[6a3a178] | 1 | /*
|
---|
| 2 | * This is a AssemblyScript port of the original Java version, which was written by
|
---|
| 3 | * Gil Tene as described in
|
---|
| 4 | * https://github.com/HdrHistogram/HdrHistogram
|
---|
| 5 | * and released to the public domain, as explained at
|
---|
| 6 | * http://creativecommons.org/publicdomain/zero/1.0/
|
---|
| 7 | */
|
---|
| 8 |
|
---|
| 9 | import { AbstractHistogramBase } from "./AbstractHistogramBase";
|
---|
| 10 | import RecordedValuesIterator from "./RecordedValuesIterator";
|
---|
| 11 | import PercentileIterator from "./PercentileIterator";
|
---|
| 12 |
|
---|
| 13 | import ulp from "./ulp";
|
---|
| 14 | import { FloatFormatter, IntegerFormatter } from "./formatters";
|
---|
| 15 | import ByteBuffer from "./ByteBuffer";
|
---|
| 16 | import { encodeIntoByteBuffer } from "./encoding";
|
---|
| 17 | import { PackedArray } from "./packedarray/PackedArray";
|
---|
| 18 |
|
---|
| 19 | export default class Histogram<T, U> extends AbstractHistogramBase<T, U> {
|
---|
| 20 | // "Hot" accessed fields (used in the the value recording code path) are bunched here, such
|
---|
| 21 | // that they will have a good chance of ending up in the same cache line as the totalCounts and
|
---|
| 22 | // counts array reference fields that subclass implementations will typically add.
|
---|
| 23 |
|
---|
| 24 | /**
|
---|
| 25 | * Number of leading zeros in the largest value that can fit in bucket 0.
|
---|
| 26 | */
|
---|
| 27 | leadingZeroCountBase: i32;
|
---|
| 28 | subBucketHalfCountMagnitude: i32;
|
---|
| 29 | /**
|
---|
| 30 | * Largest k such that 2^k <= lowestDiscernibleValue
|
---|
| 31 | */
|
---|
| 32 | unitMagnitude: i32;
|
---|
| 33 | subBucketHalfCount: i32;
|
---|
| 34 |
|
---|
| 35 | lowestDiscernibleValueRounded: u64;
|
---|
| 36 |
|
---|
| 37 | /**
|
---|
| 38 | * Biggest value that can fit in bucket 0
|
---|
| 39 | */
|
---|
| 40 | subBucketMask: u64;
|
---|
| 41 | /**
|
---|
| 42 | * Lowest unitMagnitude bits are set
|
---|
| 43 | */
|
---|
| 44 | unitMagnitudeMask: u64;
|
---|
| 45 |
|
---|
| 46 | maxValue: u64 = 0;
|
---|
| 47 | minNonZeroValue: u64 = U64.MAX_VALUE;
|
---|
| 48 |
|
---|
| 49 | counts: T;
|
---|
| 50 | totalCount: u64 = 0;
|
---|
| 51 |
|
---|
| 52 | constructor(
|
---|
| 53 | lowestDiscernibleValue: u64,
|
---|
| 54 | highestTrackableValue: u64,
|
---|
| 55 | numberOfSignificantValueDigits: u8
|
---|
| 56 | ) {
|
---|
| 57 | super();
|
---|
| 58 |
|
---|
| 59 | // Verify argument validity
|
---|
| 60 | if (lowestDiscernibleValue < 1) {
|
---|
| 61 | throw new Error("lowestDiscernibleValue must be >= 1");
|
---|
| 62 | }
|
---|
| 63 | if (highestTrackableValue < 2 * lowestDiscernibleValue) {
|
---|
| 64 | throw new Error(
|
---|
| 65 | `highestTrackableValue must be >= 2 * lowestDiscernibleValue ( 2 * ${lowestDiscernibleValue} )`
|
---|
| 66 | );
|
---|
| 67 | }
|
---|
| 68 | if (
|
---|
| 69 | numberOfSignificantValueDigits < 0 ||
|
---|
| 70 | numberOfSignificantValueDigits > 5
|
---|
| 71 | ) {
|
---|
| 72 | throw new Error("numberOfSignificantValueDigits must be between 0 and 5");
|
---|
| 73 | }
|
---|
| 74 | this.identity = AbstractHistogramBase.identityBuilder++;
|
---|
| 75 |
|
---|
| 76 | this.init(
|
---|
| 77 | lowestDiscernibleValue,
|
---|
| 78 | highestTrackableValue,
|
---|
| 79 | numberOfSignificantValueDigits,
|
---|
| 80 | 1.0
|
---|
| 81 | );
|
---|
| 82 | }
|
---|
| 83 |
|
---|
| 84 | init(
|
---|
| 85 | lowestDiscernibleValue: u64,
|
---|
| 86 | highestTrackableValue: u64,
|
---|
| 87 | numberOfSignificantValueDigits: u8,
|
---|
| 88 | integerToDoubleValueConversionRatio: f64
|
---|
| 89 | ): void {
|
---|
| 90 | this.lowestDiscernibleValue = lowestDiscernibleValue;
|
---|
| 91 | this.highestTrackableValue = highestTrackableValue;
|
---|
| 92 | this.numberOfSignificantValueDigits = numberOfSignificantValueDigits;
|
---|
| 93 | this.integerToDoubleValueConversionRatio = integerToDoubleValueConversionRatio;
|
---|
| 94 |
|
---|
| 95 | /*
|
---|
| 96 | * Given a 3 decimal point accuracy, the expectation is obviously for "+/- 1 unit at 1000". It also means that
|
---|
| 97 | * it's "ok to be +/- 2 units at 2000". The "tricky" thing is that it is NOT ok to be +/- 2 units at 1999. Only
|
---|
| 98 | * starting at 2000. So internally, we need to maintain single unit resolution to 2x 10^decimalPoints.
