/**
* @license
* Copyright Google LLC All Rights Reserved.
*
* Use of this source code is governed by an MIT-style license that can be
* found in the LICENSE file at https://angular.io/license
*/
///
/**
* Suppress closure compiler errors about unknown 'global' variable
* @fileoverview
* @suppress {undefinedVars}
*/
/**
* Zone is a mechanism for intercepting and keeping track of asynchronous work.
*
* A Zone is a global object which is configured with rules about how to intercept and keep track
* of the asynchronous callbacks. Zone has these responsibilities:
*
* 1. Intercept asynchronous task scheduling
* 2. Wrap callbacks for error-handling and zone tracking across async operations.
* 3. Provide a way to attach data to zones
* 4. Provide a context specific last frame error handling
* 5. (Intercept blocking methods)
*
* A zone by itself does not do anything, instead it relies on some other code to route existing
* platform API through it. (The zone library ships with code which monkey patches all of the
* browsers's asynchronous API and redirects them through the zone for interception.)
*
* In its simplest form a zone allows one to intercept the scheduling and calling of asynchronous
* operations, and execute additional code before as well as after the asynchronous task. The rules
* of interception are configured using [ZoneConfig]. There can be many different zone instances in
* a system, but only one zone is active at any given time which can be retrieved using
* [Zone#current].
*
*
*
* ## Callback Wrapping
*
* An important aspect of the zones is that they should persist across asynchronous operations. To
* achieve this, when a future work is scheduled through async API, it is necessary to capture, and
* subsequently restore the current zone. For example if a code is running in zone `b` and it
* invokes `setTimeout` to scheduleTask work later, the `setTimeout` method needs to 1) capture the
* current zone and 2) wrap the `wrapCallback` in code which will restore the current zone `b` once
* the wrapCallback executes. In this way the rules which govern the current code are preserved in
* all future asynchronous tasks. There could be a different zone `c` which has different rules and
* is associated with different asynchronous tasks. As these tasks are processed, each asynchronous
* wrapCallback correctly restores the correct zone, as well as preserves the zone for future
* asynchronous callbacks.
*
* Example: Suppose a browser page consist of application code as well as third-party
* advertisement code. (These two code bases are independent, developed by different mutually
* unaware developers.) The application code may be interested in doing global error handling and
* so it configures the `app` zone to send all of the errors to the server for analysis, and then
* executes the application in the `app` zone. The advertising code is interested in the same
* error processing but it needs to send the errors to a different third-party. So it creates the
* `ads` zone with a different error handler. Now both advertising as well as application code
* create many asynchronous operations, but the [Zone] will ensure that all of the asynchronous
* operations created from the application code will execute in `app` zone with its error
* handler and all of the advertisement code will execute in the `ads` zone with its error handler.
* This will not only work for the async operations created directly, but also for all subsequent
* asynchronous operations.
*
* If you think of chain of asynchronous operations as a thread of execution (bit of a stretch)
* then [Zone#current] will act as a thread local variable.
*
*
*
* ## Asynchronous operation scheduling
*
* In addition to wrapping the callbacks to restore the zone, all operations which cause a
* scheduling of work for later are routed through the current zone which is allowed to intercept
* them by adding work before or after the wrapCallback as well as using different means of
* achieving the request. (Useful for unit testing, or tracking of requests). In some instances
* such as `setTimeout` the wrapping of the wrapCallback and scheduling is done in the same
* wrapCallback, but there are other examples such as `Promises` where the `then` wrapCallback is
* wrapped, but the execution of `then` is triggered by `Promise` scheduling `resolve` work.
*
* Fundamentally there are three kinds of tasks which can be scheduled:
*
* 1. [MicroTask] used for doing work right after the current task. This is non-cancelable which is
* guaranteed to run exactly once and immediately.
* 2. [MacroTask] used for doing work later. Such as `setTimeout`. This is typically cancelable
* which is guaranteed to execute at least once after some well understood delay.
* 3. [EventTask] used for listening on some future event. This may execute zero or more times, with
* an unknown delay.
*
* Each asynchronous API is modeled and routed through one of these APIs.
*
*
* ### [MicroTask]
*
* [MicroTask]s represent work which will be done in current VM turn as soon as possible, before VM
* yielding.
*
*
* ### [MacroTask]
*
* [MacroTask]s represent work which will be done after some delay. (Sometimes the delay is
* approximate such as on next available animation frame). Typically these methods include:
* `setTimeout`, `setImmediate`, `setInterval`, `requestAnimationFrame`, and all browser specific
* variants.
