[6a3a178] | 1 | // Basic Javascript Elliptic Curve implementation
|
---|
| 2 | // Ported loosely from BouncyCastle's Java EC code
|
---|
| 3 | // Only Fp curves implemented for now
|
---|
| 4 |
|
---|
| 5 | // Requires jsbn.js and jsbn2.js
|
---|
| 6 | var BigInteger = require('jsbn').BigInteger
|
---|
| 7 | var Barrett = BigInteger.prototype.Barrett
|
---|
| 8 |
|
---|
| 9 | // ----------------
|
---|
| 10 | // ECFieldElementFp
|
---|
| 11 |
|
---|
| 12 | // constructor
|
---|
| 13 | function ECFieldElementFp(q,x) {
|
---|
| 14 | this.x = x;
|
---|
| 15 | // TODO if(x.compareTo(q) >= 0) error
|
---|
| 16 | this.q = q;
|
---|
| 17 | }
|
---|
| 18 |
|
---|
| 19 | function feFpEquals(other) {
|
---|
| 20 | if(other == this) return true;
|
---|
| 21 | return (this.q.equals(other.q) && this.x.equals(other.x));
|
---|
| 22 | }
|
---|
| 23 |
|
---|
| 24 | function feFpToBigInteger() {
|
---|
| 25 | return this.x;
|
---|
| 26 | }
|
---|
| 27 |
|
---|
| 28 | function feFpNegate() {
|
---|
| 29 | return new ECFieldElementFp(this.q, this.x.negate().mod(this.q));
|
---|
| 30 | }
|
---|
| 31 |
|
---|
| 32 | function feFpAdd(b) {
|
---|
| 33 | return new ECFieldElementFp(this.q, this.x.add(b.toBigInteger()).mod(this.q));
|
---|
| 34 | }
|
---|
| 35 |
|
---|
| 36 | function feFpSubtract(b) {
|
---|
| 37 | return new ECFieldElementFp(this.q, this.x.subtract(b.toBigInteger()).mod(this.q));
|
---|
| 38 | }
|
---|
| 39 |
|
---|
| 40 | function feFpMultiply(b) {
|
---|
| 41 | return new ECFieldElementFp(this.q, this.x.multiply(b.toBigInteger()).mod(this.q));
|
---|
| 42 | }
|
---|
| 43 |
|
---|
| 44 | function feFpSquare() {
|
---|
| 45 | return new ECFieldElementFp(this.q, this.x.square().mod(this.q));
|
---|
| 46 | }
|
---|
| 47 |
|
---|
| 48 | function feFpDivide(b) {
|
---|
| 49 | return new ECFieldElementFp(this.q, this.x.multiply(b.toBigInteger().modInverse(this.q)).mod(this.q));
|
---|
| 50 | }
|
---|
| 51 |
|
---|
| 52 | ECFieldElementFp.prototype.equals = feFpEquals;
|
---|
| 53 | ECFieldElementFp.prototype.toBigInteger = feFpToBigInteger;
|
---|
| 54 | ECFieldElementFp.prototype.negate = feFpNegate;
|
---|
| 55 | ECFieldElementFp.prototype.add = feFpAdd;
|
---|
| 56 | ECFieldElementFp.prototype.subtract = feFpSubtract;
|
---|
| 57 | ECFieldElementFp.prototype.multiply = feFpMultiply;
|
---|
| 58 | ECFieldElementFp.prototype.square = feFpSquare;
|
---|
| 59 | ECFieldElementFp.prototype.divide = feFpDivide;
|
---|
| 60 |
|
---|
| 61 | // ----------------
|
---|
| 62 | // ECPointFp
|
---|
| 63 |
|
---|
| 64 | // constructor
|
---|
| 65 | function ECPointFp(curve,x,y,z) {
|
---|
| 66 | this.curve = curve;
|
---|
| 67 | this.x = x;
|
---|
| 68 | this.y = y;
|
---|
