source: trip-planner-front/node_modules/big.js/big.mjs@ fa375fe

Last change on this file since fa375fe was 6a3a178, checked in by Ema <ema_spirova@…>, 3 years ago

initial commit

  • Property mode set to 100644
File size: 20.1 KB
Line 
1/*
2 * big.js v5.2.2
3 * A small, fast, easy-to-use library for arbitrary-precision decimal arithmetic.
4 * Copyright (c) 2018 Michael Mclaughlin <M8ch88l@gmail.com>
5 * https://github.com/MikeMcl/big.js/LICENCE
6 */
7
8
9/************************************** EDITABLE DEFAULTS *****************************************/
10
11
12 // The default values below must be integers within the stated ranges.
13
14 /*
15 * The maximum number of decimal places (DP) of the results of operations involving division:
16 * div and sqrt, and pow with negative exponents.
17 */
18var DP = 20, // 0 to MAX_DP
19
20 /*
21 * The rounding mode (RM) used when rounding to the above decimal places.
22 *
23 * 0 Towards zero (i.e. truncate, no rounding). (ROUND_DOWN)
24 * 1 To nearest neighbour. If equidistant, round up. (ROUND_HALF_UP)
25 * 2 To nearest neighbour. If equidistant, to even. (ROUND_HALF_EVEN)
26 * 3 Away from zero. (ROUND_UP)
27 */
28 RM = 1, // 0, 1, 2 or 3
29
30 // The maximum value of DP and Big.DP.
31 MAX_DP = 1E6, // 0 to 1000000
32
33 // The maximum magnitude of the exponent argument to the pow method.
34 MAX_POWER = 1E6, // 1 to 1000000
35
36 /*
37 * The negative exponent (NE) at and beneath which toString returns exponential notation.
38 * (JavaScript numbers: -7)
39 * -1000000 is the minimum recommended exponent value of a Big.
40 */
41 NE = -7, // 0 to -1000000
42
43 /*
44 * The positive exponent (PE) at and above which toString returns exponential notation.
45 * (JavaScript numbers: 21)
46 * 1000000 is the maximum recommended exponent value of a Big.
47 * (This limit is not enforced or checked.)
48 */
49 PE = 21, // 0 to 1000000
50
51
52/**************************************************************************************************/
53
54
55 // Error messages.
56 NAME = '[big.js] ',
57 INVALID = NAME + 'Invalid ',
58 INVALID_DP = INVALID + 'decimal places',
59 INVALID_RM = INVALID + 'rounding mode',
60 DIV_BY_ZERO = NAME + 'Division by zero',
61
62 // The shared prototype object.
63 P = {},
64 UNDEFINED = void 0,
65 NUMERIC = /^-?(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i;
66
67
68/*
69 * Create and return a Big constructor.
70 *
71 */
72function _Big_() {
73
74 /*
75 * The Big constructor and exported function.
76 * Create and return a new instance of a Big number object.
77 *
78 * n {number|string|Big} A numeric value.
79 */
80 function Big(n) {
81 var x = this;
82
83 // Enable constructor usage without new.
84 if (!(x instanceof Big)) return n === UNDEFINED ? _Big_() : new Big(n);
85
86 // Duplicate.
87 if (n instanceof Big) {
88 x.s = n.s;
89 x.e = n.e;
90 x.c = n.c.slice();
91 } else {
92 parse(x, n);
93 }
94
95 /*
96 * Retain a reference to this Big constructor, and shadow Big.prototype.constructor which
97 * points to Object.
98 */
99 x.constructor = Big;
100 }
101
102 Big.prototype = P;
103 Big.DP = DP;
104 Big.RM = RM;
105 Big.NE = NE;
106 Big.PE = PE;
107 Big.version = '5.2.2';
108
109 return Big;
110}
111
112
113/*
114 * Parse the number or string value passed to a Big constructor.
115 *
116 * x {Big} A Big number instance.
117 * n {number|string} A numeric value.
