1 | /*
|
---|
2 | * big.js v5.2.2
|
---|
3 | * A small, fast, easy-to-use library for arbitrary-precision decimal arithmetic.
|
---|
4 | * Copyright (c) 2018 Michael Mclaughlin <M8ch88l@gmail.com>
|
---|
5 | * https://github.com/MikeMcl/big.js/LICENCE
|
---|
6 | */
|
---|
7 |
|
---|
8 |
|
---|
9 | /************************************** EDITABLE DEFAULTS *****************************************/
|
---|
10 |
|
---|
11 |
|
---|
12 | // The default values below must be integers within the stated ranges.
|
---|
13 |
|
---|
14 | /*
|
---|
15 | * The maximum number of decimal places (DP) of the results of operations involving division:
|
---|
16 | * div and sqrt, and pow with negative exponents.
|
---|
17 | */
|
---|
18 | var DP = 20, // 0 to MAX_DP
|
---|
19 |
|
---|
20 | /*
|
---|
21 | * The rounding mode (RM) used when rounding to the above decimal places.
|
---|
22 | *
|
---|
23 | * 0 Towards zero (i.e. truncate, no rounding). (ROUND_DOWN)
|
---|
24 | * 1 To nearest neighbour. If equidistant, round up. (ROUND_HALF_UP)
|
---|
25 | * 2 To nearest neighbour. If equidistant, to even. (ROUND_HALF_EVEN)
|
---|
26 | * 3 Away from zero. (ROUND_UP)
|
---|
27 | */
|
---|
28 | RM = 1, // 0, 1, 2 or 3
|
---|
29 |
|
---|
30 | // The maximum value of DP and Big.DP.
|
---|
31 | MAX_DP = 1E6, // 0 to 1000000
|
---|
32 |
|
---|
33 | // The maximum magnitude of the exponent argument to the pow method.
|
---|
34 | MAX_POWER = 1E6, // 1 to 1000000
|
---|
35 |
|
---|
36 | /*
|
---|
37 | * The negative exponent (NE) at and beneath which toString returns exponential notation.
|
---|
38 | * (JavaScript numbers: -7)
|
---|
39 | * -1000000 is the minimum recommended exponent value of a Big.
|
---|
40 | */
|
---|
41 | NE = -7, // 0 to -1000000
|
---|
42 |
|
---|
43 | /*
|
---|
44 | * The positive exponent (PE) at and above which toString returns exponential notation.
|
---|
45 | * (JavaScript numbers: 21)
|
---|
46 | * 1000000 is the maximum recommended exponent value of a Big.
|
---|
47 | * (This limit is not enforced or checked.)
|
---|
48 | */
|
---|
49 | PE = 21, // 0 to 1000000
|
---|
50 |
|
---|
51 |
|
---|
52 | /**************************************************************************************************/
|
---|
53 |
|
---|
54 |
|
---|
55 | // Error messages.
|
---|
56 | NAME = '[big.js] ',
|
---|
57 | INVALID = NAME + 'Invalid ',
|
---|
58 | INVALID_DP = INVALID + 'decimal places',
|
---|
59 | INVALID_RM = INVALID + 'rounding mode',
|
---|
60 | DIV_BY_ZERO = NAME + 'Division by zero',
|
---|
61 |
|
---|
62 | // The shared prototype object.
|
---|
63 | P = {},
|
---|
64 | UNDEFINED = void 0,
|
---|
65 | NUMERIC = /^-?(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i;
|
---|
66 |
|
---|
67 |
|
---|
68 | /*
|
---|
69 | * Create and return a Big constructor.
|
---|
70 | *
|
---|
71 | */
|
---|
72 | function _Big_() {
|
---|
73 |
|
---|
74 | /*
|
---|
75 | * The Big constructor and exported function.
|
---|
76 | * Create and return a new instance of a Big number object.
|
---|
77 | *
|
---|
78 | * n {number|string|Big} A numeric value.
|
---|
79 | */
|
---|
80 | function Big(n) {
|
---|
81 | var x = this;
|
---|
82 |
|
---|
83 | // Enable constructor usage without new.
|
---|
84 | if (!(x instanceof Big)) return n === UNDEFINED ? _Big_() : new Big(n);
|
---|
85 |
|
---|
86 | // Duplicate.
|
---|
87 | if (n instanceof Big) {
|
---|
88 | x.s = n.s;
|
---|
89 | x.e = n.e;
|
---|
90 | x.c = n.c.slice();
|
---|
91 | } else {
|
---|
92 | parse(x, n);
|
---|
93 | }
|
---|
94 |
|
---|
95 | /*
|
---|
96 | * Retain a reference to this Big constructor, and shadow Big.prototype.constructor which
|
---|
97 | * points to Object.
|
---|
98 | */
|
---|
99 | x.constructor = Big;
|
---|
100 | }
|
---|
101 |
|
---|
102 | Big.prototype = P;
|
---|
103 | Big.DP = DP;
|
---|
104 | Big.RM = RM;
|
---|
105 | Big.NE = NE;
|
---|
106 | Big.PE = PE;
|
---|
107 | Big.version = '5.2.2';
|
---|
108 |
|
---|
109 | return Big;
|
---|
110 | }
|
---|
111 |
|
---|
112 |
|
---|
113 | /*
|
---|
114 | * Parse the number or string value passed to a Big constructor.