| 69 | // Projective coordinates: either zinv == null or z * zinv == 1
|
---|
| 70 | // z and zinv are just BigIntegers, not fieldElements
|
---|
| 71 | if(z == null) {
|
---|
| 72 | this.z = BigInteger.ONE;
|
---|
| 73 | }
|
---|
| 74 | else {
|
---|
| 75 | this.z = z;
|
---|
| 76 | }
|
---|
| 77 | this.zinv = null;
|
---|
| 78 | //TODO: compression flag
|
---|
| 79 | }
|
---|
| 80 |
|
---|
| 81 | function pointFpGetX() {
|
---|
| 82 | if(this.zinv == null) {
|
---|
| 83 | this.zinv = this.z.modInverse(this.curve.q);
|
---|
| 84 | }
|
---|
| 85 | var r = this.x.toBigInteger().multiply(this.zinv);
|
---|
| 86 | this.curve.reduce(r);
|
---|
| 87 | return this.curve.fromBigInteger(r);
|
---|
| 88 | }
|
---|
| 89 |
|
---|
| 90 | function pointFpGetY() {
|
---|
| 91 | if(this.zinv == null) {
|
---|
| 92 | this.zinv = this.z.modInverse(this.curve.q);
|
---|
| 93 | }
|
---|
| 94 | var r = this.y.toBigInteger().multiply(this.zinv);
|
---|
| 95 | this.curve.reduce(r);
|
---|
| 96 | return this.curve.fromBigInteger(r);
|
---|
| 97 | }
|
---|
| 98 |
|
---|
| 99 | function pointFpEquals(other) {
|
---|
| 100 | if(other == this) return true;
|
---|
| 101 | if(this.isInfinity()) return other.isInfinity();
|
---|
| 102 | if(other.isInfinity()) return this.isInfinity();
|
---|
| 103 | var u, v;
|
---|
| 104 | // u = Y2 * Z1 - Y1 * Z2
|
---|
| 105 | u = other.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(other.z)).mod(this.curve.q);
|
---|
| 106 | if(!u.equals(BigInteger.ZERO)) return false;
|
---|
| 107 | // v = X2 * Z1 - X1 * Z2
|
---|
| 108 | v = other.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(other.z)).mod(this.curve.q);
|
---|
| 109 | return v.equals(BigInteger.ZERO);
|
---|
| 110 | }
|
---|
| 111 |
|
---|
| 112 | function pointFpIsInfinity() {
|
---|
| 113 | if((this.x == null) && (this.y == null)) return true;
|
---|
| 114 | return this.z.equals(BigInteger.ZERO) && !this.y.toBigInteger().equals(BigInteger.ZERO);
|
---|
| 115 | }
|
---|
| 116 |
|
---|
| 117 | function pointFpNegate() {
|
---|
| 118 | return new ECPointFp(this.curve, this.x, this.y.negate(), this.z);
|
---|
| 119 | }
|
---|
| 120 |
|
---|
| 121 | function pointFpAdd(b) {
|
---|
| 122 | if(this.isInfinity()) return b;
|
---|
| 123 | if(b.isInfinity()) return this;
|
---|
| 124 |
|
---|
| 125 | // u = Y2 * Z1 - Y1 * Z2
|
---|
| 126 | var u = b.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(b.z)).mod(this.curve.q);
|
---|
| 127 | // v = X2 * Z1 - X1 * Z2
|
---|
| 128 | var v = b.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(b.z)).mod(this.curve.q);
|
---|
| 129 |
|
---|
| 130 | if(BigInteger.ZERO.equals(v)) {
|
---|
| 131 | if(BigInteger.ZERO.equals(u)) {
|
---|
| 132 | return this.twice(); // this == b, so double
