
744 var k =
745 (large_arc_flag == sweep_flag ? -1 : 1) *
746 Math.sqrt(
747 Math.abs(
748 (rx2 * ry2 - rx2 * y * y - ry2 * x * x) / (rx2 * y * y + ry2 * x * x)
749 )
750 );
751 var cx = (k * rx * y) / ry + (x1 + x2) / 2;
752 var cy = (k * -ry * x) / rx + (y1 + y2) / 2;
753 var f1 = Math.asin(Number(((y1 - cy) / ry).toFixed(9)));
754 var f2 = Math.asin(Number(((y2 - cy) / ry).toFixed(9)));
755
756 f1 = x1 < cx ? Math.PI - f1 : f1;
757 f2 = x2 < cx ? Math.PI - f2 : f2;
758 f1 < 0 && (f1 = Math.PI * 2 + f1);
759 f2 < 0 && (f2 = Math.PI * 2 + f2);
760 if (sweep_flag && f1 > f2) {
761 f1 = f1 - Math.PI * 2;
762 }
763 if (!sweep_flag && f2 > f1) {
764 f2 = f2 - Math.PI * 2;
765 }
766 } else {
767 f1 = recursive[0];
768 f2 = recursive[1];
769 cx = recursive[2];
770 cy = recursive[3];
771 }
772 var df = f2 - f1;
773 if (Math.abs(df) > _120) {
774 var f2old = f2,
775 x2old = x2,
776 y2old = y2;
777 f2 = f1 + _120 * (sweep_flag && f2 > f1 ? 1 : -1);
778 x2 = cx + rx * Math.cos(f2);
779 y2 = cy + ry * Math.sin(f2);
780 res = a2c(x2, y2, rx, ry, angle, 0, sweep_flag, x2old, y2old, [
781 f2,
782 f2old,
783 cx,
784 cy,
785 ]);
786 }
787 df = f2 - f1;
788 var c1 = Math.cos(f1),
789 s1 = Math.sin(f1),
790 c2 = Math.cos(f2),
791 s2 = Math.sin(f2),
792 t = Math.tan(df / 4),
793 hx = (4 / 3) * rx * t,
794 hy = (4 / 3) * ry * t,
795 m = [
796 -hx * s1,
797 hy * c1,
798 x2 + hx * s2 - x1,
799 y2 - hy * c2 - y1,
800 x2 - x1,
801 y2 - y1,
802 ];
803 if (recursive) {
804 return m.concat(res);
805 } else {
806 res = m.concat(res);
807 var newres = [];
808 for (var i = 0, n = res.length; i < n; i++) {
809 newres[i] =
810 i % 2
811 ? rotateY(res[i - 1], res[i], rad)
812 : rotateX(res[i], res[i + 1], rad);
813 }
814 return newres;
815 }
816};
Note: See TracBrowser for help on using the repository browser.