|
---|
| 99 | */
|
---|
| 100 | const largestValueWithSingleUnitResolution =
|
---|
| 101 | 2 * <u64>Math.pow(10, numberOfSignificantValueDigits);
|
---|
| 102 |
|
---|
| 103 | this.unitMagnitude = <i32>floor(Math.log2(<f64>lowestDiscernibleValue));
|
---|
| 104 |
|
---|
| 105 | //this.lowestDiscernibleValueRounded = pow(2, this.unitMagnitude);
|
---|
| 106 | this.unitMagnitudeMask = (1 << this.unitMagnitude) - 1;
|
---|
| 107 |
|
---|
| 108 | // We need to maintain power-of-two subBucketCount (for clean direct indexing) that is large enough to
|
---|
| 109 | // provide unit resolution to at least largestValueWithSingleUnitResolution. So figure out
|
---|
| 110 | // largestValueWithSingleUnitResolution's nearest power-of-two (rounded up), and use that:
|
---|
| 111 | const subBucketCountMagnitude = <i32>(
|
---|
| 112 | ceil(Math.log2(<f64>largestValueWithSingleUnitResolution))
|
---|
| 113 | );
|
---|
| 114 | this.subBucketHalfCountMagnitude = subBucketCountMagnitude - 1;
|
---|
| 115 | this.subBucketCount = 1 << subBucketCountMagnitude;
|
---|
| 116 | this.subBucketHalfCount = this.subBucketCount >> 1;
|
---|
| 117 | this.subBucketMask = (<u64>this.subBucketCount - 1) << this.unitMagnitude;
|
---|
| 118 |
|
---|
| 119 | this.establishSize(highestTrackableValue);
|
---|
| 120 | // @ts-ignore
|
---|
| 121 | this.counts = instantiate<T>(this.countsArrayLength);
|
---|
| 122 |
|
---|
| 123 | this.leadingZeroCountBase =
|
---|
| 124 | 64 - this.unitMagnitude - this.subBucketHalfCountMagnitude - 1;
|
---|
| 125 | this.percentileIterator = new PercentileIterator(this, 1);
|
---|
| 126 | this.recordedValuesIterator = new RecordedValuesIterator(this);
|
---|
| 127 | }
|
---|
| 128 |
|
---|
| 129 | /**
|
---|
| 130 | * The buckets (each of which has subBucketCount sub-buckets, here assumed to be 2048 as an example) overlap:
|
---|
| 131 | *
|
---|
| 132 | * <pre>
|
---|
| 133 | * The 0'th bucket covers from 0...2047 in multiples of 1, using all 2048 sub-buckets
|
---|
| 134 | * The 1'th bucket covers from 2048..4097 in multiples of 2, using only the top 1024 sub-buckets
|
---|
| 135 | * The 2'th bucket covers from 4096..8191 in multiple of 4, using only the top 1024 sub-buckets
|
---|
| 136 | * ...
|
---|
| 137 | * </pre>
|
---|
| 138 | *
|
---|
| 139 | * Bucket 0 is "special" here. It is the only one that has 2048 entries. All the rest have 1024 entries (because
|
---|
| 140 | * their bottom half overlaps with and is already covered by the all of the previous buckets put together). In other
|
---|
| 141 | * words, the k'th bucket could represent 0 * 2^k to 2048 * 2^k in 2048 buckets with 2^k precision, but the midpoint
|
---|
| 142 | * of 1024 * 2^k = 2048 * 2^(k-1) = the k-1'th bucket's end, so we would use the previous bucket for those lower
|
---|
| 143 | * values as it has better precision.
|
---|
| 144 | */
|
---|
| 145 | establishSize(newHighestTrackableValue: u64): void {
|
---|
| 146 | // establish counts array length:
|
---|
| 147 | this.countsArrayLength = this.determineArrayLengthNeeded(
|
---|
| 148 | newHighestTrackableValue
|
---|
| 149 | );
|
---|
| 150 | // establish exponent range needed to support the trackable value with no overflow:
|
---|
| 151 | this.bucketCount = this.getBucketsNeededToCoverValue(
|
---|
| 152 | newHighestTrackableValue
|
---|
| 153 | );
|
---|
| 154 | // establish the new highest trackable value:
|
---|
| 155 | this.highestTrackableValue = newHighestTrackableValue;
|
---|
| 156 | }
|
---|
| 157 |
|
---|
| 158 | determineArrayLengthNeeded(highestTrackableValue: u64): i32 {
|
---|
| 159 | if (highestTrackableValue < 2 * this.lowestDiscernibleValue) {
|
---|
| 160 | throw new Error(
|
---|
| 161 | "highestTrackableValue cannot be < (2 * lowestDiscernibleValue)"
|
---|
| 162 | );
|
---|
| 163 | }
|
---|
| 164 | //determine counts array length needed:
|
---|
| 165 | const countsArrayLength = this.getLengthForNumberOfBuckets(
|
---|
| 166 | this.getBucketsNeededToCoverValue(highestTrackableValue)
|
---|
| 167 | );
|
---|
| 168 | return countsArrayLength;
|
---|
| 169 | }
|
---|
| 170 |
|
---|
| 171 | /**
|
---|
| 172 | * If we have N such that subBucketCount * 2^N > max value, we need storage for N+1 buckets, each with enough
|
---|
| 173 | * slots to hold the top half of the subBucketCount (the lower half is covered by previous buckets), and the +1
|
---|
| 174 | * being used for the lower half of the 0'th bucket. Or, equivalently, we need 1 more bucket to capture the max
|
---|
| 175 | * value if we consider the sub-bucket length to be halved.
|
---|
| 176 | */
|
---|
| 177 | getLengthForNumberOfBuckets(numberOfBuckets: i32): i32 {
|
---|
| 178 | const lengthNeeded: i32 =
|
---|
| 179 | (numberOfBuckets + 1) * (this.subBucketCount >> 1);
|
---|
| 180 | return lengthNeeded;
|
---|
| 181 | }
|
---|
| 182 |
|
---|
| 183 | getBucketsNeededToCoverValue(value: u64): i32 {
|
---|
| 184 | // the k'th bucket can express from 0 * 2^k to subBucketCount * 2^k in units of 2^k
|
---|
| 185 | let smallestUntrackableValue =
|
---|
| 186 | (<u64>this.subBucketCount) << this.unitMagnitude;
|
---|
| 187 | // always have at least 1 bucket
|
---|
| 188 | let bucketsNeeded = 1;
|
---|
| 189 | while (smallestUntrackableValue <= value) {
|
---|
| 190 | if (smallestUntrackableValue > u64.MAX_VALUE >> 1) {
|
---|
| 191 | // next shift will overflow, meaning that bucket could represent values up to ones greater than
|
---|
| 192 | // Number.MAX_SAFE_INTEGER, so it's the last bucket
|
---|
| 193 | return bucketsNeeded + 1;
|
---|
| 194 | }
|
---|
| 195 | smallestUntrackableValue = smallestUntrackableValue << 1;
|
---|
| 196 | bucketsNeeded++;
|
---|
| 197 | }
|
---|
| 198 | return bucketsNeeded;
|
---|
| 199 | }
|
---|
| 200 |
|
---|
| 201 | /**
|
---|
| 202 | * Record a value in the histogram
|
---|
| 203 | *
|
---|
| 204 | * @param value The value to be recorded
|
---|
| 205 | * @throws may throw Error if value is exceeds highestTrackableValue
|
---|
| 206 | */
|
---|
| 207 | recordValue(value: u64): void {
|
---|
| 208 | this.recordSingleValue(value);
|
---|
| 209 | }
|
---|
| 210 |
|
---|
| 211 | recordSingleValue(value: u64): void {
|
---|
| 212 | const countsIndex = this.countsArrayIndex(value);
|
---|
| 213 | if (countsIndex >= this.countsArrayLength) {
|
---|
| 214 | // @ts-ignore
|
---|
| 215 | this.handleRecordException(<U>1, value);
|
---|
| 216 | } else {
|
---|
| 217 | this.incrementCountAtIndex(countsIndex);
|
---|
| 218 | }
|
---|
| 219 | this.updateMinAndMax(value);
|
---|
| 220 | this.incrementTotalCount();
|
---|
| 221 | }
|
---|
| 222 |
|
---|
| 223 | handleRecordException(count: u64, value: u64): void {
|
---|
| 224 | if (!this.autoResize) {
|
---|
| 225 | throw new Error(
|
---|
| 226 | "Value " + value.toString() + " is outside of histogram covered range"
|
---|
| 227 | );
|
---|
| 228 | }
|
---|
| 229 | this.resize(value);
|
---|
| 230 | const countsIndex: i32 = this.countsArrayIndex(value);
|
---|
| 231 | this.addToCountAtIndex(countsIndex, count);
|
---|
| 232 | this.highestTrackableValue = this.highestEquivalentValue(
|
---|
| 233 | this.valueFromIndex(this.countsArrayLength - 1)
|
---|
| 234 | );
|
---|
| 235 | }
|
---|
| 236 |
|
---|
| 237 | countsArrayIndex(value: u64): i32 {
|
---|
| 238 | if (value < 0) {
|
---|
| 239 | throw new Error("Histogram recorded value cannot be negative.");
|
---|
| 240 | }
|
---|
| 241 | const bucketIndex = this.getBucketIndex(value);
|
---|
| 242 | const subBucketIndex = this.getSubBucketIndex(value, bucketIndex);
|
---|
| 243 | return this.computeCountsArrayIndex(bucketIndex, subBucketIndex);
|
---|
| 244 | }
|
---|
| 245 |
|
---|
| 246 | private computeCountsArrayIndex(bucketIndex: i32, subBucketIndex: i32): i32 {
|
---|
| 247 | assert(subBucketIndex < this.subBucketCount);
|
---|
| 248 | assert(bucketIndex == 0 || subBucketIndex >= this.subBucketHalfCount);
|
---|
| 249 |
|
---|
| 250 | // Calculate the index for the first entry that will be used in the bucket (halfway through subBucketCount).