118 */
119function parse(x, n) {
120 var e, i, nl;
121
122 // Minus zero?
123 if (n === 0 && 1 / n < 0) n = '-0';
124 else if (!NUMERIC.test(n += '')) throw Error(INVALID + 'number');
125
126 // Determine sign.
127 x.s = n.charAt(0) == '-' ? (n = n.slice(1), -1) : 1;
128
129 // Decimal point?
130 if ((e = n.indexOf('.')) > -1) n = n.replace('.', '');
131
132 // Exponential form?
133 if ((i = n.search(/e/i)) > 0) {
134
135 // Determine exponent.
136 if (e < 0) e = i;
137 e += +n.slice(i + 1);
138 n = n.substring(0, i);
139 } else if (e < 0) {
140
141 // Integer.
142 e = n.length;
143 }
144
145 nl = n.length;
146
147 // Determine leading zeros.
148 for (i = 0; i < nl && n.charAt(i) == '0';) ++i;
149
150 if (i == nl) {
151
152 // Zero.
153 x.c = [x.e = 0];
154 } else {
155
156 // Determine trailing zeros.
157 for (; nl > 0 && n.charAt(--nl) == '0';);
158 x.e = e - i - 1;
159 x.c = [];
160
161 // Convert string to array of digits without leading/trailing zeros.
162 for (e = 0; i <= nl;) x.c[e++] = +n.charAt(i++);
163 }
164
165 return x;
166}
167
168
169/*
170 * Round Big x to a maximum of dp decimal places using rounding mode rm.
171 * Called by stringify, P.div, P.round and P.sqrt.
172 *
173 * x {Big} The Big to round.
174 * dp {number} Integer, 0 to MAX_DP inclusive.
175 * rm {number} 0, 1, 2 or 3 (DOWN, HALF_UP, HALF_EVEN, UP)
176 * [more] {boolean} Whether the result of division was truncated.
177 */
178function round(x, dp, rm, more) {
179 var xc = x.c,
180 i = x.e + dp + 1;
181
182 if (i < xc.length) {
183 if (rm === 1) {
184
185 // xc[i] is the digit after the digit that may be rounded up.
186 more = xc[i] >= 5;
187 } else if (rm === 2) {
188 more = xc[i] > 5 || xc[i] == 5 &&
189 (more || i < 0 || xc[i + 1] !== UNDEFINED || xc[i - 1] & 1);
190 } else if (rm === 3) {
191 more = more || !!xc[0];
192 } else {
193 more = false;
194 if (rm !== 0) throw Error(INVALID_RM);
195 }
196
197 if (i < 1) {
198 xc.length = 1;
199
200 if (more) {
201
202 // 1, 0.1, 0.01, 0.001, 0.0001 etc.
203 x.e = -dp;
204 xc[0] = 1;
205 } else {
206
207 // Zero.
208 xc[0] = x.e = 0;
209 }
210 } else {
211
212 // Remove any digits after the required decimal places.
213 xc.length = i--;
214
215 // Round up?
216 if (more) {
217
218 // Rounding up may mean the previous digit has to be rounded up.
219 for (; ++xc[i] > 9;) {
220 xc[i] = 0;
221 if (!i--) {
222 ++x.e;
223 xc.unshift(1);
224 }
225 }
226 }
227
228 // Remove trailing zeros.
229 for (i = xc.length; !xc[--i];) xc.pop();
230 }
231 } else if (rm < 0 || rm > 3 || rm !== ~~rm) {
232 throw Error(INVALID_RM);
233 }
234
235 return x;
236}
237
238
239/*
240 * Return a string representing the value of Big x in normal or exponential notation.
241 * Handles P.toExponential, P.toFixed, P.toJSON, P.toPrecision, P.toString and P.valueOf.
242 *
243 * x {Big}
244 * id? {number} Caller id.
245 * 1 toExponential
246 * 2 toFixed
247 * 3 toPrecision
248 * 4 valueOf
249 * n? {number|undefined} Caller's argument.