|
---|
115 | *
|
---|
116 | * x {Big} A Big number instance.
|
---|
117 | * n {number|string} A numeric value.
|
---|
118 | */
|
---|
119 | function parse(x, n) {
|
---|
120 | var e, i, nl;
|
---|
121 |
|
---|
122 | // Minus zero?
|
---|
123 | if (n === 0 && 1 / n < 0) n = '-0';
|
---|
124 | else if (!NUMERIC.test(n += '')) throw Error(INVALID + 'number');
|
---|
125 |
|
---|
126 | // Determine sign.
|
---|
127 | x.s = n.charAt(0) == '-' ? (n = n.slice(1), -1) : 1;
|
---|
128 |
|
---|
129 | // Decimal point?
|
---|
130 | if ((e = n.indexOf('.')) > -1) n = n.replace('.', '');
|
---|
131 |
|
---|
132 | // Exponential form?
|
---|
133 | if ((i = n.search(/e/i)) > 0) {
|
---|
134 |
|
---|
135 | // Determine exponent.
|
---|
136 | if (e < 0) e = i;
|
---|
137 | e += +n.slice(i + 1);
|
---|
138 | n = n.substring(0, i);
|
---|
139 | } else if (e < 0) {
|
---|
140 |
|
---|
141 | // Integer.
|
---|
142 | e = n.length;
|
---|
143 | }
|
---|
144 |
|
---|
145 | nl = n.length;
|
---|
146 |
|
---|
147 | // Determine leading zeros.
|
---|
148 | for (i = 0; i < nl && n.charAt(i) == '0';) ++i;
|
---|
149 |
|
---|
150 | if (i == nl) {
|
---|
151 |
|
---|
152 | // Zero.
|
---|
153 | x.c = [x.e = 0];
|
---|
154 | } else {
|
---|
155 |
|
---|
156 | // Determine trailing zeros.
|
---|
157 | for (; nl > 0 && n.charAt(--nl) == '0';);
|
---|
158 | x.e = e - i - 1;
|
---|
159 | x.c = [];
|
---|
160 |
|
---|
161 | // Convert string to array of digits without leading/trailing zeros.
|
---|
162 | for (e = 0; i <= nl;) x.c[e++] = +n.charAt(i++);
|
---|
163 | }
|
---|
164 |
|
---|
165 | return x;
|
---|
166 | }
|
---|
167 |
|
---|
168 |
|
---|
169 | /*
|
---|
170 | * Round Big x to a maximum of dp decimal places using rounding mode rm.
|
---|
171 | * Called by stringify, P.div, P.round and P.sqrt.
|
---|
172 | *
|
---|
173 | * x {Big} The Big to round.
|
---|
174 | * dp {number} Integer, 0 to MAX_DP inclusive.
|
---|
175 | * rm {number} 0, 1, 2 or 3 (DOWN, HALF_UP, HALF_EVEN, UP)
|
---|
176 | * [more] {boolean} Whether the result of division was truncated.
|
---|
177 | */
|
---|
178 | function round(x, dp, rm, more) {
|
---|
179 | var xc = x.c,
|
---|
180 | i = x.e + dp + 1;
|
---|
181 |
|
---|
182 | if (i < xc.length) {
|
---|
183 | if (rm === 1) {
|
---|
184 |
|
---|
185 | // xc[i] is the digit after the digit that may be rounded up.
|
---|
186 | more = xc[i] >= 5;
|
---|
187 | } else if (rm === 2) {
|
---|
188 | more = xc[i] > 5 || xc[i] == 5 &&
|
---|
189 | (more || i < 0 || xc[i + 1] !== UNDEFINED || xc[i - 1] & 1);
|
---|
190 | } else if (rm === 3) {
|
---|
191 | more = more || !!xc[0];
|
---|
192 | } else {
|
---|
193 | more = false;
|
---|
194 | if (rm !== 0) throw Error(INVALID_RM);
|
---|
195 | }
|
---|
196 |
|
---|
197 | if (i < 1) {
|
---|
198 | xc.length = 1;
|
---|
199 |
|
---|
200 | if (more) {
|
---|
201 |
|
---|
202 | // 1, 0.1, 0.01, 0.001, 0.0001 etc.
|
---|
203 | x.e = -dp;
|
---|
204 | xc[0] = 1;
|
---|
205 | } else {
|
---|
206 |
|
---|
207 | // Zero.
|
---|
208 | xc[0] = x.e = 0;
|
---|
209 | }
|
---|
210 | } else {
|
---|
211 |
|
---|
212 | // Remove any digits after the required decimal places.
|
---|
213 | xc.length = i--;
|
---|
214 |
|
---|
215 | // Round up?
|
---|
216 | if (more) {
|
---|
217 |
|
---|
218 | // Rounding up may mean the previous digit has to be rounded up.
|
---|
219 | for (; ++xc[i] > 9;) {
|
---|
220 | xc[i] = 0;
|
---|
221 | if (!i--) {
|
---|
222 | ++x.e;
|
---|
223 | xc.unshift(1);
|
---|
224 | }
|
---|
225 | }
|
---|
226 | }
|
---|
227 |
|
---|
228 | // Remove trailing zeros.