|
---|
| 251 | // For bucketIndex 0, all subBucketCount entries may be used, but bucketBaseIndex is still set in the middle.
|
---|
| 252 | const bucketBaseIndex =
|
---|
| 253 | (bucketIndex + 1) * (1 << this.subBucketHalfCountMagnitude);
|
---|
| 254 | // Calculate the offset in the bucket. This subtraction will result in a positive value in all buckets except
|
---|
| 255 | // the 0th bucket (since a value in that bucket may be less than half the bucket's 0 to subBucketCount range).
|
---|
| 256 | // However, this works out since we give bucket 0 twice as much space.
|
---|
| 257 | const offsetInBucket = subBucketIndex - this.subBucketHalfCount;
|
---|
| 258 | // The following is the equivalent of ((subBucketIndex - subBucketHalfCount) + bucketBaseIndex;
|
---|
| 259 | return bucketBaseIndex + offsetInBucket;
|
---|
| 260 | }
|
---|
| 261 |
|
---|
| 262 | /**
|
---|
| 263 | * @return the lowest (and therefore highest precision) bucket index that can represent the value
|
---|
| 264 | */
|
---|
| 265 | getBucketIndex(value: u64): i32 {
|
---|
| 266 | // Calculates the number of powers of two by which the value is greater than the biggest value that fits in
|
---|
| 267 | // bucket 0. This is the bucket index since each successive bucket can hold a value 2x greater.
|
---|
| 268 | // The mask maps small values to bucket 0.
|
---|
| 269 | // return this.leadingZeroCountBase - Long.numberOfLeadingZeros(value | subBucketMask);
|
---|
| 270 |
|
---|
| 271 | return this.leadingZeroCountBase - <i32>clz(value | this.subBucketMask);
|
---|
| 272 | /*return <i32>(
|
---|
| 273 | max(
|
---|
| 274 | floor(Math.log2(<f64>value)) -
|
---|
| 275 | this.subBucketHalfCountMagnitude -
|
---|
| 276 | this.unitMagnitude,
|
---|
| 277 | 0
|
---|
| 278 | )
|
---|
| 279 | );*/
|
---|
| 280 | }
|
---|
| 281 |
|
---|
| 282 | getSubBucketIndex(value: u64, bucketIndex: i32): i32 {
|
---|
| 283 | // For bucketIndex 0, this is just value, so it may be anywhere in 0 to subBucketCount.
|
---|
| 284 | // For other bucketIndex, this will always end up in the top half of subBucketCount: assume that for some bucket
|
---|
| 285 | // k > 0, this calculation will yield a value in the bottom half of 0 to subBucketCount. Then, because of how
|
---|
| 286 | // buckets overlap, it would have also been in the top half of bucket k-1, and therefore would have
|
---|
| 287 | // returned k-1 in getBucketIndex(). Since we would then shift it one fewer bits here, it would be twice as big,
|
---|
| 288 | // and therefore in the top half of subBucketCount.
|
---|
| 289 | return <i32>(value >> (bucketIndex + this.unitMagnitude));
|
---|
| 290 | }
|
---|
| 291 |
|
---|
| 292 | /**
|
---|
| 293 | * Get the size (in value units) of the range of values that are equivalent to the given value within the
|
---|
| 294 | * histogram's resolution. Where "equivalent" means that value samples recorded for any two
|
---|
| 295 | * equivalent values are counted in a common total count.
|
---|
| 296 | *
|
---|
| 297 | * @param value The given value
|
---|
| 298 | * @return The size of the range of values equivalent to the given value.
|
---|
| 299 | */
|
---|
| 300 | sizeOfEquivalentValueRange(value: u64): u64 {
|
---|
| 301 | const bucketIndex = this.getBucketIndex(value);
|
---|
| 302 | const distanceToNextValue = (<u64>1) << (this.unitMagnitude + bucketIndex);
|
---|
| 303 | return distanceToNextValue;
|
---|
| 304 | }
|
---|
| 305 |
|
---|
| 306 | /**
|
---|
| 307 | * Get the lowest value that is equivalent to the given value within the histogram's resolution.
|
---|
| 308 | * Where "equivalent" means that value samples recorded for any two
|
---|
| 309 | * equivalent values are counted in a common total count.
|
---|
| 310 | *
|
---|
| 311 | * @param value The given value
|
---|
| 312 | * @return The lowest value that is equivalent to the given value within the histogram's resolution.
|
---|
| 313 | */
|
---|
| 314 | lowestEquivalentValue(value: u64): u64 {
|
---|
| 315 | const bucketIndex = this.getBucketIndex(value);
|
---|
| 316 | const subBucketIndex = this.getSubBucketIndex(value, bucketIndex);
|
---|
| 317 | const thisValueBaseLevel = this.valueFromIndexes(
|
---|
| 318 | bucketIndex,
|
---|
| 319 | subBucketIndex
|
---|
| 320 | );
|
---|
| 321 | return thisValueBaseLevel;
|
---|
| 322 | }
|
---|
| 323 |
|
---|
| 324 | /**
|
---|
| 325 | * Get the highest value that is equivalent to the given value within the histogram's resolution.
|
---|
| 326 | * Where "equivalent" means that value samples recorded for any two
|
---|
| 327 | * equivalent values are counted in a common total count.
|
---|
| 328 | *
|
---|
| 329 | * @param value The given value
|
---|
| 330 | * @return The highest value that is equivalent to the given value within the histogram's resolution.
|
---|
| 331 | */
|
---|
| 332 | highestEquivalentValue(value: u64): u64 {
|
---|
| 333 | return this.nextNonEquivalentValue(value) - 1;
|
---|
| 334 | }
|
---|
| 335 |
|
---|
| 336 | /**
|
---|
| 337 | * Get the next value that is not equivalent to the given value within the histogram's resolution.