|
---|
| 133 | }
|
---|
| 134 | return this.curve.getInfinity(); // this = -b, so infinity
|
---|
| 135 | }
|
---|
| 136 |
|
---|
| 137 | var THREE = new BigInteger("3");
|
---|
| 138 | var x1 = this.x.toBigInteger();
|
---|
| 139 | var y1 = this.y.toBigInteger();
|
---|
| 140 | var x2 = b.x.toBigInteger();
|
---|
| 141 | var y2 = b.y.toBigInteger();
|
---|
| 142 |
|
---|
| 143 | var v2 = v.square();
|
---|
| 144 | var v3 = v2.multiply(v);
|
---|
| 145 | var x1v2 = x1.multiply(v2);
|
---|
| 146 | var zu2 = u.square().multiply(this.z);
|
---|
| 147 |
|
---|
| 148 | // x3 = v * (z2 * (z1 * u^2 - 2 * x1 * v^2) - v^3)
|
---|
| 149 | var x3 = zu2.subtract(x1v2.shiftLeft(1)).multiply(b.z).subtract(v3).multiply(v).mod(this.curve.q);
|
---|
| 150 | // y3 = z2 * (3 * x1 * u * v^2 - y1 * v^3 - z1 * u^3) + u * v^3
|
---|
| 151 | var y3 = x1v2.multiply(THREE).multiply(u).subtract(y1.multiply(v3)).subtract(zu2.multiply(u)).multiply(b.z).add(u.multiply(v3)).mod(this.curve.q);
|
---|
| 152 | // z3 = v^3 * z1 * z2
|
---|
| 153 | var z3 = v3.multiply(this.z).multiply(b.z).mod(this.curve.q);
|
---|
| 154 |
|
---|
| 155 | return new ECPointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3);
|
---|
| 156 | }
|
---|
| 157 |
|
---|
| 158 | function pointFpTwice() {
|
---|
| 159 | if(this.isInfinity()) return this;
|
---|
| 160 | if(this.y.toBigInteger().signum() == 0) return this.curve.getInfinity();
|
---|
| 161 |
|
---|
| 162 | // TODO: optimized handling of constants
|
---|
| 163 | var THREE = new BigInteger("3");
|
---|
| 164 | var x1 = this.x.toBigInteger();
|
---|
| 165 | var y1 = this.y.toBigInteger();
|
---|
| 166 |
|
---|
| 167 | var y1z1 = y1.multiply(this.z);
|
---|
| 168 | var y1sqz1 = y1z1.multiply(y1).mod(this.curve.q);
|
---|
| 169 | var a = this.curve.a.toBigInteger();
|
---|
| 170 |
|
---|
| 171 | // w = 3 * x1^2 + a * z1^2
|
---|
| 172 | var w = x1.square().multiply(THREE);
|
---|
| 173 | if(!BigInteger.ZERO.equals(a)) {
|
---|
| 174 | w = w.add(this.z.square().multiply(a));
|
---|
| 175 | }
|
---|
| 176 | w = w.mod(this.curve.q);
|
---|
| 177 | //this.curve.reduce(w);
|
---|
| 178 | // x3 = 2 * y1 * z1 * (w^2 - 8 * x1 * y1^2 * z1)
|
---|
| 179 | var x3 = w.square().subtract(x1.shiftLeft(3).multiply(y1sqz1)).shiftLeft(1).multiply(y1z1).mod(this.curve.q);
|
---|
| 180 | // y3 = 4 * y1^2 * z1 * (3 * w * x1 - 2 * y1^2 * z1) - w^3
|
---|
| 181 | var y3 = w.multiply(THREE).multiply(x1).subtract(y1sqz1.shiftLeft(1)).shiftLeft(2).multiply(y1sqz1).subtract(w.square().multiply(w)).mod(this.curve.q);
|
---|
| 182 | // z3 = 8 * (y1 * z1)^3
|
---|
| 183 | var z3 = y1z1.square().multiply(y1z1).shiftLeft(3).mod(this.curve.q);
|
---|
| 184 |
|
---|