250 * k? {number|undefined}
251 */
252function stringify(x, id, n, k) {
253 var e, s,
254 Big = x.constructor,
255 z = !x.c[0];
256
257 if (n !== UNDEFINED) {
258 if (n !== ~~n || n < (id == 3) || n > MAX_DP) {
259 throw Error(id == 3 ? INVALID + 'precision' : INVALID_DP);
260 }
261
262 x = new Big(x);
263
264 // The index of the digit that may be rounded up.
265 n = k - x.e;
266
267 // Round?
268 if (x.c.length > ++k) round(x, n, Big.RM);
269
270 // toFixed: recalculate k as x.e may have changed if value rounded up.
271 if (id == 2) k = x.e + n + 1;
272
273 // Append zeros?
274 for (; x.c.length < k;) x.c.push(0);
275 }
276
277 e = x.e;
278 s = x.c.join('');
279 n = s.length;
280
281 // Exponential notation?
282 if (id != 2 && (id == 1 || id == 3 && k <= e || e <= Big.NE || e >= Big.PE)) {
283 s = s.charAt(0) + (n > 1 ? '.' + s.slice(1) : '') + (e < 0 ? 'e' : 'e+') + e;
284
285 // Normal notation.
286 } else if (e < 0) {
287 for (; ++e;) s = '0' + s;
288 s = '0.' + s;
289 } else if (e > 0) {
290 if (++e > n) for (e -= n; e--;) s += '0';
291 else if (e < n) s = s.slice(0, e) + '.' + s.slice(e);
292 } else if (n > 1) {
293 s = s.charAt(0) + '.' + s.slice(1);
294 }
295
296 return x.s < 0 && (!z || id == 4) ? '-' + s : s;
297}
298
299
300// Prototype/instance methods
301
302
303/*
304 * Return a new Big whose value is the absolute value of this Big.
305 */
306P.abs = function () {
307 var x = new this.constructor(this);
308 x.s = 1;
309 return x;
310};
311
312
313/*
314 * Return 1 if the value of this Big is greater than the value of Big y,
315 * -1 if the value of this Big is less than the value of Big y, or
316 * 0 if they have the same value.
317*/
318P.cmp = function (y) {
319 var isneg,
320 x = this,
321 xc = x.c,
322 yc = (y = new x.constructor(y)).c,
323 i = x.s,
324 j = y.s,
325 k = x.e,
326 l = y.e;
327
328 // Either zero?
329 if (!xc[0] || !yc[0]) return !xc[0] ? !yc[0] ? 0 : -j : i;
330
331 // Signs differ?
332 if (i != j) return i;
333
334 isneg = i < 0;
335
336 // Compare exponents.
337 if (k != l) return k > l ^ isneg ? 1 : -1;
338
339 j = (k = xc.length) < (l = yc.length) ? k : l;
340
341 // Compare digit by digit.
342 for (i = -1; ++i < j;) {
343 if (xc[i] != yc[i]) return xc[i] > yc[i] ^ isneg ? 1 : -1;
344 }
345
346 // Compare lengths.
347 return k == l ? 0 : k > l ^ isneg ? 1 : -1;
348};
349
350
351/*
352 * Return a new Big whose value is the value of this Big divided by the value of Big y, rounded,
353 * if necessary, to a maximum of Big.DP decimal places using rounding mode Big.RM.
354 */
355P.div = function (y) {
356 var x = this,
357 Big = x.constructor,
358 a = x.c, // dividend
359 b = (y = new Big(y)).c, // divisor
360 k = x.s == y.s ? 1 : -1,
361 dp = Big.DP;
362
363 if (dp !== ~~dp || dp < 0 || dp > MAX_DP) throw Error(INVALID_DP);
364
365 // Divisor is zero?
366 if (!b[0]) throw Error(DIV_BY_ZERO);
367
368 // Dividend is 0? Return +-0.