*
*
* ### [EventTask]
*
* [EventTask]s represent a request to create a listener on an event. Unlike the other task
* events they may never be executed, but typically execute more than once. There is no queue of
* events, rather their callbacks are unpredictable both in order and time.
*
*
* ## Global Error Handling
*
*
* ## Composability
*
* Zones can be composed together through [Zone.fork()]. A child zone may create its own set of
* rules. A child zone is expected to either:
*
* 1. Delegate the interception to a parent zone, and optionally add before and after wrapCallback
* hooks.
* 2. Process the request itself without delegation.
*
* Composability allows zones to keep their concerns clean. For example a top most zone may choose
* to handle error handling, while child zones may choose to do user action tracking.
*
*
* ## Root Zone
*
* At the start the browser will run in a special root zone, which is configured to behave exactly
* like the platform, making any existing code which is not zone-aware behave as expected. All
* zones are children of the root zone.
*
*/
interface Zone {
/**
*
* @returns {Zone} The parent Zone.
*/
parent: Zone | null;
/**
* @returns {string} The Zone name (useful for debugging)
*/
name: string;
/**
* Returns a value associated with the `key`.
*
* If the current zone does not have a key, the request is delegated to the parent zone. Use
* [ZoneSpec.properties] to configure the set of properties associated with the current zone.
*
* @param key The key to retrieve.
* @returns {any} The value for the key, or `undefined` if not found.
*/
get(key: string): any;
/**
* Returns a Zone which defines a `key`.
*
* Recursively search the parent Zone until a Zone which has a property `key` is found.
*
* @param key The key to use for identification of the returned zone.
* @returns {Zone} The Zone which defines the `key`, `null` if not found.
*/
getZoneWith(key: string): Zone | null;
/**
* Used to create a child zone.
*
* @param zoneSpec A set of rules which the child zone should follow.
* @returns {Zone} A new child zone.
*/
fork(zoneSpec: ZoneSpec): Zone;
/**
* Wraps a callback function in a new function which will properly restore the current zone upon
* invocation.
*
* The wrapped function will properly forward `this` as well as `arguments` to the `callback`.
*
* Before the function is wrapped the zone can intercept the `callback` by declaring
* [ZoneSpec.onIntercept].
*
* @param callback the function which will be wrapped in the zone.
* @param source A unique debug location of the API being wrapped.
* @returns {function(): *} A function which will invoke the `callback` through [Zone.runGuarded].
*/
wrap(callback: F, source: string): F;
/**
* Invokes a function in a given zone.
*
* The invocation of `callback` can be intercepted by declaring [ZoneSpec.onInvoke].
*
* @param callback The function to invoke.
* @param applyThis
* @param applyArgs
* @param source A unique debug location of the API being invoked.
* @returns {any} Value from the `callback` function.
*/
run(callback: Function, applyThis?: any, applyArgs?: any[], source?: string): T;
/**
* Invokes a function in a given zone and catches any exceptions.
*
* Any exceptions thrown will be forwarded to [Zone.HandleError].
*
* The invocation of `callback` can be intercepted by declaring [ZoneSpec.onInvoke]. The
* handling of exceptions can be intercepted by declaring [ZoneSpec.handleError].
*
* @param callback The function to invoke.
* @param applyThis
* @param applyArgs
* @param source A unique debug location of the API being invoked.
* @returns {any} Value from the `callback` function.
*/
runGuarded(callback: Function, applyThis?: any, applyArgs?: any[], source?: string): T;
/**
* Execute the Task by restoring the [Zone.currentTask] in the Task's zone.
*
* @param task to run
* @param applyThis
* @param applyArgs
* @returns {any} Value from the `task.callback` function.
*/
runTask(task: Task, applyThis?: any, applyArgs?: any): T;
/**
* Schedule a MicroTask.
*
* @param source
* @param callback
* @param data
* @param customSchedule
*/
scheduleMicroTask(source: string, callback: Function, data?: TaskData, customSchedule?: (task: Task) => void): MicroTask;
/**
* Schedule a MacroTask.
*
* @param source
* @param callback
* @param data
* @param customSchedule
* @param customCancel
*/
scheduleMacroTask(source: string, callback: Function, data?: TaskData, customSchedule?: (task: Task) => void, customCancel?: (task: Task) => void): MacroTask;
/**
* Schedule an EventTask.
*
* @param source
* @param callback
* @param data
* @param customSchedule
* @param customCancel
*/
scheduleEventTask(source: string, callback: Function, data?: TaskData, customSchedule?: (task: Task) => void, customCancel?: (task: Task) => void): EventTask;
/**
* Schedule an existing Task.
*
* Useful for rescheduling a task which was already canceled.