|
---|
229 | for (i = xc.length; !xc[--i];) xc.pop();
|
---|
230 | }
|
---|
231 | } else if (rm < 0 || rm > 3 || rm !== ~~rm) {
|
---|
232 | throw Error(INVALID_RM);
|
---|
233 | }
|
---|
234 |
|
---|
235 | return x;
|
---|
236 | }
|
---|
237 |
|
---|
238 |
|
---|
239 | /*
|
---|
240 | * Return a string representing the value of Big x in normal or exponential notation.
|
---|
241 | * Handles P.toExponential, P.toFixed, P.toJSON, P.toPrecision, P.toString and P.valueOf.
|
---|
242 | *
|
---|
243 | * x {Big}
|
---|
244 | * id? {number} Caller id.
|
---|
245 | * 1 toExponential
|
---|
246 | * 2 toFixed
|
---|
247 | * 3 toPrecision
|
---|
248 | * 4 valueOf
|
---|
249 | * n? {number|undefined} Caller's argument.
|
---|
250 | * k? {number|undefined}
|
---|
251 | */
|
---|
252 | function stringify(x, id, n, k) {
|
---|
253 | var e, s,
|
---|
254 | Big = x.constructor,
|
---|
255 | z = !x.c[0];
|
---|
256 |
|
---|
257 | if (n !== UNDEFINED) {
|
---|
258 | if (n !== ~~n || n < (id == 3) || n > MAX_DP) {
|
---|
259 | throw Error(id == 3 ? INVALID + 'precision' : INVALID_DP);
|
---|
260 | }
|
---|
261 |
|
---|
262 | x = new Big(x);
|
---|
263 |
|
---|
264 | // The index of the digit that may be rounded up.
|
---|
265 | n = k - x.e;
|
---|
266 |
|
---|
267 | // Round?
|
---|
268 | if (x.c.length > ++k) round(x, n, Big.RM);
|
---|
269 |
|
---|
270 | // toFixed: recalculate k as x.e may have changed if value rounded up.
|
---|
271 | if (id == 2) k = x.e + n + 1;
|
---|
272 |
|
---|
273 | // Append zeros?
|
---|
274 | for (; x.c.length < k;) x.c.push(0);
|
---|
275 | }
|
---|
276 |
|
---|
277 | e = x.e;
|
---|
278 | s = x.c.join('');
|
---|
279 | n = s.length;
|
---|
280 |
|
---|
281 | // Exponential notation?
|
---|
282 | if (id != 2 && (id == 1 || id == 3 && k <= e || e <= Big.NE || e >= Big.PE)) {
|
---|
283 | s = s.charAt(0) + (n > 1 ? '.' + s.slice(1) : '') + (e < 0 ? 'e' : 'e+') + e;
|
---|
284 |
|
---|
285 | // Normal notation.
|
---|
286 | } else if (e < 0) {
|
---|
287 | for (; ++e;) s = '0' + s;
|
---|
288 | s = '0.' + s;
|
---|
289 | } else if (e > 0) {
|
---|
290 | if (++e > n) for (e -= n; e--;) s += '0';
|
---|
291 | else if (e < n) s = s.slice(0, e) + '.' + s.slice(e);
|
---|
292 | } else if (n > 1) {
|
---|
293 | s = s.charAt(0) + '.' + s.slice(1);
|
---|
294 | }
|
---|
295 |
|
---|
296 | return x.s < 0 && (!z || id == 4) ? '-' + s : s;
|
---|
297 | }
|
---|
298 |
|
---|
299 |
|
---|
300 | // Prototype/instance methods
|
---|
301 |
|
---|
302 |
|
---|
303 | /*
|
---|
304 | * Return a new Big whose value is the absolute value of this Big.
|
---|
305 | */
|
---|
306 | P.abs = function () {
|
---|
307 | var x = new this.constructor(this);
|
---|
308 | x.s = 1;
|
---|
309 | return x;
|
---|
310 | };
|
---|
311 |
|
---|
312 |
|
---|
313 | /*
|
---|
314 | * Return 1 if the value of this Big is greater than the value of Big y,
|
---|
315 | * -1 if the value of this Big is less than the value of Big y, or
|
---|
316 | * 0 if they have the same value.
|
---|
317 | */
|
---|
318 | P.cmp = function (y) {
|
---|
319 | var isneg,
|
---|
320 | x = this,
|
---|
321 | xc = x.c,
|
---|
322 | yc = (y = new x.constructor(y)).c,
|
---|
323 | i = x.s,
|
---|
324 | j = y.s,
|
---|
325 | k = x.e,
|
---|
326 | l = y.e;
|
---|
327 |
|
---|
328 | // Either zero?
|
---|
329 | if (!xc[0] || !yc[0]) return !xc[0] ? !yc[0] ? 0 : -j : i;
|
---|
330 |
|
---|
331 | // Signs differ?
|
---|
332 | if (i != j) return i;
|
---|
333 |
|
---|
334 | isneg = i < 0;
|
---|
335 |
|
---|
336 | // Compare exponents.
|
---|
337 | if (k != l) return k > l ^ isneg ? 1 : -1;
|
---|
338 |
|
---|
339 | j = (k = xc.length) < (l = yc.length) ? k : l;
|
---|
340 |
|
---|
341 | // Compare digit by digit.