|
---|
| 338 | * Where "equivalent" means that value samples recorded for any two
|
---|
| 339 | * equivalent values are counted in a common total count.
|
---|
| 340 | *
|
---|
| 341 | * @param value The given value
|
---|
| 342 | * @return The next value that is not equivalent to the given value within the histogram's resolution.
|
---|
| 343 | */
|
---|
| 344 | nextNonEquivalentValue(value: u64): u64 {
|
---|
| 345 | return (
|
---|
| 346 | this.lowestEquivalentValue(value) + this.sizeOfEquivalentValueRange(value)
|
---|
| 347 | );
|
---|
| 348 | }
|
---|
| 349 |
|
---|
| 350 | /**
|
---|
| 351 | * Get a value that lies in the middle (rounded up) of the range of values equivalent the given value.
|
---|
| 352 | * Where "equivalent" means that value samples recorded for any two
|
---|
| 353 | * equivalent values are counted in a common total count.
|
---|
| 354 | *
|
---|
| 355 | * @param value The given value
|
---|
| 356 | * @return The value lies in the middle (rounded up) of the range of values equivalent the given value.
|
---|
| 357 | */
|
---|
| 358 | medianEquivalentValue(value: u64): u64 {
|
---|
| 359 | return (
|
---|
| 360 | this.lowestEquivalentValue(value) +
|
---|
| 361 | (this.sizeOfEquivalentValueRange(value) >> 1)
|
---|
| 362 | );
|
---|
| 363 | }
|
---|
| 364 |
|
---|
| 365 | /**
|
---|
| 366 | * Get the computed mean value of all recorded values in the histogram
|
---|
| 367 | *
|
---|
| 368 | * @return the mean value (in value units) of the histogram data
|
---|
| 369 | */
|
---|
| 370 | getMean(): f64 {
|
---|
| 371 | if (this.totalCount === 0) {
|
---|
| 372 | return 0;
|
---|
| 373 | }
|
---|
| 374 | this.recordedValuesIterator.reset();
|
---|
| 375 | let totalValue = <u64>0;
|
---|
| 376 | while (this.recordedValuesIterator.hasNext()) {
|
---|
| 377 | const iterationValue = this.recordedValuesIterator.next();
|
---|
| 378 | totalValue +=
|
---|
| 379 | this.medianEquivalentValue(iterationValue.valueIteratedTo) *
|
---|
| 380 | iterationValue.countAtValueIteratedTo;
|
---|
| 381 | }
|
---|
| 382 |
|
---|
| 383 | return (<f64>totalValue * <f64>1) / <f64>this.totalCount;
|
---|
| 384 | }
|
---|
| 385 |
|
---|
| 386 | computeStdDeviation(mean: f64): f64 {
|
---|
| 387 | if (this.totalCount === 0) {
|
---|
| 388 | return 0;
|
---|
| 389 | }
|
---|
| 390 | let geometric_deviation_total: f64 = 0.0;
|
---|
| 391 | this.recordedValuesIterator.reset();
|
---|
| 392 | while (this.recordedValuesIterator.hasNext()) {
|
---|
| 393 | const iterationValue = this.recordedValuesIterator.next();
|
---|
| 394 | const deviation =
|
---|
| 395 | <f64>this.medianEquivalentValue(iterationValue.valueIteratedTo) - mean;
|
---|
| 396 | geometric_deviation_total +=
|
---|
| 397 | deviation *
|
---|
| 398 | deviation *
|
---|
| 399 | <f64>iterationValue.countAddedInThisIterationStep;
|
---|
| 400 | }
|
---|
| 401 | const std_deviation = Math.sqrt(
|
---|
| 402 | geometric_deviation_total / <f64>this.totalCount
|
---|
| 403 | );
|
---|
| 404 | return std_deviation;
|
---|
| 405 | }
|
---|
| 406 |
|
---|
| 407 | /**
|
---|
| 408 | * Get the computed standard deviation of all recorded values in the histogram
|
---|
| 409 | *
|
---|
| 410 | * @return the standard deviation (in value units) of the histogram data
|
---|
| 411 | */
|
---|
| 412 | getStdDeviation(): f64 {
|
---|
| 413 | if (this.totalCount === 0) {
|
---|
| 414 | return 0;
|
---|
| 415 | }
|
---|
| 416 | const mean = this.getMean();
|
---|
| 417 | return this.computeStdDeviation(mean);
|
---|
| 418 | }
|
---|
| 419 |
|
---|
| 420 | private updatedMaxValue(value: u64): void {
|
---|
| 421 | const internalValue: u64 = value + this.unitMagnitudeMask;
|
---|
| 422 | this.maxValue = internalValue;
|
---|
| 423 | }
|
---|
| 424 |
|
---|
| 425 | private updateMinNonZeroValue(value: u64): void {
|
---|
| 426 | if (value <= this.unitMagnitudeMask) {
|
---|
| 427 | return;
|
---|
| 428 | }
|
---|
| 429 | const internalValue = value & ~this.unitMagnitudeMask; // Min unit-equivalent value;
|
---|
| 430 | this.minNonZeroValue = internalValue;
|
---|
| 431 | }
|
---|
| 432 |
|
---|
| 433 | updateMinAndMax(value: u64): void {
|
---|
| 434 | if (value > this.maxValue) {
|
---|
| 435 | this.updatedMaxValue(value);
|
---|
| 436 | }
|
---|
| 437 | if (value < this.minNonZeroValue && value !== 0) {
|
---|
| 438 | this.updateMinNonZeroValue(value);
|
---|
| 439 | }
|
---|
| 440 | }
|
---|
| 441 |
|
---|
| 442 | recordCountAtValue(count: u64, value: u64): void {
|
---|
| 443 | const countsIndex = this.countsArrayIndex(value);
|
---|
| 444 | if (countsIndex >= this.countsArrayLength) {
|
---|
| 445 | this.handleRecordException(count, value);
|
---|
| 446 | } else {
|
---|
| 447 | this.addToCountAtIndex(countsIndex, count);
|
---|
| 448 | }
|
---|
| 449 | this.updateMinAndMax(value);
|
---|
| 450 | this.totalCount += count;
|
---|
| 451 | }
|
---|
| 452 |
|
---|
| 453 | recordSingleValueWithExpectedInterval(
|
---|
| 454 | value: u64,
|
---|
| 455 | expectedIntervalBetweenValueSamples: u64
|
---|
| 456 | ): void {
|
---|
| 457 | this.recordSingleValue(value);
|
---|
| 458 | if (
|
---|
| 459 | value < expectedIntervalBetweenValueSamples ||
|
---|
| 460 | expectedIntervalBetweenValueSamples === 0
|
---|
| 461 | ) {
|
---|
| 462 | return;
|
---|
| 463 | }
|
---|
| 464 | for (
|
---|
| 465 | let missingValue = value - expectedIntervalBetweenValueSamples;