| 185 | return new ECPointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3);
|
---|
| 186 | }
|
---|
| 187 |
|
---|
| 188 | // Simple NAF (Non-Adjacent Form) multiplication algorithm
|
---|
| 189 | // TODO: modularize the multiplication algorithm
|
---|
| 190 | function pointFpMultiply(k) {
|
---|
| 191 | if(this.isInfinity()) return this;
|
---|
| 192 | if(k.signum() == 0) return this.curve.getInfinity();
|
---|
| 193 |
|
---|
| 194 | var e = k;
|
---|
| 195 | var h = e.multiply(new BigInteger("3"));
|
---|
| 196 |
|
---|
| 197 | var neg = this.negate();
|
---|
| 198 | var R = this;
|
---|
| 199 |
|
---|
| 200 | var i;
|
---|
| 201 | for(i = h.bitLength() - 2; i > 0; --i) {
|
---|
| 202 | R = R.twice();
|
---|
| 203 |
|
---|
| 204 | var hBit = h.testBit(i);
|
---|
| 205 | var eBit = e.testBit(i);
|
---|
| 206 |
|
---|
| 207 | if (hBit != eBit) {
|
---|
| 208 | R = R.add(hBit ? this : neg);
|
---|
| 209 | }
|
---|
| 210 | }
|
---|
| 211 |
|
---|
| 212 | return R;
|
---|
| 213 | }
|
---|
| 214 |
|
---|
| 215 | // Compute this*j + x*k (simultaneous multiplication)
|
---|
| 216 | function pointFpMultiplyTwo(j,x,k) {
|
---|
| 217 | var i;
|
---|
| 218 | if(j.bitLength() > k.bitLength())
|
---|
| 219 | i = j.bitLength() - 1;
|
---|
| 220 | else
|
---|
| 221 | i = k.bitLength() - 1;
|
---|
| 222 |
|
---|
| 223 | var R = this.curve.getInfinity();
|
---|
| 224 | var both = this.add(x);
|
---|
| 225 | while(i >= 0) {
|
---|
| 226 | R = R.twice();
|
---|
| 227 | if(j.testBit(i)) {
|
---|
| 228 | if(k.testBit(i)) {
|
---|
| 229 | R = R.add(both);
|
---|
| 230 | }
|
---|
| 231 | else {
|
---|
| 232 | R = R.add(this);
|
---|
| 233 | }
|
---|
| 234 | }
|
---|
| 235 | else {
|
---|
| 236 | if(k.testBit(i)) {
|
---|
| 237 | R = R.add(x);
|
---|
| 238 | }
|
---|
| 239 | }
|
---|
| 240 | --i;
|
---|
| 241 | }
|
---|
| 242 |
|
---|
| 243 | return R;
|
---|
| 244 | }
|
---|
| 245 |
|
---|
| 246 | ECPointFp.prototype.getX = pointFpGetX;
|
---|
| 247 | ECPointFp.prototype.getY = pointFpGetY;
|
---|
| 248 | ECPointFp.prototype.equals = pointFpEquals;
|
---|
| 249 | ECPointFp.prototype.isInfinity = pointFpIsInfinity;
|
---|
| 250 | ECPointFp.prototype.negate = pointFpNegate;
|
---|
| 251 | ECPointFp.prototype.add = pointFpAdd;
|
---|
| 252 | ECPointFp.prototype.twice = pointFpTwice;
|
---|
| 253 | ECPointFp.prototype.multiply = pointFpMultiply;
|
---|
| 254 | ECPointFp.prototype.multiplyTwo = pointFpMultiplyTwo;
|
---|
| 255 |
|
---|
| 256 | // ----------------
|
---|
| 257 | // ECCurveFp
|
---|
| 258 |
|
---|
| 259 | // constructor
|
---|
| 260 | function ECCurveFp(q,a,b) {
|
---|
| 261 | this.q = q;
|
---|
| 262 | this.a = this.fromBigInteger(a);
|
---|
| 263 | this.b = this.fromBigInteger(b);
|
---|