|
---|
342 | for (i = -1; ++i < j;) {
|
---|
343 | if (xc[i] != yc[i]) return xc[i] > yc[i] ^ isneg ? 1 : -1;
|
---|
344 | }
|
---|
345 |
|
---|
346 | // Compare lengths.
|
---|
347 | return k == l ? 0 : k > l ^ isneg ? 1 : -1;
|
---|
348 | };
|
---|
349 |
|
---|
350 |
|
---|
351 | /*
|
---|
352 | * Return a new Big whose value is the value of this Big divided by the value of Big y, rounded,
|
---|
353 | * if necessary, to a maximum of Big.DP decimal places using rounding mode Big.RM.
|
---|
354 | */
|
---|
355 | P.div = function (y) {
|
---|
356 | var x = this,
|
---|
357 | Big = x.constructor,
|
---|
358 | a = x.c, // dividend
|
---|
359 | b = (y = new Big(y)).c, // divisor
|
---|
360 | k = x.s == y.s ? 1 : -1,
|
---|
361 | dp = Big.DP;
|
---|
362 |
|
---|
363 | if (dp !== ~~dp || dp < 0 || dp > MAX_DP) throw Error(INVALID_DP);
|
---|
364 |
|
---|
365 | // Divisor is zero?
|
---|
366 | if (!b[0]) throw Error(DIV_BY_ZERO);
|
---|
367 |
|
---|
368 | // Dividend is 0? Return +-0.
|
---|
369 | if (!a[0]) return new Big(k * 0);
|
---|
370 |
|
---|
371 | var bl, bt, n, cmp, ri,
|
---|
372 | bz = b.slice(),
|
---|
373 | ai = bl = b.length,
|
---|
374 | al = a.length,
|
---|
375 | r = a.slice(0, bl), // remainder
|
---|
376 | rl = r.length,
|
---|
377 | q = y, // quotient
|
---|
378 | qc = q.c = [],
|
---|
379 | qi = 0,
|
---|
380 | d = dp + (q.e = x.e - y.e) + 1; // number of digits of the result
|
---|
381 |
|
---|
382 | q.s = k;
|
---|
383 | k = d < 0 ? 0 : d;
|
---|
384 |
|
---|
385 | // Create version of divisor with leading zero.
|
---|
386 | bz.unshift(0);
|
---|
387 |
|
---|
388 | // Add zeros to make remainder as long as divisor.
|
---|
389 | for (; rl++ < bl;) r.push(0);
|
---|
390 |
|
---|
391 | do {
|
---|
392 |
|
---|
393 | // n is how many times the divisor goes into current remainder.
|
---|
394 | for (n = 0; n < 10; n++) {
|
---|
395 |
|
---|
396 | // Compare divisor and remainder.
|
---|
397 | if (bl != (rl = r.length)) {
|
---|
398 | cmp = bl > rl ? 1 : -1;
|
---|
399 | } else {
|
---|
400 | for (ri = -1, cmp = 0; ++ri < bl;) {
|
---|
401 | if (b[ri] != r[ri]) {
|
---|
402 | cmp = b[ri] > r[ri] ? 1 : -1;
|
---|
403 | break;
|
---|
404 | }
|
---|
405 | }
|
---|
406 | }
|
---|
407 |
|
---|
408 | // If divisor < remainder, subtract divisor from remainder.
|
---|
409 | if (cmp < 0) {
|
---|
410 |
|
---|
411 | // Remainder can't be more than 1 digit longer than divisor.
|
---|
412 | // Equalise lengths using divisor with extra leading zero?
|
---|
413 | for (bt = rl == bl ? b : bz; rl;) {
|
---|
414 | if (r[--rl] < bt[rl]) {
|
---|
415 | ri = rl;
|
---|
416 | for (; ri && !r[--ri];) r[ri] = 9;
|
---|
417 | --r[ri];
|
---|
418 | r[rl] += 10;
|
---|
419 | }
|
---|
420 | r[rl] -= bt[rl];
|
---|
421 | }
|
---|
422 |
|
---|
423 | for (; !r[0];) r.shift();
|
---|
424 | } else {
|
---|
425 | break;
|
---|
426 | }
|
---|
427 | }
|
---|
428 |
|
---|
429 | // Add the digit n to the result array.
|
---|
430 | qc[qi++] = cmp ? n : ++n;
|
---|
431 |
|
---|
432 | // Update the remainder.
|
---|
433 | if (r[0] && cmp) r[rl] = a[ai] || 0;
|
---|
434 | else r = [a[ai]];
|
---|
435 |
|
---|
436 | } while ((ai++ < al || r[0] !== UNDEFINED) && k--);
|
---|
437 |
|
---|
438 | // Leading zero? Do not remove if result is simply zero (qi == 1).
|
---|
439 | if (!qc[0] && qi != 1) {
|
---|
440 |
|
---|
441 | // There can't be more than one zero.
|
---|
442 | qc.shift();
|
---|
443 | q.e--;
|
---|
444 | }
|
---|
445 |
|
---|
446 | // Round?
|
---|
447 | if (qi > d) round(q, dp, Big.RM, r[0] !== UNDEFINED);
|
---|
448 |
|
---|
449 | return q;
|
---|
450 | };
|
---|
451 |
|
---|
452 |
|
---|
453 | /*
|
---|
454 | * Return true if the value of this Big is equal to the value of Big y, otherwise return false.