|
---|
| 466 | missingValue >= expectedIntervalBetweenValueSamples;
|
---|
| 467 | missingValue -= expectedIntervalBetweenValueSamples
|
---|
| 468 | ) {
|
---|
| 469 | this.recordSingleValue(missingValue);
|
---|
| 470 | }
|
---|
| 471 | }
|
---|
| 472 |
|
---|
| 473 | private recordValueWithCountAndExpectedInterval(
|
---|
| 474 | value: u64,
|
---|
| 475 | count: u64,
|
---|
| 476 | expectedIntervalBetweenValueSamples: u64
|
---|
| 477 | ): void {
|
---|
| 478 | this.recordCountAtValue(count, value);
|
---|
| 479 | if (
|
---|
| 480 | expectedIntervalBetweenValueSamples <= 0 ||
|
---|
| 481 | value <= expectedIntervalBetweenValueSamples
|
---|
| 482 | ) {
|
---|
| 483 | return;
|
---|
| 484 | }
|
---|
| 485 |
|
---|
| 486 | for (
|
---|
| 487 | let missingValue = value - expectedIntervalBetweenValueSamples;
|
---|
| 488 | missingValue >= expectedIntervalBetweenValueSamples;
|
---|
| 489 | missingValue -= expectedIntervalBetweenValueSamples
|
---|
| 490 | ) {
|
---|
| 491 | this.recordCountAtValue(count, missingValue);
|
---|
| 492 | }
|
---|
| 493 | }
|
---|
| 494 |
|
---|
| 495 | addWhileCorrectingForCoordinatedOmission(
|
---|
| 496 | otherHistogram: Histogram<T, U>,
|
---|
| 497 | expectedIntervalBetweenValueSamples: u64
|
---|
| 498 | ): void {
|
---|
| 499 | const toHistogram = this;
|
---|
| 500 |
|
---|
| 501 | const otherValues = new RecordedValuesIterator<T, U>(otherHistogram);
|
---|
| 502 |
|
---|
| 503 | while (otherValues.hasNext()) {
|
---|
| 504 | const v = otherValues.next();
|
---|
| 505 | toHistogram.recordValueWithCountAndExpectedInterval(
|
---|
| 506 | v.valueIteratedTo,
|
---|
| 507 | v.countAtValueIteratedTo,
|
---|
| 508 | expectedIntervalBetweenValueSamples
|
---|
| 509 | );
|
---|
| 510 | }
|
---|
| 511 | }
|
---|
| 512 |
|
---|
| 513 | copyCorrectedForCoordinatedOmission(
|
---|
| 514 | expectedIntervalBetweenValueSamples: u64
|
---|
| 515 | ): Histogram<T, U> {
|
---|
| 516 | const copy = new Histogram<T, U>(
|
---|
| 517 | this.lowestDiscernibleValue,
|
---|
| 518 | this.highestTrackableValue,
|
---|
| 519 | this.numberOfSignificantValueDigits
|
---|
| 520 | );
|
---|
| 521 | copy.addWhileCorrectingForCoordinatedOmission(
|
---|
| 522 | this,
|
---|
| 523 | expectedIntervalBetweenValueSamples
|
---|
| 524 | );
|
---|
| 525 | return copy;
|
---|
| 526 | }
|
---|
| 527 |
|
---|
| 528 | /**
|
---|
| 529 | * Get the value at a given percentile.
|
---|
| 530 | * When the given percentile is > 0.0, the value returned is the value that the given
|
---|
| 531 | * percentage of the overall recorded value entries in the histogram are either smaller than
|
---|
| 532 | * or equivalent to. When the given percentile is 0.0, the value returned is the value that all value
|
---|
| 533 | * entries in the histogram are either larger than or equivalent to.
|
---|
| 534 | * <p>
|
---|
| 535 | * Note that two values are "equivalent" in this statement if
|
---|
| 536 | * {@link org.HdrHistogram.AbstractHistogram#valuesAreEquivalent} would return true.
|
---|
| 537 | *
|
---|
| 538 | * @param percentile The percentile for which to return the associated value
|
---|
| 539 | * @return The value that the given percentage of the overall recorded value entries in the
|
---|
| 540 | * histogram are either smaller than or equivalent to. When the percentile is 0.0, returns the
|
---|
| 541 | * value that all value entries in the histogram are either larger than or equivalent to.
|
---|
| 542 | */
|
---|
| 543 | getValueAtPercentile(percentile: f64): u64 {
|
---|
| 544 | const requestedPercentile = min(percentile, <f64>100); // Truncate down to 100%
|
---|
| 545 |
|
---|
| 546 | // round count up to nearest integer, to ensure that the largest value that the requested percentile
|
---|
| 547 | // of overall recorded values is actually included. However, this must be done with care:
|
---|
| 548 | //
|
---|
| 549 | // First, Compute fp value for count at the requested percentile. Note that fp result end up
|
---|
| 550 | // being 1 ulp larger than the correct integer count for this percentile:
|
---|
| 551 | const fpCountAtPercentile =
|
---|
| 552 | (requestedPercentile / 100.0) * <f64>this.totalCount;
|
---|
| 553 | // Next, round up, but make sure to prevent <= 1 ulp inaccurancies in the above fp math from
|
---|
| 554 | // making us skip a count:
|
---|
| 555 | const countAtPercentile = <u64>max(
|
---|
| 556 | ceil(fpCountAtPercentile - ulp(fpCountAtPercentile)), // round up
|
---|
| 557 | 1 // Make sure we at least reach the first recorded entry
|
---|
| 558 | );
|
---|
| 559 |
|
---|
| 560 | let totalToCurrentIndex: u64 = 0;
|
---|
| 561 | for (let i = 0; i < this.countsArrayLength; i++) {
|
---|
| 562 | totalToCurrentIndex += this.getCountAtIndex(i);
|
---|
| 563 | if (totalToCurrentIndex >= countAtPercentile) {
|
---|
| 564 | var valueAtIndex: u64 = this.valueFromIndex(i);
|
---|
| 565 | return percentile === 0.0
|
---|
| 566 | ? this.lowestEquivalentValue(valueAtIndex)
|
---|
| 567 | : this.highestEquivalentValue(valueAtIndex);
|
---|
| 568 | }
|
---|
| 569 | }
|
---|
| 570 | return 0;
|
---|
| 571 | }
|
---|
| 572 |
|
---|
| 573 | valueFromIndexes(bucketIndex: i32, subBucketIndex: i32): u64 {
|
---|
| 574 | return (<u64>subBucketIndex) << (bucketIndex + this.unitMagnitude);
|
---|
| 575 | }
|
---|
| 576 |
|
---|
| 577 | valueFromIndex(index: i32): u64 {