| 264 | this.infinity = new ECPointFp(this, null, null);
|
---|
| 265 | this.reducer = new Barrett(this.q);
|
---|
| 266 | }
|
---|
| 267 |
|
---|
| 268 | function curveFpGetQ() {
|
---|
| 269 | return this.q;
|
---|
| 270 | }
|
---|
| 271 |
|
---|
| 272 | function curveFpGetA() {
|
---|
| 273 | return this.a;
|
---|
| 274 | }
|
---|
| 275 |
|
---|
| 276 | function curveFpGetB() {
|
---|
| 277 | return this.b;
|
---|
| 278 | }
|
---|
| 279 |
|
---|
| 280 | function curveFpEquals(other) {
|
---|
| 281 | if(other == this) return true;
|
---|
| 282 | return(this.q.equals(other.q) && this.a.equals(other.a) && this.b.equals(other.b));
|
---|
| 283 | }
|
---|
| 284 |
|
---|
| 285 | function curveFpGetInfinity() {
|
---|
| 286 | return this.infinity;
|
---|
| 287 | }
|
---|
| 288 |
|
---|
| 289 | function curveFpFromBigInteger(x) {
|
---|
| 290 | return new ECFieldElementFp(this.q, x);
|
---|
| 291 | }
|
---|
| 292 |
|
---|
| 293 | function curveReduce(x) {
|
---|
| 294 | this.reducer.reduce(x);
|
---|
| 295 | }
|
---|
| 296 |
|
---|
| 297 | // for now, work with hex strings because they're easier in JS
|
---|
| 298 | function curveFpDecodePointHex(s) {
|
---|
| 299 | switch(parseInt(s.substr(0,2), 16)) { // first byte
|
---|
| 300 | case 0:
|
---|
| 301 | return this.infinity;
|
---|
| 302 | case 2:
|
---|
| 303 | case 3:
|
---|
| 304 | // point compression not supported yet
|
---|
| 305 | return null;
|
---|
| 306 | case 4:
|
---|
| 307 | case 6:
|
---|
| 308 | case 7:
|
---|
| 309 | var len = (s.length - 2) / 2;
|
---|
| 310 | var xHex = s.substr(2, len);
|
---|
| 311 | var yHex = s.substr(len+2, len);
|
---|
| 312 |
|
---|
| 313 | return new ECPointFp(this,
|
---|
| 314 | this.fromBigInteger(new BigInteger(xHex, 16)),
|
---|
| 315 | this.fromBigInteger(new BigInteger(yHex, 16)));
|
---|
| 316 |
|
---|
| 317 | default: // unsupported
|
---|
| 318 | return null;
|
---|
| 319 | }
|
---|
| 320 | }
|
---|
| 321 |
|
---|
| 322 | function curveFpEncodePointHex(p) {
|
---|
| 323 | if (p.isInfinity()) return "00";
|
---|
| 324 | var xHex = p.getX().toBigInteger().toString(16);
|
---|
| 325 | var yHex = p.getY().toBigInteger().toString(16);
|
---|
| 326 | var oLen = this.getQ().toString(16).length;
|
---|
| 327 | if ((oLen % 2) != 0) oLen++;
|
---|
| 328 | while (xHex.length < oLen) {
|
---|
| 329 | xHex = "0" + xHex;
|
---|
| 330 | }
|
---|
| 331 | while (yHex.length < oLen) {
|
---|
| 332 | yHex = "0" + yHex;
|
---|
| 333 | }
|
---|
| 334 | return "04" + xHex + yHex;
|
---|
| 335 | }
|
---|
| 336 |
|
---|
| 337 | ECCurveFp.prototype.getQ = curveFpGetQ;
|
---|
| 338 | ECCurveFp.prototype.getA = curveFpGetA;
|
---|
| 339 | ECCurveFp.prototype.getB = curveFpGetB;
|
---|