*
* @param task
*/
scheduleTask(task: T): T;
/**
* Allows the zone to intercept canceling of scheduled Task.
*
* The interception is configured using [ZoneSpec.onCancelTask]. The default canceler invokes
* the [Task.cancelFn].
*
* @param task
* @returns {any}
*/
cancelTask(task: Task): any;
}
interface ZoneType {
/**
* @returns {Zone} Returns the current [Zone]. The only way to change
* the current zone is by invoking a run() method, which will update the current zone for the
* duration of the run method callback.
*/
current: Zone;
/**
* @returns {Task} The task associated with the current execution.
*/
currentTask: Task | null;
/**
* Verify that Zone has been correctly patched. Specifically that Promise is zone aware.
*/
assertZonePatched(): void;
/**
* Return the root zone.
*/
root: Zone;
/**
* load patch for specified native module, allow user to
* define their own patch, user can use this API after loading zone.js
*/
__load_patch(name: string, fn: _PatchFn, ignoreDuplicate?: boolean): void;
/**
* Zone symbol API to generate a string with __zone_symbol__ prefix
*/
__symbol__(name: string): string;
}
/**
* Patch Function to allow user define their own monkey patch module.
*/
declare type _PatchFn = (global: Window, Zone: ZoneType, api: _ZonePrivate) => void;
/**
* _ZonePrivate interface to provide helper method to help user implement
* their own monkey patch module.
*/
interface _ZonePrivate {
currentZoneFrame: () => _ZoneFrame;
symbol: (name: string) => string;
scheduleMicroTask: (task?: MicroTask) => void;
onUnhandledError: (error: Error) => void;
microtaskDrainDone: () => void;
showUncaughtError: () => boolean;
patchEventTarget: (global: any, apis: any[], options?: any) => boolean[];
patchOnProperties: (obj: any, properties: string[] | null, prototype?: any) => void;
patchThen: (ctro: Function) => void;
patchMethod: (target: any, name: string, patchFn: (delegate: Function, delegateName: string, name: string) => (self: any, args: any[]) => any) => Function | null;
bindArguments: (args: any[], source: string) => any[];
patchMacroTask: (obj: any, funcName: string, metaCreator: (self: any, args: any[]) => any) => void;
patchEventPrototype: (_global: any, api: _ZonePrivate) => void;
isIEOrEdge: () => boolean;
ObjectDefineProperty: (o: any, p: PropertyKey, attributes: PropertyDescriptor & ThisType) => any;
ObjectGetOwnPropertyDescriptor: (o: any, p: PropertyKey) => PropertyDescriptor | undefined;
ObjectCreate(o: object | null, properties?: PropertyDescriptorMap & ThisType): any;
ArraySlice(start?: number, end?: number): any[];
patchClass: (className: string) => void;
wrapWithCurrentZone: (callback: any, source: string) => any;
filterProperties: (target: any, onProperties: string[], ignoreProperties: any[]) => string[];
attachOriginToPatched: (target: any, origin: any) => void;
_redefineProperty: (target: any, callback: string, desc: any) => void;
patchCallbacks: (api: _ZonePrivate, target: any, targetName: string, method: string, callbacks: string[]) => void;
getGlobalObjects: () => {
globalSources: any;
zoneSymbolEventNames: any;
eventNames: string[];
isBrowser: boolean;
isMix: boolean;
isNode: boolean;
TRUE_STR: string;
FALSE_STR: string;
ZONE_SYMBOL_PREFIX: string;
ADD_EVENT_LISTENER_STR: string;
REMOVE_EVENT_LISTENER_STR: string;
} | undefined;
}
/**
* _ZoneFrame represents zone stack frame information
*/
interface _ZoneFrame {
parent: _ZoneFrame | null;
zone: Zone;
}
interface UncaughtPromiseError extends Error {
zone: Zone;
task: Task;
promise: Promise;
rejection: any;
throwOriginal?: boolean;
}
/**
* Provides a way to configure the interception of zone events.
*
* Only the `name` property is required (all other are optional).
*/
interface ZoneSpec {
/**
* The name of the zone. Useful when debugging Zones.
*/
name: string;
/**
* A set of properties to be associated with Zone. Use [Zone.get] to retrieve them.
*/
properties?: {
[key: string]: any;
};
/**
* Allows the interception of zone forking.
*
* When the zone is being forked, the request is forwarded to this method for interception.
*
* @param parentZoneDelegate Delegate which performs the parent [ZoneSpec] operation.
* @param currentZone The current [Zone] where the current interceptor has been declared.
* @param targetZone The [Zone] which originally received the request.
* @param zoneSpec The argument passed into the `fork` method.