369 if (!a[0]) return new Big(k * 0);
370
371 var bl, bt, n, cmp, ri,
372 bz = b.slice(),
373 ai = bl = b.length,
374 al = a.length,
375 r = a.slice(0, bl), // remainder
376 rl = r.length,
377 q = y, // quotient
378 qc = q.c = [],
379 qi = 0,
380 d = dp + (q.e = x.e - y.e) + 1; // number of digits of the result
381
382 q.s = k;
383 k = d < 0 ? 0 : d;
384
385 // Create version of divisor with leading zero.
386 bz.unshift(0);
387
388 // Add zeros to make remainder as long as divisor.
389 for (; rl++ < bl;) r.push(0);
390
391 do {
392
393 // n is how many times the divisor goes into current remainder.
394 for (n = 0; n < 10; n++) {
395
396 // Compare divisor and remainder.
397 if (bl != (rl = r.length)) {
398 cmp = bl > rl ? 1 : -1;
399 } else {
400 for (ri = -1, cmp = 0; ++ri < bl;) {
401 if (b[ri] != r[ri]) {
402 cmp = b[ri] > r[ri] ? 1 : -1;
403 break;
404 }
405 }
406 }
407
408 // If divisor < remainder, subtract divisor from remainder.
409 if (cmp < 0) {
410
411 // Remainder can't be more than 1 digit longer than divisor.
412 // Equalise lengths using divisor with extra leading zero?
413 for (bt = rl == bl ? b : bz; rl;) {
414 if (r[--rl] < bt[rl]) {
415 ri = rl;
416 for (; ri && !r[--ri];) r[ri] = 9;
417 --r[ri];
418 r[rl] += 10;
419 }
420 r[rl] -= bt[rl];
421 }
422
423 for (; !r[0];) r.shift();
424 } else {
425 break;
426 }
427 }
428
429 // Add the digit n to the result array.
430 qc[qi++] = cmp ? n : ++n;
431
432 // Update the remainder.
433 if (r[0] && cmp) r[rl] = a[ai] || 0;
434 else r = [a[ai]];
435
436 } while ((ai++ < al || r[0] !== UNDEFINED) && k--);
437
438 // Leading zero? Do not remove if result is simply zero (qi == 1).
439 if (!qc[0] && qi != 1) {
440
441 // There can't be more than one zero.
442 qc.shift();
443 q.e--;
444 }
445
446 // Round?
447 if (qi > d) round(q, dp, Big.RM, r[0] !== UNDEFINED);
448
449 return q;
450};
451
452
453/*
454 * Return true if the value of this Big is equal to the value of Big y, otherwise return false.
455 */
456P.eq = function (y) {
457 return !this.cmp(y);
458};
459
460
461/*
462 * Return true if the value of this Big is greater than the value of Big y, otherwise return
463 * false.
464 */
465P.gt = function (y) {
466 return this.cmp(y) > 0;
467};
468
469
470/*
471 * Return true if the value of this Big is greater than or equal to the value of Big y, otherwise
472 * return false.
473 */
474P.gte = function (y) {
475 return this.cmp(y) > -1;
476};
477
478
479/*
480 * Return true if the value of this Big is less than the value of Big y, otherwise return false.
481 */
482P.lt = function (y) {
483 return this.cmp(y) < 0;
484};
485
486
487/*
488 * Return true if the value of this Big is less than or equal to the value of Big y, otherwise
489 * return false.
490 */
491P.lte = function (y) {
492 return this.cmp(y) < 1;
493};
494
495
496/*
497 * Return a new Big whose value is the value of this Big minus the value of Big y.
498 */
499P.minus = P.sub = function (y) {
500 var i, j, t, xlty,
501 x = this,
502 Big = x.constructor,
503 a = x.s,
504 b = (y = new Big(y)).s;
505
506 // Signs differ?
507 if (a != b) {
508 y.s = -b;
509 return x.plus(y);
510 }
511
512 var xc = x.c.slice(),
513 xe = x.e,
514 yc = y.c,
515 ye = y.e;
516
517 // Either zero?
518 if (!xc[0] || !yc[0]) {
519
520 // y is non-zero? x is non-zero? Or both are zero.