| 340 | ECCurveFp.prototype.equals = curveFpEquals;
|
---|
| 341 | ECCurveFp.prototype.getInfinity = curveFpGetInfinity;
|
---|
| 342 | ECCurveFp.prototype.fromBigInteger = curveFpFromBigInteger;
|
---|
| 343 | ECCurveFp.prototype.reduce = curveReduce;
|
---|
| 344 | //ECCurveFp.prototype.decodePointHex = curveFpDecodePointHex;
|
---|
| 345 | ECCurveFp.prototype.encodePointHex = curveFpEncodePointHex;
|
---|
| 346 |
|
---|
| 347 | // from: https://github.com/kaielvin/jsbn-ec-point-compression
|
---|
| 348 | ECCurveFp.prototype.decodePointHex = function(s)
|
---|
| 349 | {
|
---|
| 350 | var yIsEven;
|
---|
| 351 | switch(parseInt(s.substr(0,2), 16)) { // first byte
|
---|
| 352 | case 0:
|
---|
| 353 | return this.infinity;
|
---|
| 354 | case 2:
|
---|
| 355 | yIsEven = false;
|
---|
| 356 | case 3:
|
---|
| 357 | if(yIsEven == undefined) yIsEven = true;
|
---|
| 358 | var len = s.length - 2;
|
---|
| 359 | var xHex = s.substr(2, len);
|
---|
| 360 | var x = this.fromBigInteger(new BigInteger(xHex,16));
|
---|
| 361 | var alpha = x.multiply(x.square().add(this.getA())).add(this.getB());
|
---|
| 362 | var beta = alpha.sqrt();
|
---|
| 363 |
|
---|
| 364 | if (beta == null) throw "Invalid point compression";
|
---|
| 365 |
|
---|
| 366 | var betaValue = beta.toBigInteger();
|
---|
| 367 | if (betaValue.testBit(0) != yIsEven)
|
---|
| 368 | {
|
---|
| 369 | // Use the other root
|
---|
| 370 | beta = this.fromBigInteger(this.getQ().subtract(betaValue));
|
---|
| 371 | }
|
---|
| 372 | return new ECPointFp(this,x,beta);
|
---|
| 373 | case 4:
|
---|
| 374 | case 6:
|
---|
| 375 | case 7:
|
---|
| 376 | var len = (s.length - 2) / 2;
|
---|
| 377 | var xHex = s.substr(2, len);
|
---|
| 378 | var yHex = s.substr(len+2, len);
|
---|
| 379 |
|
---|
| 380 | return new ECPointFp(this,
|
---|
| 381 | this.fromBigInteger(new BigInteger(xHex, 16)),
|
---|
| 382 | this.fromBigInteger(new BigInteger(yHex, 16)));
|
---|
| 383 |
|
---|
| 384 | default: // unsupported
|
---|
| 385 | return null;
|
---|
| 386 | }
|
---|
| 387 | }
|
---|
| 388 | ECCurveFp.prototype.encodeCompressedPointHex = function(p)
|
---|
| 389 | {
|
---|
| 390 | if (p.isInfinity()) return "00";
|
---|
| 391 | var xHex = p.getX().toBigInteger().toString(16);
|
---|
| 392 | var oLen = this.getQ().toString(16).length;
|
---|
| 393 | if ((oLen % 2) != 0) oLen++;
|
---|
| 394 | while (xHex.length < oLen)
|
---|
| 395 | xHex = "0" + xHex;
|
---|
| 396 | var yPrefix;
|
---|
| 397 | if(p.getY().toBigInteger().isEven()) yPrefix = "02";
|
---|
| 398 | else yPrefix = "03";
|
---|
| 399 |
|
---|
| 400 | return yPrefix + xHex;
|
---|
| 401 | }
|
---|
| 402 |
|
---|
| 403 |
|
---|
| 404 | ECFieldElementFp.prototype.getR = function()
|
---|