*/
onFork?: (parentZoneDelegate: ZoneDelegate, currentZone: Zone, targetZone: Zone, zoneSpec: ZoneSpec) => Zone;
/**
* Allows interception of the wrapping of the callback.
*
* @param parentZoneDelegate Delegate which performs the parent [ZoneSpec] operation.
* @param currentZone The current [Zone] where the current interceptor has been declared.
* @param targetZone The [Zone] which originally received the request.
* @param delegate The argument passed into the `wrap` method.
* @param source The argument passed into the `wrap` method.
*/
onIntercept?: (parentZoneDelegate: ZoneDelegate, currentZone: Zone, targetZone: Zone, delegate: Function, source: string) => Function;
/**
* Allows interception of the callback invocation.
*
* @param parentZoneDelegate Delegate which performs the parent [ZoneSpec] operation.
* @param currentZone The current [Zone] where the current interceptor has been declared.
* @param targetZone The [Zone] which originally received the request.
* @param delegate The argument passed into the `run` method.
* @param applyThis The argument passed into the `run` method.
* @param applyArgs The argument passed into the `run` method.
* @param source The argument passed into the `run` method.
*/
onInvoke?: (parentZoneDelegate: ZoneDelegate, currentZone: Zone, targetZone: Zone, delegate: Function, applyThis: any, applyArgs?: any[], source?: string) => any;
/**
* Allows interception of the error handling.
*
* @param parentZoneDelegate Delegate which performs the parent [ZoneSpec] operation.
* @param currentZone The current [Zone] where the current interceptor has been declared.
* @param targetZone The [Zone] which originally received the request.
* @param error The argument passed into the `handleError` method.
*/
onHandleError?: (parentZoneDelegate: ZoneDelegate, currentZone: Zone, targetZone: Zone, error: any) => boolean;
/**
* Allows interception of task scheduling.
*
* @param parentZoneDelegate Delegate which performs the parent [ZoneSpec] operation.
* @param currentZone The current [Zone] where the current interceptor has been declared.
* @param targetZone The [Zone] which originally received the request.
* @param task The argument passed into the `scheduleTask` method.
*/
onScheduleTask?: (parentZoneDelegate: ZoneDelegate, currentZone: Zone, targetZone: Zone, task: Task) => Task;
onInvokeTask?: (parentZoneDelegate: ZoneDelegate, currentZone: Zone, targetZone: Zone, task: Task, applyThis: any, applyArgs?: any[]) => any;
/**
* Allows interception of task cancellation.
*
* @param parentZoneDelegate Delegate which performs the parent [ZoneSpec] operation.
* @param currentZone The current [Zone] where the current interceptor has been declared.
* @param targetZone The [Zone] which originally received the request.
* @param task The argument passed into the `cancelTask` method.
*/
onCancelTask?: (parentZoneDelegate: ZoneDelegate, currentZone: Zone, targetZone: Zone, task: Task) => any;
/**
* Notifies of changes to the task queue empty status.
*
* @param parentZoneDelegate Delegate which performs the parent [ZoneSpec] operation.
* @param currentZone The current [Zone] where the current interceptor has been declared.
* @param targetZone The [Zone] which originally received the request.
* @param hasTaskState
*/
onHasTask?: (parentZoneDelegate: ZoneDelegate, currentZone: Zone, targetZone: Zone, hasTaskState: HasTaskState) => void;
}
/**
* A delegate when intercepting zone operations.
*
* A ZoneDelegate is needed because a child zone can't simply invoke a method on a parent zone. For
* example a child zone wrap can't just call parent zone wrap. Doing so would create a callback
* which is bound to the parent zone. What we are interested in is intercepting the callback before
* it is bound to any zone. Furthermore, we also need to pass the targetZone (zone which received
* the original request) to the delegate.
*
* The ZoneDelegate methods mirror those of Zone with an addition of extra targetZone argument in
* the method signature. (The original Zone which received the request.) Some methods are renamed
* to prevent confusion, because they have slightly different semantics and arguments.
*
* - `wrap` => `intercept`: The `wrap` method delegates to `intercept`. The `wrap` method returns
* a callback which will run in a given zone, where as intercept allows wrapping the callback
* so that additional code can be run before and after, but does not associate the callback
* with the zone.
* - `run` => `invoke`: The `run` method delegates to `invoke` to perform the actual execution of
* the callback. The `run` method switches to new zone; saves and restores the `Zone.current`;
* and optionally performs error handling. The invoke is not responsible for error handling,
* or zone management.
*
* Not every method is usually overwritten in the child zone, for this reason the ZoneDelegate
* stores the closest zone which overwrites this behavior along with the closest ZoneSpec.