521 return yc[0] ? (y.s = -b, y) : new Big(xc[0] ? x : 0);
522 }
523
524 // Determine which is the bigger number. Prepend zeros to equalise exponents.
525 if (a = xe - ye) {
526
527 if (xlty = a < 0) {
528 a = -a;
529 t = xc;
530 } else {
531 ye = xe;
532 t = yc;
533 }
534
535 t.reverse();
536 for (b = a; b--;) t.push(0);
537 t.reverse();
538 } else {
539
540 // Exponents equal. Check digit by digit.
541 j = ((xlty = xc.length < yc.length) ? xc : yc).length;
542
543 for (a = b = 0; b < j; b++) {
544 if (xc[b] != yc[b]) {
545 xlty = xc[b] < yc[b];
546 break;
547 }
548 }
549 }
550
551 // x < y? Point xc to the array of the bigger number.
552 if (xlty) {
553 t = xc;
554 xc = yc;
555 yc = t;
556 y.s = -y.s;
557 }
558
559 /*
560 * Append zeros to xc if shorter. No need to add zeros to yc if shorter as subtraction only
561 * needs to start at yc.length.
562 */
563 if ((b = (j = yc.length) - (i = xc.length)) > 0) for (; b--;) xc[i++] = 0;
564
565 // Subtract yc from xc.
566 for (b = i; j > a;) {
567 if (xc[--j] < yc[j]) {
568 for (i = j; i && !xc[--i];) xc[i] = 9;
569 --xc[i];
570 xc[j] += 10;
571 }
572
573 xc[j] -= yc[j];
574 }
575
576 // Remove trailing zeros.
577 for (; xc[--b] === 0;) xc.pop();
578
579 // Remove leading zeros and adjust exponent accordingly.
580 for (; xc[0] === 0;) {
581 xc.shift();
582 --ye;
583 }
584
585 if (!xc[0]) {
586
587 // n - n = +0
588 y.s = 1;
589
590 // Result must be zero.
591 xc = [ye = 0];
592 }
593
594 y.c = xc;
595 y.e = ye;
596
597 return y;
598};
599
600
601/*
602 * Return a new Big whose value is the value of this Big modulo the value of Big y.
603 */
604P.mod = function (y) {
605 var ygtx,
606 x = this,
607 Big = x.constructor,
608 a = x.s,
609 b = (y = new Big(y)).s;
610
611 if (!y.c[0]) throw Error(DIV_BY_ZERO);
612
613 x.s = y.s = 1;
614 ygtx = y.cmp(x) == 1;
615 x.s = a;
616 y.s = b;
617
618 if (ygtx) return new Big(x);
619
620 a = Big.DP;
621 b = Big.RM;
622 Big.DP = Big.RM = 0;
623 x = x.div(y);
624 Big.DP = a;
625 Big.RM = b;
626
627 return this.minus(x.times(y));
628};
629
630
631/*
632 * Return a new Big whose value is the value of this Big plus the value of Big y.
633 */
634P.plus = P.add = function (y) {
635 var t,
636 x = this,
637 Big = x.constructor,
638 a = x.s,
639 b = (y = new Big(y)).s;
640
641 // Signs differ?
642 if (a != b) {
643 y.s = -b;
644 return x.minus(y);
645 }
646
647 var xe = x.e,
648 xc = x.c,
649 ye = y.e,
650 yc = y.c;
651
652 // Either zero? y is non-zero? x is non-zero? Or both are zero.
653 if (!xc[0] || !yc[0]) return yc[0] ? y : new Big(xc[0] ? x : a * 0);
654
655 xc = xc.slice();
656
657 // Prepend zeros to equalise exponents.
658 // Note: reverse faster than unshifts.
659 if (a = xe - ye) {
660 if (a > 0) {
661 ye = xe;
662 t = yc;
663 } else {
664 a = -a;
665 t = xc;
666 }
667
668 t.reverse();
669 for (; a--;) t.push(0);
670 t.reverse();
671 }
672
673 // Point xc to the longer array.