| 405 | {
|
---|
| 406 | if(this.r != undefined) return this.r;
|
---|
| 407 |
|
---|
| 408 | this.r = null;
|
---|
| 409 | var bitLength = this.q.bitLength();
|
---|
| 410 | if (bitLength > 128)
|
---|
| 411 | {
|
---|
| 412 | var firstWord = this.q.shiftRight(bitLength - 64);
|
---|
| 413 | if (firstWord.intValue() == -1)
|
---|
| 414 | {
|
---|
| 415 | this.r = BigInteger.ONE.shiftLeft(bitLength).subtract(this.q);
|
---|
| 416 | }
|
---|
| 417 | }
|
---|
| 418 | return this.r;
|
---|
| 419 | }
|
---|
| 420 | ECFieldElementFp.prototype.modMult = function(x1,x2)
|
---|
| 421 | {
|
---|
| 422 | return this.modReduce(x1.multiply(x2));
|
---|
| 423 | }
|
---|
| 424 | ECFieldElementFp.prototype.modReduce = function(x)
|
---|
| 425 | {
|
---|
| 426 | if (this.getR() != null)
|
---|
| 427 | {
|
---|
| 428 | var qLen = q.bitLength();
|
---|
| 429 | while (x.bitLength() > (qLen + 1))
|
---|
| 430 | {
|
---|
| 431 | var u = x.shiftRight(qLen);
|
---|
| 432 | var v = x.subtract(u.shiftLeft(qLen));
|
---|
| 433 | if (!this.getR().equals(BigInteger.ONE))
|
---|
| 434 | {
|
---|
| 435 | u = u.multiply(this.getR());
|
---|
| 436 | }
|
---|
| 437 | x = u.add(v);
|
---|
| 438 | }
|
---|
| 439 | while (x.compareTo(q) >= 0)
|
---|
| 440 | {
|
---|
| 441 | x = x.subtract(q);
|
---|
| 442 | }
|
---|
| 443 | }
|
---|
| 444 | else
|
---|
| 445 | {
|
---|
| 446 | x = x.mod(q);
|
---|
| 447 | }
|
---|
| 448 | return x;
|
---|
| 449 | }
|
---|
| 450 | ECFieldElementFp.prototype.sqrt = function()
|
---|
| 451 | {
|
---|
| 452 | if (!this.q.testBit(0)) throw "unsupported";
|
---|
| 453 |
|
---|
| 454 | // p mod 4 == 3
|
---|
| 455 | if (this.q.testBit(1))
|
---|
| 456 | {
|
---|
| 457 | var z = new ECFieldElementFp(this.q,this.x.modPow(this.q.shiftRight(2).add(BigInteger.ONE),this.q));
|
---|
| 458 | return z.square().equals(this) ? z : null;
|
---|
| 459 | }
|
---|
| 460 |
|
---|
| 461 | // p mod 4 == 1
|
---|
| 462 | var qMinusOne = this.q.subtract(BigInteger.ONE);
|
---|
| 463 |
|
---|
| 464 | var legendreExponent = qMinusOne.shiftRight(1);
|
---|
| 465 | if (!(this.x.modPow(legendreExponent, this.q).equals(BigInteger.ONE)))
|
---|
| 466 | {
|
---|
| 467 | return null;
|
---|
| 468 | }
|
---|
| 469 |
|
---|
| 470 | var u = qMinusOne.shiftRight(2);
|
---|
| 471 | var k = u.shiftLeft(1).add(BigInteger.ONE);
|
---|
| 472 |
|
---|
| 473 | var Q = this.x;
|
---|
| 474 | var fourQ = modDouble(modDouble(Q));
|
---|
| 475 |
|
---|
| 476 | var U, V;
|
---|
| 477 | do
|
---|
| 478 | {
|
---|
| 479 | var P;
|
---|
| 480 | do
|
---|
| 481 | {
|
---|
| 482 | P = new BigInteger(this.q.bitLength(), new SecureRandom());
|
---|
| 483 | }
|
---|
| 484 | while (P.compareTo(this.q) >= 0
|
---|