|
---|
455 | */
|
---|
456 | P.eq = function (y) {
|
---|
457 | return !this.cmp(y);
|
---|
458 | };
|
---|
459 |
|
---|
460 |
|
---|
461 | /*
|
---|
462 | * Return true if the value of this Big is greater than the value of Big y, otherwise return
|
---|
463 | * false.
|
---|
464 | */
|
---|
465 | P.gt = function (y) {
|
---|
466 | return this.cmp(y) > 0;
|
---|
467 | };
|
---|
468 |
|
---|
469 |
|
---|
470 | /*
|
---|
471 | * Return true if the value of this Big is greater than or equal to the value of Big y, otherwise
|
---|
472 | * return false.
|
---|
473 | */
|
---|
474 | P.gte = function (y) {
|
---|
475 | return this.cmp(y) > -1;
|
---|
476 | };
|
---|
477 |
|
---|
478 |
|
---|
479 | /*
|
---|
480 | * Return true if the value of this Big is less than the value of Big y, otherwise return false.
|
---|
481 | */
|
---|
482 | P.lt = function (y) {
|
---|
483 | return this.cmp(y) < 0;
|
---|
484 | };
|
---|
485 |
|
---|
486 |
|
---|
487 | /*
|
---|
488 | * Return true if the value of this Big is less than or equal to the value of Big y, otherwise
|
---|
489 | * return false.
|
---|
490 | */
|
---|
491 | P.lte = function (y) {
|
---|
492 | return this.cmp(y) < 1;
|
---|
493 | };
|
---|
494 |
|
---|
495 |
|
---|
496 | /*
|
---|
497 | * Return a new Big whose value is the value of this Big minus the value of Big y.
|
---|
498 | */
|
---|
499 | P.minus = P.sub = function (y) {
|
---|
500 | var i, j, t, xlty,
|
---|
501 | x = this,
|
---|
502 | Big = x.constructor,
|
---|
503 | a = x.s,
|
---|
504 | b = (y = new Big(y)).s;
|
---|
505 |
|
---|
506 | // Signs differ?
|
---|
507 | if (a != b) {
|
---|
508 | y.s = -b;
|
---|
509 | return x.plus(y);
|
---|
510 | }
|
---|
511 |
|
---|
512 | var xc = x.c.slice(),
|
---|
513 | xe = x.e,
|
---|
514 | yc = y.c,
|
---|
515 | ye = y.e;
|
---|
516 |
|
---|
517 | // Either zero?
|
---|
518 | if (!xc[0] || !yc[0]) {
|
---|
519 |
|
---|
520 | // y is non-zero? x is non-zero? Or both are zero.
|
---|
521 | return yc[0] ? (y.s = -b, y) : new Big(xc[0] ? x : 0);
|
---|
522 | }
|
---|
523 |
|
---|
524 | // Determine which is the bigger number. Prepend zeros to equalise exponents.
|
---|
525 | if (a = xe - ye) {
|
---|
526 |
|
---|
527 | if (xlty = a < 0) {
|
---|
528 | a = -a;
|
---|
529 | t = xc;
|
---|
530 | } else {
|
---|
531 | ye = xe;
|
---|
532 | t = yc;
|
---|
533 | }
|
---|
534 |
|
---|
535 | t.reverse();
|
---|
536 | for (b = a; b--;) t.push(0);
|
---|
537 | t.reverse();
|
---|
538 | } else {
|
---|
539 |
|
---|
540 | // Exponents equal. Check digit by digit.
|
---|
541 | j = ((xlty = xc.length < yc.length) ? xc : yc).length;
|
---|
542 |
|
---|
543 | for (a = b = 0; b < j; b++) {
|
---|
544 | if (xc[b] != yc[b]) {
|
---|
545 | xlty = xc[b] < yc[b];
|
---|
546 | break;
|
---|
547 | }
|
---|
548 | }
|
---|
549 | }
|
---|
550 |
|
---|
551 | // x < y? Point xc to the array of the bigger number.
|
---|
552 | if (xlty) {
|
---|
553 | t = xc;
|
---|
554 | xc = yc;
|
---|
555 | yc = t;
|
---|
556 | y.s = -y.s;
|
---|
557 | }
|
---|
558 |
|
---|
559 | /*
|
---|
560 | * Append zeros to xc if shorter. No need to add zeros to yc if shorter as subtraction only
|
---|
561 | * needs to start at yc.length.
|
---|
562 | */
|
---|
563 | if ((b = (j = yc.length) - (i = xc.length)) > 0) for (; b--;) xc[i++] = 0;
|
---|
564 |
|
---|
565 | // Subtract yc from xc.
|
---|
566 | for (b = i; j > a;) {
|
---|
567 | if (xc[--j] < yc[j]) {
|
---|
568 | for (i = j; i && !xc[--i];) xc[i] = 9;
|
---|
569 | --xc[i];
|
---|
570 | xc[j] += 10;
|
---|
571 | }
|
---|
572 |
|
---|
573 | xc[j] -= yc[j];
|
---|
574 | }
|
---|
575 |
|
---|
576 | // Remove trailing zeros.