|
---|
| 578 | let bucketIndex = (index >> this.subBucketHalfCountMagnitude) - 1;
|
---|
| 579 | let subBucketIndex =
|
---|
| 580 | (index & (this.subBucketHalfCount - 1)) + this.subBucketHalfCount;
|
---|
| 581 | if (bucketIndex < 0) {
|
---|
| 582 | subBucketIndex -= this.subBucketHalfCount;
|
---|
| 583 | bucketIndex = 0;
|
---|
| 584 | }
|
---|
| 585 | return this.valueFromIndexes(bucketIndex, subBucketIndex);
|
---|
| 586 | }
|
---|
| 587 |
|
---|
| 588 | incrementCountAtIndex(index: i32): void {
|
---|
| 589 | // @ts-ignore
|
---|
| 590 | const currentCount = unchecked(this.counts[index]);
|
---|
| 591 | const newCount = currentCount + 1;
|
---|
| 592 | if (newCount < 0) {
|
---|
| 593 | throw new Error(
|
---|
| 594 | newCount.toString() + " would overflow short integer count"
|
---|
| 595 | );
|
---|
| 596 | }
|
---|
| 597 | // @ts-ignore
|
---|
| 598 | unchecked((this.counts[index] = newCount));
|
---|
| 599 | }
|
---|
| 600 |
|
---|
| 601 | setCountAtIndex(index: i32, value: u64): void {
|
---|
| 602 | // @ts-ignore
|
---|
| 603 | unchecked((this.counts[index] = <U>value));
|
---|
| 604 | }
|
---|
| 605 |
|
---|
| 606 | addToCountAtIndex(index: i32, value: u64): void {
|
---|
| 607 | // @ts-ignore
|
---|
| 608 | const currentCount = unchecked(this.counts[index]);
|
---|
| 609 | const newCount = currentCount + value;
|
---|
| 610 | if (newCount < 0) {
|
---|
| 611 | throw newCount + " would overflow short integer count";
|
---|
| 612 | }
|
---|
| 613 | // @ts-ignore
|
---|
| 614 | unchecked((this.counts[index] = <U>newCount));
|
---|
| 615 | }
|
---|
| 616 |
|
---|
| 617 | incrementTotalCount(): void {
|
---|
| 618 | this.totalCount++;
|
---|
| 619 | }
|
---|
| 620 |
|
---|
| 621 | getCountAtIndex(index: i32): u64 {
|
---|
| 622 | // @ts-ignore
|
---|
| 623 | return unchecked(<u64>this.counts[index]);
|
---|
| 624 | }
|
---|
| 625 |
|
---|
| 626 | resize(newHighestTrackableValue: u64): void {
|
---|
| 627 | this.establishSize(newHighestTrackableValue);
|
---|
| 628 | // @ts-ignore
|
---|
| 629 | this.counts = this.counts.resize(this.countsArrayLength);
|
---|
| 630 | }
|
---|
| 631 |
|
---|
| 632 | add<V, W>(otherHistogram: Histogram<V, W>): void {
|
---|
| 633 | const highestRecordableValue = this.highestEquivalentValue(
|
---|
| 634 | this.valueFromIndex(this.countsArrayLength - 1)
|
---|
| 635 | );
|
---|
| 636 |
|
---|
| 637 | if (highestRecordableValue < otherHistogram.maxValue) {
|
---|
| 638 | if (!this.autoResize) {
|
---|
| 639 | throw new Error(
|
---|
| 640 | "The other histogram includes values that do not fit in this histogram's range."
|
---|
| 641 | );
|
---|
| 642 | }
|
---|
| 643 | this.resize(otherHistogram.maxValue);
|
---|
| 644 | }
|
---|
| 645 |
|
---|
| 646 | if (
|
---|
| 647 | this.bucketCount === otherHistogram.bucketCount &&
|
---|
| 648 | this.subBucketCount === otherHistogram.subBucketCount &&
|
---|
| 649 | this.unitMagnitude === otherHistogram.unitMagnitude
|
---|
| 650 | ) {
|
---|
| 651 | // Counts arrays are of the same length and meaning, so we can just iterate and add directly:
|
---|
| 652 | let observedOtherTotalCount = <u64>0;
|
---|
| 653 | for (let i = 0; i < otherHistogram.countsArrayLength; i++) {
|
---|
| 654 | const otherCount = otherHistogram.getCountAtIndex(i);
|
---|
| 655 | if (otherCount > 0) {
|
---|
| 656 | this.addToCountAtIndex(i, otherCount);
|
---|
| 657 | observedOtherTotalCount += otherCount;
|
---|
| 658 | }
|
---|
| 659 | }
|
---|
| 660 | this.totalCount += observedOtherTotalCount;
|
---|
| 661 | this.updatedMaxValue(max(this.maxValue, otherHistogram.maxValue));
|
---|
| 662 | this.updateMinNonZeroValue(
|
---|
| 663 | min(this.minNonZeroValue, otherHistogram.minNonZeroValue)
|
---|
| 664 | );
|
---|
| 665 | } else {
|
---|
| 666 | // Arrays are not a direct match (or the other could change on the fly in some valid way),
|
---|
| 667 | // so we can't just stream through and add them. Instead, go through the array and add each
|
---|
| 668 | // non-zero value found at it's proper value:
|
---|
| 669 |
|
---|
| 670 | // Do max value first, to avoid max value updates on each iteration:
|
---|
| 671 | const otherMaxIndex = otherHistogram.countsArrayIndex(
|
---|
| 672 | otherHistogram.maxValue
|
---|
| 673 | );
|
---|
| 674 | let otherCount = otherHistogram.getCountAtIndex(otherMaxIndex);
|
---|
| 675 | this.recordCountAtValue(
|
---|
| 676 | otherCount,
|
---|
| 677 | otherHistogram.valueFromIndex(otherMaxIndex)
|
---|
| 678 | );
|
---|
| 679 |
|
---|
| 680 | // Record the remaining values, up to but not including the max value:
|
---|
| 681 | for (let i = 0; i < otherMaxIndex; i++) {
|
---|
| 682 | otherCount = otherHistogram.getCountAtIndex(i);
|
---|
| 683 | if (otherCount > 0) {
|
---|
| 684 | this.recordCountAtValue(otherCount, otherHistogram.valueFromIndex(i));
|
---|
| 685 | }
|
---|
| 686 | }
|
---|
| 687 | }
|
---|
| 688 | this.startTimeStampMsec = min(
|
---|
| 689 | this.startTimeStampMsec,
|
---|
| 690 | otherHistogram.startTimeStampMsec
|
---|
| 691 | );
|
---|
| 692 | this.endTimeStampMsec = max(
|
---|
| 693 | this.endTimeStampMsec,
|
---|
| 694 | otherHistogram.endTimeStampMsec
|
---|
| 695 | );
|
---|
| 696 | }
|
---|
| 697 |
|
---|
| 698 | /**
|
---|
| 699 | * Get the count of recorded values at a specific value (to within the histogram resolution at the value level).