674 if (xc.length - yc.length < 0) {
675 t = yc;
676 yc = xc;
677 xc = t;
678 }
679
680 a = yc.length;
681
682 // Only start adding at yc.length - 1 as the further digits of xc can be left as they are.
683 for (b = 0; a; xc[a] %= 10) b = (xc[--a] = xc[a] + yc[a] + b) / 10 | 0;
684
685 // No need to check for zero, as +x + +y != 0 && -x + -y != 0
686
687 if (b) {
688 xc.unshift(b);
689 ++ye;
690 }
691
692 // Remove trailing zeros.
693 for (a = xc.length; xc[--a] === 0;) xc.pop();
694
695 y.c = xc;
696 y.e = ye;
697
698 return y;
699};
700
701
702/*
703 * Return a Big whose value is the value of this Big raised to the power n.
704 * If n is negative, round to a maximum of Big.DP decimal places using rounding
705 * mode Big.RM.
706 *
707 * n {number} Integer, -MAX_POWER to MAX_POWER inclusive.
708 */
709P.pow = function (n) {
710 var x = this,
711 one = new x.constructor(1),
712 y = one,
713 isneg = n < 0;
714
715 if (n !== ~~n || n < -MAX_POWER || n > MAX_POWER) throw Error(INVALID + 'exponent');
716 if (isneg) n = -n;
717
718 for (;;) {
719 if (n & 1) y = y.times(x);
720 n >>= 1;
721 if (!n) break;
722 x = x.times(x);
723 }
724
725 return isneg ? one.div(y) : y;
726};
727
728
729/*
730 * Return a new Big whose value is the value of this Big rounded using rounding mode rm
731 * to a maximum of dp decimal places, or, if dp is negative, to an integer which is a
732 * multiple of 10**-dp.
733 * If dp is not specified, round to 0 decimal places.
734 * If rm is not specified, use Big.RM.
735 *
736 * dp? {number} Integer, -MAX_DP to MAX_DP inclusive.
737 * rm? 0, 1, 2 or 3 (ROUND_DOWN, ROUND_HALF_UP, ROUND_HALF_EVEN, ROUND_UP)
738 */
739P.round = function (dp, rm) {
740 var Big = this.constructor;
741 if (dp === UNDEFINED) dp = 0;
742 else if (dp !== ~~dp || dp < -MAX_DP || dp > MAX_DP) throw Error(INVALID_DP);
743 return round(new Big(this), dp, rm === UNDEFINED ? Big.RM : rm);
744};
745
746
747/*
748 * Return a new Big whose value is the square root of the value of this Big, rounded, if
749 * necessary, to a maximum of Big.DP decimal places using rounding mode Big.RM.
750 */
751P.sqrt = function () {
752 var r, c, t,
753 x = this,
754 Big = x.constructor,
755 s = x.s,
756 e = x.e,
757 half = new Big(0.5);
758
759 // Zero?
760 if (!x.c[0]) return new Big(x);
761
762 // Negative?
763 if (s < 0) throw Error(NAME + 'No square root');
764
765 // Estimate.
766 s = Math.sqrt(x + '');
767
768 // Math.sqrt underflow/overflow?
769 // Re-estimate: pass x coefficient to Math.sqrt as integer, then adjust the result exponent.
770 if (s === 0 || s === 1 / 0) {
771 c = x.c.join('');
772 if (!(c.length + e & 1)) c += '0';
773 s = Math.sqrt(c);
774 e = ((e + 1) / 2 | 0) - (e < 0 || e & 1);
775 r = new Big((s == 1 / 0 ? '1e' : (s = s.toExponential()).slice(0, s.indexOf('e') + 1)) + e);
776 } else {
777 r = new Big(s);
778 }
779
780 e = r.e + (Big.DP += 4);
781
782 // Newton-Raphson iteration.