|
---|
577 | for (; xc[--b] === 0;) xc.pop();
|
---|
578 |
|
---|
579 | // Remove leading zeros and adjust exponent accordingly.
|
---|
580 | for (; xc[0] === 0;) {
|
---|
581 | xc.shift();
|
---|
582 | --ye;
|
---|
583 | }
|
---|
584 |
|
---|
585 | if (!xc[0]) {
|
---|
586 |
|
---|
587 | // n - n = +0
|
---|
588 | y.s = 1;
|
---|
589 |
|
---|
590 | // Result must be zero.
|
---|
591 | xc = [ye = 0];
|
---|
592 | }
|
---|
593 |
|
---|
594 | y.c = xc;
|
---|
595 | y.e = ye;
|
---|
596 |
|
---|
597 | return y;
|
---|
598 | };
|
---|
599 |
|
---|
600 |
|
---|
601 | /*
|
---|
602 | * Return a new Big whose value is the value of this Big modulo the value of Big y.
|
---|
603 | */
|
---|
604 | P.mod = function (y) {
|
---|
605 | var ygtx,
|
---|
606 | x = this,
|
---|
607 | Big = x.constructor,
|
---|
608 | a = x.s,
|
---|
609 | b = (y = new Big(y)).s;
|
---|
610 |
|
---|
611 | if (!y.c[0]) throw Error(DIV_BY_ZERO);
|
---|
612 |
|
---|
613 | x.s = y.s = 1;
|
---|
614 | ygtx = y.cmp(x) == 1;
|
---|
615 | x.s = a;
|
---|
616 | y.s = b;
|
---|
617 |
|
---|
618 | if (ygtx) return new Big(x);
|
---|
619 |
|
---|
620 | a = Big.DP;
|
---|
621 | b = Big.RM;
|
---|
622 | Big.DP = Big.RM = 0;
|
---|
623 | x = x.div(y);
|
---|
624 | Big.DP = a;
|
---|
625 | Big.RM = b;
|
---|
626 |
|
---|
627 | return this.minus(x.times(y));
|
---|
628 | };
|
---|
629 |
|
---|
630 |
|
---|
631 | /*
|
---|
632 | * Return a new Big whose value is the value of this Big plus the value of Big y.
|
---|
633 | */
|
---|
634 | P.plus = P.add = function (y) {
|
---|
635 | var t,
|
---|
636 | x = this,
|
---|
637 | Big = x.constructor,
|
---|
638 | a = x.s,
|
---|
639 | b = (y = new Big(y)).s;
|
---|
640 |
|
---|
641 | // Signs differ?
|
---|
642 | if (a != b) {
|
---|
643 | y.s = -b;
|
---|
644 | return x.minus(y);
|
---|
645 | }
|
---|
646 |
|
---|
647 | var xe = x.e,
|
---|
648 | xc = x.c,
|
---|
649 | ye = y.e,
|
---|
650 | yc = y.c;
|
---|
651 |
|
---|
652 | // Either zero? y is non-zero? x is non-zero? Or both are zero.
|
---|
653 | if (!xc[0] || !yc[0]) return yc[0] ? y : new Big(xc[0] ? x : a * 0);
|
---|
654 |
|
---|
655 | xc = xc.slice();
|
---|
656 |
|
---|
657 | // Prepend zeros to equalise exponents.
|
---|
658 | // Note: reverse faster than unshifts.
|
---|
659 | if (a = xe - ye) {
|
---|
660 | if (a > 0) {
|
---|
661 | ye = xe;
|
---|
662 | t = yc;
|
---|
663 | } else {
|
---|
664 | a = -a;
|
---|
665 | t = xc;
|
---|
666 | }
|
---|
667 |
|
---|
668 | t.reverse();
|
---|
669 | for (; a--;) t.push(0);
|
---|
670 | t.reverse();
|
---|
671 | }
|
---|
672 |
|
---|
673 | // Point xc to the longer array.
|
---|
674 | if (xc.length - yc.length < 0) {
|
---|
675 | t = yc;
|
---|
676 | yc = xc;
|
---|
677 | xc = t;
|
---|
678 | }
|
---|
679 |
|
---|
680 | a = yc.length;
|
---|
681 |
|
---|
682 | // Only start adding at yc.length - 1 as the further digits of xc can be left as they are.
|
---|
683 | for (b = 0; a; xc[a] %= 10) b = (xc[--a] = xc[a] + yc[a] + b) / 10 | 0;
|
---|
684 |
|
---|
685 | // No need to check for zero, as +x + +y != 0 && -x + -y != 0
|
---|
686 |
|
---|
687 | if (b) {
|
---|
688 | xc.unshift(b);
|
---|
689 | ++ye;
|
---|
690 | }
|
---|
691 |
|
---|
692 | // Remove trailing zeros.
|
---|
693 | for (a = xc.length; xc[--a] === 0;) xc.pop();
|
---|
694 |
|
---|
695 | y.c = xc;
|
---|
696 | y.e = ye;
|
---|
697 |
|
---|
698 | return y;
|
---|
699 | };
|
---|
700 |
|
---|
701 |
|
---|
702 | /*
|
---|
703 | * Return a Big whose value is the value of this Big raised to the power n.