|
---|
| 700 | *
|
---|
| 701 | * @param value The value for which to provide the recorded count
|
---|
| 702 | * @return The total count of values recorded in the histogram within the value range that is
|
---|
| 703 | * {@literal >=} lowestEquivalentValue(<i>value</i>) and {@literal <=} highestEquivalentValue(<i>value</i>)
|
---|
| 704 | */
|
---|
| 705 | private getCountAtValue(value: u64): u64 {
|
---|
| 706 | const index = min(
|
---|
| 707 | max(0, this.countsArrayIndex(value)),
|
---|
| 708 | this.countsArrayLength - 1
|
---|
| 709 | );
|
---|
| 710 | return this.getCountAtIndex(index);
|
---|
| 711 | }
|
---|
| 712 |
|
---|
| 713 | establishInternalTackingValues(
|
---|
| 714 | lengthToCover: i32 = this.countsArrayLength
|
---|
| 715 | ): void {
|
---|
| 716 | this.maxValue = 0;
|
---|
| 717 | this.minNonZeroValue = u64.MAX_VALUE;
|
---|
| 718 | let maxIndex: i32 = -1;
|
---|
| 719 | let minNonZeroIndex = -1;
|
---|
| 720 | let observedTotalCount: u64 = 0;
|
---|
| 721 | for (let index: i32 = 0; index < lengthToCover; index++) {
|
---|
| 722 | const countAtIndex: u64 = this.getCountAtIndex(index);
|
---|
| 723 | if (countAtIndex > 0) {
|
---|
| 724 | observedTotalCount += countAtIndex;
|
---|
| 725 | maxIndex = index;
|
---|
| 726 | if (minNonZeroIndex == -1 && index != 0) {
|
---|
| 727 | minNonZeroIndex = index;
|
---|
| 728 | }
|
---|
| 729 | }
|
---|
| 730 | }
|
---|
| 731 | if (maxIndex >= 0) {
|
---|
| 732 | this.updatedMaxValue(
|
---|
| 733 | this.highestEquivalentValue(this.valueFromIndex(maxIndex))
|
---|
| 734 | );
|
---|
| 735 | }
|
---|
| 736 | if (minNonZeroIndex >= 0) {
|
---|
| 737 | this.updateMinNonZeroValue(this.valueFromIndex(minNonZeroIndex));
|
---|
| 738 | }
|
---|
| 739 | this.totalCount = observedTotalCount;
|
---|
| 740 | }
|
---|
| 741 |
|
---|
| 742 | subtract<V, W>(otherHistogram: Histogram<V, W>): void {
|
---|
| 743 | const highestRecordableValue = this.valueFromIndex(
|
---|
| 744 | this.countsArrayLength - 1
|
---|
| 745 | );
|
---|
| 746 | if (highestRecordableValue < otherHistogram.maxValue) {
|
---|
| 747 | if (!this.autoResize) {
|
---|
| 748 | throw new Error(
|
---|
| 749 | "The other histogram includes values that do not fit in this histogram's range."
|
---|
| 750 | );
|
---|
| 751 | }
|
---|
| 752 | this.resize(otherHistogram.maxValue);
|
---|
| 753 | }
|
---|
| 754 |
|
---|
| 755 | if (
|
---|
| 756 | this.bucketCount === otherHistogram.bucketCount &&
|
---|
| 757 | this.subBucketCount === otherHistogram.subBucketCount &&
|
---|
| 758 | this.unitMagnitude === otherHistogram.unitMagnitude
|
---|
| 759 | ) {
|
---|
| 760 | // optim
|
---|
| 761 | // Counts arrays are of the same length and meaning, so we can just iterate and add directly:
|
---|
| 762 | let observedOtherTotalCount: u64 = 0;
|
---|
| 763 | for (let i = 0; i < otherHistogram.countsArrayLength; i++) {
|
---|
| 764 | const otherCount = otherHistogram.getCountAtIndex(i);
|
---|
| 765 | if (otherCount > 0) {
|
---|
| 766 | this.addToCountAtIndex(i, -otherCount);
|
---|
| 767 | observedOtherTotalCount += otherCount;
|
---|
| 768 | }
|
---|
| 769 | }
|
---|
| 770 | this.totalCount = this.totalCount - observedOtherTotalCount;
|
---|
| 771 | } else {
|
---|
| 772 | for (let i = 0; i < otherHistogram.countsArrayLength; i++) {
|
---|
| 773 | const otherCount = otherHistogram.getCountAtIndex(i);
|
---|
| 774 | if (otherCount > 0) {
|
---|
| 775 | const otherValue = otherHistogram.valueFromIndex(i);
|
---|
| 776 | if (this.getCountAtValue(otherValue) < otherCount) {
|
---|
| 777 | throw new Error(
|
---|
| 778 | "otherHistogram count (" +
|
---|
| 779 | otherCount.toString() +
|
---|
| 780 | ") at value " +
|
---|
| 781 | otherValue.toString() +
|
---|
| 782 | " is larger than this one's (" +
|
---|
| 783 | this.getCountAtValue(otherValue).toString() +
|
---|
| 784 | ")"
|
---|
| 785 | );
|
---|
| 786 | }
|
---|
| 787 | this.recordCountAtValue(-otherCount, otherValue);
|
---|
| 788 | }
|
---|
| 789 | }
|
---|
| 790 | }
|
---|
| 791 | // With subtraction, the max and minNonZero values could have changed:
|
---|
| 792 | if (
|
---|
| 793 | this.getCountAtValue(this.maxValue) <= 0 ||
|
---|
| 794 | this.getCountAtValue(this.minNonZeroValue) <= 0
|
---|
| 795 | ) {
|
---|
| 796 | this.establishInternalTackingValues();
|
---|
| 797 | }
|
---|
| 798 | }
|
---|
| 799 |
|
---|
| 800 | /**
|
---|
| 801 | * Produce textual representation of the value distribution of histogram data by percentile. The distribution is
|
---|
| 802 | * output with exponentially increasing resolution, with each exponentially decreasing half-distance containing
|
---|
| 803 | * <i>dumpTicksPerHalf</i> percentile reporting tick points.
|
---|
| 804 | *
|
---|
| 805 | * @param printStream Stream into which the distribution will be output
|
---|
| 806 | * <p>
|
---|
| 807 | * @param percentileTicksPerHalfDistance The number of reporting points per exponentially decreasing half-distance
|
---|
| 808 | * <p>
|
---|
| 809 | * @param outputValueUnitScalingRatio The scaling factor by which to divide histogram recorded values units in
|
---|
| 810 | * output
|
---|
| 811 | * @param useCsvFormat Output in CSV format if true. Otherwise use plain text form.