783 do {
784 t = r;
785 r = half.times(t.plus(x.div(t)));
786 } while (t.c.slice(0, e).join('') !== r.c.slice(0, e).join(''));
787
788 return round(r, Big.DP -= 4, Big.RM);
789};
790
791
792/*
793 * Return a new Big whose value is the value of this Big times the value of Big y.
794 */
795P.times = P.mul = function (y) {
796 var c,
797 x = this,
798 Big = x.constructor,
799 xc = x.c,
800 yc = (y = new Big(y)).c,
801 a = xc.length,
802 b = yc.length,
803 i = x.e,
804 j = y.e;
805
806 // Determine sign of result.
807 y.s = x.s == y.s ? 1 : -1;
808
809 // Return signed 0 if either 0.
810 if (!xc[0] || !yc[0]) return new Big(y.s * 0);
811
812 // Initialise exponent of result as x.e + y.e.
813 y.e = i + j;
814
815 // If array xc has fewer digits than yc, swap xc and yc, and lengths.
816 if (a < b) {
817 c = xc;
818 xc = yc;
819 yc = c;
820 j = a;
821 a = b;
822 b = j;
823 }
824
825 // Initialise coefficient array of result with zeros.
826 for (c = new Array(j = a + b); j--;) c[j] = 0;
827
828 // Multiply.
829
830 // i is initially xc.length.
831 for (i = b; i--;) {
832 b = 0;
833
834 // a is yc.length.
835 for (j = a + i; j > i;) {
836
837 // Current sum of products at this digit position, plus carry.
838 b = c[j] + yc[i] * xc[j - i - 1] + b;
839 c[j--] = b % 10;
840
841 // carry
842 b = b / 10 | 0;
843 }
844
845 c[j] = (c[j] + b) % 10;
846 }
847
848 // Increment result exponent if there is a final carry, otherwise remove leading zero.
849 if (b) ++y.e;
850 else c.shift();
851
852 // Remove trailing zeros.
853 for (i = c.length; !c[--i];) c.pop();
854 y.c = c;
855
856 return y;
857};
858
859
860/*
861 * Return a string representing the value of this Big in exponential notation to dp fixed decimal
862 * places and rounded using Big.RM.
863 *
864 * dp? {number} Integer, 0 to MAX_DP inclusive.
865 */
866P.toExponential = function (dp) {
867 return stringify(this, 1, dp, dp);
868};
869
870
871/*
872 * Return a string representing the value of this Big in normal notation to dp fixed decimal
873 * places and rounded using Big.RM.
874 *
875 * dp? {number} Integer, 0 to MAX_DP inclusive.
876 *
877 * (-0).toFixed(0) is '0', but (-0.1).toFixed(0) is '-0'.
878 * (-0).toFixed(1) is '0.0', but (-0.01).toFixed(1) is '-0.0'.
879 */
880P.toFixed = function (dp) {
881 return stringify(this, 2, dp, this.e + dp);
882};
883
884
885/*
886 * Return a string representing the value of this Big rounded to sd significant digits using
887 * Big.RM. Use exponential notation if sd is less than the number of digits necessary to represent
888 * the integer part of the value in normal notation.
889 *
890 * sd {number} Integer, 1 to MAX_DP inclusive.
891 */
892P.toPrecision = function (sd) {
893 return stringify(this, 3, sd, sd - 1);
894};
895
896
897/*
898 * Return a string representing the value of this Big.
899 * Return exponential notation if this Big has a positive exponent equal to or greater than
900 * Big.PE, or a negative exponent equal to or less than Big.NE.
901 * Omit the sign for negative zero.
902 */
903P.toString = function () {
904 return stringify(this);
905};
906
907
908/*
909 * Return a string representing the value of this Big.
910 * Return exponential notation if this Big has a positive exponent equal to or greater than
911 * Big.PE, or a negative exponent equal to or less than Big.NE.
912 * Include the sign for negative zero.
913 */
914P.valueOf = P.toJSON = function () {
915 return stringify(this, 4);
916};
917
918
919// Export
920
921
922export var Big = _Big_();
923
924export default Big;
Note: See TracBrowser for help on using the repository browser.