|
---|
704 | * If n is negative, round to a maximum of Big.DP decimal places using rounding
|
---|
705 | * mode Big.RM.
|
---|
706 | *
|
---|
707 | * n {number} Integer, -MAX_POWER to MAX_POWER inclusive.
|
---|
708 | */
|
---|
709 | P.pow = function (n) {
|
---|
710 | var x = this,
|
---|
711 | one = new x.constructor(1),
|
---|
712 | y = one,
|
---|
713 | isneg = n < 0;
|
---|
714 |
|
---|
715 | if (n !== ~~n || n < -MAX_POWER || n > MAX_POWER) throw Error(INVALID + 'exponent');
|
---|
716 | if (isneg) n = -n;
|
---|
717 |
|
---|
718 | for (;;) {
|
---|
719 | if (n & 1) y = y.times(x);
|
---|
720 | n >>= 1;
|
---|
721 | if (!n) break;
|
---|
722 | x = x.times(x);
|
---|
723 | }
|
---|
724 |
|
---|
725 | return isneg ? one.div(y) : y;
|
---|
726 | };
|
---|
727 |
|
---|
728 |
|
---|
729 | /*
|
---|
730 | * Return a new Big whose value is the value of this Big rounded using rounding mode rm
|
---|
731 | * to a maximum of dp decimal places, or, if dp is negative, to an integer which is a
|
---|
732 | * multiple of 10**-dp.
|
---|
733 | * If dp is not specified, round to 0 decimal places.
|
---|
734 | * If rm is not specified, use Big.RM.
|
---|
735 | *
|
---|
736 | * dp? {number} Integer, -MAX_DP to MAX_DP inclusive.
|
---|
737 | * rm? 0, 1, 2 or 3 (ROUND_DOWN, ROUND_HALF_UP, ROUND_HALF_EVEN, ROUND_UP)
|
---|
738 | */
|
---|
739 | P.round = function (dp, rm) {
|
---|
740 | var Big = this.constructor;
|
---|
741 | if (dp === UNDEFINED) dp = 0;
|
---|
742 | else if (dp !== ~~dp || dp < -MAX_DP || dp > MAX_DP) throw Error(INVALID_DP);
|
---|
743 | return round(new Big(this), dp, rm === UNDEFINED ? Big.RM : rm);
|
---|
744 | };
|
---|
745 |
|
---|
746 |
|
---|
747 | /*
|
---|
748 | * Return a new Big whose value is the square root of the value of this Big, rounded, if
|
---|
749 | * necessary, to a maximum of Big.DP decimal places using rounding mode Big.RM.
|
---|
750 | */
|
---|
751 | P.sqrt = function () {
|
---|
752 | var r, c, t,
|
---|
753 | x = this,
|
---|
754 | Big = x.constructor,
|
---|
755 | s = x.s,
|
---|
756 | e = x.e,
|
---|
757 | half = new Big(0.5);
|
---|
758 |
|
---|
759 | // Zero?
|
---|
760 | if (!x.c[0]) return new Big(x);
|
---|
761 |
|
---|
762 | // Negative?
|
---|
763 | if (s < 0) throw Error(NAME + 'No square root');
|
---|
764 |
|
---|
765 | // Estimate.
|
---|
766 | s = Math.sqrt(x + '');
|
---|
767 |
|
---|
768 | // Math.sqrt underflow/overflow?
|
---|
769 | // Re-estimate: pass x coefficient to Math.sqrt as integer, then adjust the result exponent.
|
---|
770 | if (s === 0 || s === 1 / 0) {
|
---|
771 | c = x.c.join('');
|
---|
772 | if (!(c.length + e & 1)) c += '0';
|
---|
773 | s = Math.sqrt(c);
|
---|
774 | e = ((e + 1) / 2 | 0) - (e < 0 || e & 1);
|
---|
775 | r = new Big((s == 1 / 0 ? '1e' : (s = s.toExponential()).slice(0, s.indexOf('e') + 1)) + e);
|
---|
776 | } else {
|
---|
777 | r = new Big(s);
|
---|
778 | }
|
---|
779 |
|
---|
780 | e = r.e + (Big.DP += 4);
|
---|
781 |
|
---|
782 | // Newton-Raphson iteration.
|
---|
783 | do {
|
---|
784 | t = r;
|
---|
785 | r = half.times(t.plus(x.div(t)));
|
---|
786 | } while (t.c.slice(0, e).join('') !== r.c.slice(0, e).join(''));
|
---|
787 |
|
---|
788 | return round(r, Big.DP -= 4, Big.RM);
|
---|
789 | };
|
---|
790 |
|
---|
791 |
|
---|
792 | /*
|
---|
793 | * Return a new Big whose value is the value of this Big times the value of Big y.
|
---|
794 | */
|
---|
795 | P.times = P.mul = function (y) {
|
---|
796 | var c,
|
---|
797 | x = this,
|
---|
798 | Big = x.constructor,
|
---|
799 | xc = x.c,
|
---|
800 | yc = (y = new Big(y)).c,
|
---|
801 | a = xc.length,
|
---|
802 | b = yc.length,
|
---|
803 | i = x.e,
|
---|
804 | j = y.e;
|
---|
805 |
|
---|
806 | // Determine sign of result.