*
* NOTE: We have tried to make this API analogous to Event bubbling with target and current
* properties.
*
* Note: The ZoneDelegate treats ZoneSpec as class. This allows the ZoneSpec to use its `this` to
* store internal state.
*/
interface ZoneDelegate {
zone: Zone;
fork(targetZone: Zone, zoneSpec: ZoneSpec): Zone;
intercept(targetZone: Zone, callback: Function, source: string): Function;
invoke(targetZone: Zone, callback: Function, applyThis?: any, applyArgs?: any[], source?: string): any;
handleError(targetZone: Zone, error: any): boolean;
scheduleTask(targetZone: Zone, task: Task): Task;
invokeTask(targetZone: Zone, task: Task, applyThis?: any, applyArgs?: any[]): any;
cancelTask(targetZone: Zone, task: Task): any;
hasTask(targetZone: Zone, isEmpty: HasTaskState): void;
}
declare type HasTaskState = {
microTask: boolean;
macroTask: boolean;
eventTask: boolean;
change: TaskType;
};
/**
* Task type: `microTask`, `macroTask`, `eventTask`.
*/
declare type TaskType = 'microTask' | 'macroTask' | 'eventTask';
/**
* Task type: `notScheduled`, `scheduling`, `scheduled`, `running`, `canceling`, 'unknown'.
*/
declare type TaskState = 'notScheduled' | 'scheduling' | 'scheduled' | 'running' | 'canceling' | 'unknown';
/**
*/
interface TaskData {
/**
* A periodic [MacroTask] is such which get automatically rescheduled after it is executed.
*/
isPeriodic?: boolean;
/**
* Delay in milliseconds when the Task will run.
*/
delay?: number;
/**
* identifier returned by the native setTimeout.
*/
handleId?: number;
}
/**
* Represents work which is executed with a clean stack.
*
* Tasks are used in Zones to mark work which is performed on clean stack frame. There are three
* kinds of task. [MicroTask], [MacroTask], and [EventTask].
*
* A JS VM can be modeled as a [MicroTask] queue, [MacroTask] queue, and [EventTask] set.
*
* - [MicroTask] queue represents a set of tasks which are executing right after the current stack
* frame becomes clean and before a VM yield. All [MicroTask]s execute in order of insertion
* before VM yield and the next [MacroTask] is executed.
* - [MacroTask] queue represents a set of tasks which are executed one at a time after each VM
* yield. The queue is ordered by time, and insertions can happen in any location.
* - [EventTask] is a set of tasks which can at any time be inserted to the end of the [MacroTask]
* queue. This happens when the event fires.
*
*/
interface Task {
/**
* Task type: `microTask`, `macroTask`, `eventTask`.
*/
type: TaskType;
/**
* Task state: `notScheduled`, `scheduling`, `scheduled`, `running`, `canceling`, `unknown`.
*/
state: TaskState;
/**
* Debug string representing the API which requested the scheduling of the task.
*/
source: string;
/**
* The Function to be used by the VM upon entering the [Task]. This function will delegate to
* [Zone.runTask] and delegate to `callback`.
*/
invoke: Function;
/**
* Function which needs to be executed by the Task after the [Zone.currentTask] has been set to
* the current task.
*/
callback: Function;
/**
* Task specific options associated with the current task. This is passed to the `scheduleFn`.
*/
data?: TaskData;
/**
* Represents the default work which needs to be done to schedule the Task by the VM.
*
* A zone may choose to intercept this function and perform its own scheduling.
*/
scheduleFn?: (task: Task) => void;
/**
* Represents the default work which needs to be done to un-schedule the Task from the VM. Not all
* Tasks are cancelable, and therefore this method is optional.
*
* A zone may chose to intercept this function and perform its own un-scheduling.
*/
cancelFn?: (task: Task) => void;
/**
* @type {Zone} The zone which will be used to invoke the `callback`. The Zone is captured
* at the time of Task creation.
*/
readonly zone: Zone;
/**
* Number of times the task has been executed, or -1 if canceled.
*/
runCount: number;
/**
* Cancel the scheduling request. This method can be called from `ZoneSpec.onScheduleTask` to
* cancel the current scheduling interception. Once canceled the task can be discarded or
* rescheduled using `Zone.scheduleTask` on a different zone.
*/
cancelScheduleRequest(): void;
}
interface MicroTask extends Task {
type: 'microTask';
}
interface MacroTask extends Task {
type: 'macroTask';
}
interface EventTask extends Task {
type: 'eventTask';
}
declare const Zone: ZoneType;