| 485 | || !(P.multiply(P).subtract(fourQ).modPow(legendreExponent, this.q).equals(qMinusOne)));
|
---|
| 486 |
|
---|
| 487 | var result = this.lucasSequence(P, Q, k);
|
---|
| 488 | U = result[0];
|
---|
| 489 | V = result[1];
|
---|
| 490 |
|
---|
| 491 | if (this.modMult(V, V).equals(fourQ))
|
---|
| 492 | {
|
---|
| 493 | // Integer division by 2, mod q
|
---|
| 494 | if (V.testBit(0))
|
---|
| 495 | {
|
---|
| 496 | V = V.add(q);
|
---|
| 497 | }
|
---|
| 498 |
|
---|
| 499 | V = V.shiftRight(1);
|
---|
| 500 |
|
---|
| 501 | return new ECFieldElementFp(q,V);
|
---|
| 502 | }
|
---|
| 503 | }
|
---|
| 504 | while (U.equals(BigInteger.ONE) || U.equals(qMinusOne));
|
---|
| 505 |
|
---|
| 506 | return null;
|
---|
| 507 | }
|
---|
| 508 | ECFieldElementFp.prototype.lucasSequence = function(P,Q,k)
|
---|
| 509 | {
|
---|
| 510 | var n = k.bitLength();
|
---|
| 511 | var s = k.getLowestSetBit();
|
---|
| 512 |
|
---|
| 513 | var Uh = BigInteger.ONE;
|
---|
| 514 | var Vl = BigInteger.TWO;
|
---|
| 515 | var Vh = P;
|
---|
| 516 | var Ql = BigInteger.ONE;
|
---|
| 517 | var Qh = BigInteger.ONE;
|
---|
| 518 |
|
---|
| 519 | for (var j = n - 1; j >= s + 1; --j)
|
---|
| 520 | {
|
---|
| 521 | Ql = this.modMult(Ql, Qh);
|
---|
| 522 |
|
---|
| 523 | if (k.testBit(j))
|
---|
| 524 | {
|
---|
| 525 | Qh = this.modMult(Ql, Q);
|
---|
| 526 | Uh = this.modMult(Uh, Vh);
|
---|
| 527 | Vl = this.modReduce(Vh.multiply(Vl).subtract(P.multiply(Ql)));
|
---|
| 528 | Vh = this.modReduce(Vh.multiply(Vh).subtract(Qh.shiftLeft(1)));
|
---|
| 529 | }
|
---|
| 530 | else
|
---|
| 531 | {
|
---|
| 532 | Qh = Ql;
|
---|
| 533 | Uh = this.modReduce(Uh.multiply(Vl).subtract(Ql));
|
---|
| 534 | Vh = this.modReduce(Vh.multiply(Vl).subtract(P.multiply(Ql)));
|
---|
| 535 | Vl = this.modReduce(Vl.multiply(Vl).subtract(Ql.shiftLeft(1)));
|
---|
| 536 | }
|
---|
| 537 | }
|
---|
| 538 |
|
---|
| 539 | Ql = this.modMult(Ql, Qh);
|
---|
| 540 | Qh = this.modMult(Ql, Q);
|
---|
| 541 | Uh = this.modReduce(Uh.multiply(Vl).subtract(Ql));
|
---|
| 542 | Vl = this.modReduce(Vh.multiply(Vl).subtract(P.multiply(Ql)));
|
---|
| 543 | Ql = this.modMult(Ql, Qh);
|
---|
| 544 |
|
---|
| 545 | for (var j = 1; j <= s; ++j)
|
---|
| 546 | {
|
---|
| 547 | Uh = this.modMult(Uh, Vl);
|
---|
| 548 | Vl = this.modReduce(Vl.multiply(Vl).subtract(Ql.shiftLeft(1)));
|
---|
| 549 | Ql = this.modMult(Ql, Ql);
|
---|
| 550 | }
|
---|
| 551 |
|
---|
| 552 | return [ Uh, Vl ];
|
---|
| 553 | }
|
---|
| 554 |
|
---|
| 555 | var exports = {
|
---|
| 556 | ECCurveFp: ECCurveFp,
|
---|
| 557 | ECPointFp: ECPointFp,
|
---|
| 558 | ECFieldElementFp: ECFieldElementFp
|
---|
| 559 | }
|
---|
| 560 |
|
---|
| 561 | module.exports = exports
|
---|