|
---|
807 | y.s = x.s == y.s ? 1 : -1;
|
---|
808 |
|
---|
809 | // Return signed 0 if either 0.
|
---|
810 | if (!xc[0] || !yc[0]) return new Big(y.s * 0);
|
---|
811 |
|
---|
812 | // Initialise exponent of result as x.e + y.e.
|
---|
813 | y.e = i + j;
|
---|
814 |
|
---|
815 | // If array xc has fewer digits than yc, swap xc and yc, and lengths.
|
---|
816 | if (a < b) {
|
---|
817 | c = xc;
|
---|
818 | xc = yc;
|
---|
819 | yc = c;
|
---|
820 | j = a;
|
---|
821 | a = b;
|
---|
822 | b = j;
|
---|
823 | }
|
---|
824 |
|
---|
825 | // Initialise coefficient array of result with zeros.
|
---|
826 | for (c = new Array(j = a + b); j--;) c[j] = 0;
|
---|
827 |
|
---|
828 | // Multiply.
|
---|
829 |
|
---|
830 | // i is initially xc.length.
|
---|
831 | for (i = b; i--;) {
|
---|
832 | b = 0;
|
---|
833 |
|
---|
834 | // a is yc.length.
|
---|
835 | for (j = a + i; j > i;) {
|
---|
836 |
|
---|
837 | // Current sum of products at this digit position, plus carry.
|
---|
838 | b = c[j] + yc[i] * xc[j - i - 1] + b;
|
---|
839 | c[j--] = b % 10;
|
---|
840 |
|
---|
841 | // carry
|
---|
842 | b = b / 10 | 0;
|
---|
843 | }
|
---|
844 |
|
---|
845 | c[j] = (c[j] + b) % 10;
|
---|
846 | }
|
---|
847 |
|
---|
848 | // Increment result exponent if there is a final carry, otherwise remove leading zero.
|
---|
849 | if (b) ++y.e;
|
---|
850 | else c.shift();
|
---|
851 |
|
---|
852 | // Remove trailing zeros.
|
---|
853 | for (i = c.length; !c[--i];) c.pop();
|
---|
854 | y.c = c;
|
---|
855 |
|
---|
856 | return y;
|
---|
857 | };
|
---|
858 |
|
---|
859 |
|
---|
860 | /*
|
---|
861 | * Return a string representing the value of this Big in exponential notation to dp fixed decimal
|
---|
862 | * places and rounded using Big.RM.
|
---|
863 | *
|
---|
864 | * dp? {number} Integer, 0 to MAX_DP inclusive.
|
---|
865 | */
|
---|
866 | P.toExponential = function (dp) {
|
---|
867 | return stringify(this, 1, dp, dp);
|
---|
868 | };
|
---|
869 |
|
---|
870 |
|
---|
871 | /*
|
---|
872 | * Return a string representing the value of this Big in normal notation to dp fixed decimal
|
---|
873 | * places and rounded using Big.RM.
|
---|
874 | *
|
---|
875 | * dp? {number} Integer, 0 to MAX_DP inclusive.
|
---|
876 | *
|
---|
877 | * (-0).toFixed(0) is '0', but (-0.1).toFixed(0) is '-0'.
|
---|
878 | * (-0).toFixed(1) is '0.0', but (-0.01).toFixed(1) is '-0.0'.
|
---|
879 | */
|
---|
880 | P.toFixed = function (dp) {
|
---|
881 | return stringify(this, 2, dp, this.e + dp);
|
---|
882 | };
|
---|
883 |
|
---|
884 |
|
---|
885 | /*
|
---|
886 | * Return a string representing the value of this Big rounded to sd significant digits using
|
---|
887 | * Big.RM. Use exponential notation if sd is less than the number of digits necessary to represent
|
---|
888 | * the integer part of the value in normal notation.
|
---|
889 | *
|
---|
890 | * sd {number} Integer, 1 to MAX_DP inclusive.
|
---|
891 | */
|
---|
892 | P.toPrecision = function (sd) {
|
---|
893 | return stringify(this, 3, sd, sd - 1);
|
---|
894 | };
|
---|
895 |
|
---|
896 |
|
---|
897 | /*
|
---|
898 | * Return a string representing the value of this Big.
|
---|
899 | * Return exponential notation if this Big has a positive exponent equal to or greater than
|
---|
900 | * Big.PE, or a negative exponent equal to or less than Big.NE.
|
---|
901 | * Omit the sign for negative zero.
|
---|
902 | */
|
---|
903 | P.toString = function () {
|
---|
904 | return stringify(this);
|
---|
905 | };
|
---|
906 |
|
---|
907 |
|
---|
908 | /*
|
---|
909 | * Return a string representing the value of this Big.
|
---|
910 | * Return exponential notation if this Big has a positive exponent equal to or greater than
|
---|
911 | * Big.PE, or a negative exponent equal to or less than Big.NE.
|
---|
912 | * Include the sign for negative zero.
|
---|
913 | */
|
---|
914 | P.valueOf = P.toJSON = function () {
|
---|
915 | return stringify(this, 4);
|
---|
916 | };
|
---|
917 |
|
---|
918 |
|
---|
919 | // Export
|
---|
920 |
|
---|
921 |
|
---|
922 | export var Big = _Big_();
|
---|
923 |
|
---|
924 | export default Big;
|
---|