|
---|
| 812 | */
|
---|
| 813 | outputPercentileDistribution(
|
---|
| 814 | percentileTicksPerHalfDistance: i32 = 5,
|
---|
| 815 | outputValueUnitScalingRatio: f64 = 1
|
---|
| 816 | ): string {
|
---|
| 817 | let result = "";
|
---|
| 818 | result += " Value Percentile TotalCount 1/(1-Percentile)\n\n";
|
---|
| 819 |
|
---|
| 820 | const iterator = this.percentileIterator;
|
---|
| 821 | iterator.reset(percentileTicksPerHalfDistance);
|
---|
| 822 |
|
---|
| 823 | const valueFormatter = new FloatFormatter(
|
---|
| 824 | 12,
|
---|
| 825 | this.numberOfSignificantValueDigits
|
---|
| 826 | );
|
---|
| 827 | const percentileFormatter = new FloatFormatter(2, 12);
|
---|
| 828 | const totalCountFormatter = new IntegerFormatter(10);
|
---|
| 829 | const lastFormatter = new FloatFormatter(14, 2);
|
---|
| 830 |
|
---|
| 831 | while (iterator.hasNext()) {
|
---|
| 832 | const iterationValue = iterator.next();
|
---|
| 833 | if (iterationValue.percentileLevelIteratedTo < 100) {
|
---|
| 834 | result +=
|
---|
| 835 | valueFormatter.format(
|
---|
| 836 | <f64>iterationValue.valueIteratedTo / outputValueUnitScalingRatio
|
---|
| 837 | ) +
|
---|
| 838 | " " +
|
---|
| 839 | percentileFormatter.format(
|
---|
| 840 | iterationValue.percentileLevelIteratedTo / <f64>100
|
---|
| 841 | ) +
|
---|
| 842 | " " +
|
---|
| 843 | totalCountFormatter.format(iterationValue.totalCountToThisValue) +
|
---|
| 844 | " " +
|
---|
| 845 | lastFormatter.format(
|
---|
| 846 | <f64>1 /
|
---|
| 847 | (<f64>1 - iterationValue.percentileLevelIteratedTo / <f64>100)
|
---|
| 848 | ) +
|
---|
| 849 | "\n";
|
---|
| 850 | } else {
|
---|
| 851 | result +=
|
---|
| 852 | valueFormatter.format(
|
---|
| 853 | <f64>iterationValue.valueIteratedTo / outputValueUnitScalingRatio
|
---|
| 854 | ) +
|
---|
| 855 | " " +
|
---|
| 856 | percentileFormatter.format(
|
---|
| 857 | iterationValue.percentileLevelIteratedTo / <f64>100
|
---|
| 858 | ) +
|
---|
| 859 | " " +
|
---|
| 860 | totalCountFormatter.format(iterationValue.totalCountToThisValue) +
|
---|
| 861 | "\n";
|
---|
| 862 | }
|
---|
| 863 | }
|
---|
| 864 |
|
---|
| 865 | // Calculate and output mean and std. deviation.
|
---|
| 866 | // Note: mean/std. deviation numbers are very often completely irrelevant when
|
---|
| 867 | // data is extremely non-normal in distribution (e.g. in cases of strong multi-modal
|
---|
| 868 | // response time distribution associated with GC pauses). However, reporting these numbers
|
---|
| 869 | // can be very useful for contrasting with the detailed percentile distribution
|
---|
| 870 | // reported by outputPercentileDistribution(). It is not at all surprising to find
|
---|
| 871 | // percentile distributions where results fall many tens or even hundreds of standard
|
---|
| 872 | // deviations away from the mean - such results simply indicate that the data sampled
|
---|
| 873 | // exhibits a very non-normal distribution, highlighting situations for which the std.
|
---|
| 874 | // deviation metric is a useless indicator.
|
---|
| 875 | //
|
---|
| 876 | const formatter = new FloatFormatter(
|
---|
| 877 | 12,
|
---|
| 878 | this.numberOfSignificantValueDigits
|
---|
| 879 | );
|
---|
| 880 | const _mean = this.getMean();
|
---|
| 881 | const mean = formatter.format(_mean / outputValueUnitScalingRatio);
|
---|
| 882 | const std_deviation = formatter.format(
|
---|
| 883 | this.computeStdDeviation(_mean) / outputValueUnitScalingRatio
|
---|
| 884 | );
|
---|
| 885 | const max = formatter.format(
|
---|
| 886 | <f64>this.maxValue / outputValueUnitScalingRatio
|
---|
| 887 | );
|
---|
| 888 | const intFormatter = new IntegerFormatter(12);
|
---|
| 889 | const totalCount = intFormatter.format(this.totalCount);
|
---|
| 890 | const bucketCount = intFormatter.format(this.bucketCount);
|
---|
| 891 | const subBucketCount = intFormatter.format(this.subBucketCount);
|
---|
| 892 | // #[Mean = 50.0,
|
---|
| 893 | // #[Mean = 50.000,
|
---|
| 894 | result +=
|
---|
| 895 | `#[Mean = ` +
|
---|
| 896 | mean.toString() +
|
---|
| 897 | `, StdDeviation = ` +
|
---|
| 898 | std_deviation.toString() +
|
---|
| 899 | `]
|
---|
| 900 | #[Max = ` +
|
---|
| 901 | max.toString() +
|
---|
| 902 | `, Total count = ` +
|
---|
| 903 | totalCount.toString() +
|
---|
| 904 | `]
|
---|
| 905 | #[Buckets = ` +
|
---|
| 906 | bucketCount.toString() +
|
---|
| 907 | `, SubBuckets = ` +
|
---|
| 908 | subBucketCount.toString() +
|
---|
| 909 | `]
|
---|
| 910 | `;
|
---|
| 911 |
|
---|
| 912 | return result;
|
---|
| 913 | }
|
---|
| 914 |
|
---|
| 915 | encode(): Uint8Array {
|
---|
| 916 | const buffer = ByteBuffer.allocate(1024);
|
---|
| 917 | encodeIntoByteBuffer(this, buffer);
|
---|
| 918 | return buffer.data.slice(0, buffer.position);
|
---|
| 919 | }
|
---|
| 920 |
|
---|
| 921 | public get estimatedFootprintInBytes(): i32 {
|
---|
| 922 | // @ts-ignore
|
---|
| 923 | return offsetof<Histogram<T, U>>() + this.counts.estimatedFootprintInBytes;
|
---|
| 924 | }
|
---|
| 925 |
|
---|
| 926 | clearCounts(): void {
|
---|
| 927 | // @ts-ignore
|
---|
| 928 | this.counts.clear();
|
---|
| 929 | }
|
---|
| 930 |
|
---|
| 931 | reset(): void {
|
---|
| 932 | this.clearCounts();
|
---|
| 933 | this.totalCount = 0;
|
---|
| 934 | this.startTimeStampMsec = 0;
|
---|
| 935 | this.endTimeStampMsec = 0;
|
---|
| 936 | //this.tag = NO_TAG;
|
---|
| 937 | this.maxValue = 0;
|
---|
| 938 | this.minNonZeroValue = U64.MAX_VALUE;
|
---|
| 939 | }
|
---|
| 940 | }
|
---|
| 941 |
|
---|
| 942 | export class Storage<T, U> {
|
---|
| 943 | [key: number]: number;
|
---|
| 944 | array: T;
|
---|
| 945 | constructor(size: i32) {
|
---|
| 946 | this.array = instantiate<T>(size);
|
---|
| 947 | }
|
---|
| 948 |
|
---|
| 949 | public get estimatedFootprintInBytes(): i32 {
|
---|
| 950 | // @ts-ignore
|
---|
| 951 | return offsetof<Storage<T, U>>() + this.array.byteLength;
|
---|
| 952 | }
|
---|
| 953 |
|
---|
| 954 | resize(newSize: i32): Storage<T, U> {
|
---|
| 955 | const newArray = new Storage<T, U>(newSize);
|
---|
| 956 | // @ts-ignore
|
---|
| 957 | newArray.array.set(this.array);
|
---|
| 958 | return newArray;
|
---|
| 959 | }
|
---|
| 960 |
|
---|
| 961 | clear(): void {
|
---|
| 962 | // @ts-ignore
|
---|
| 963 | this.array.fill(0);
|
---|
| 964 | }
|
---|
| 965 |
|
---|
| 966 | @operator("[]") private __get(index: i32): U {
|
---|
| 967 | // @ts-ignore
|
---|
| 968 | return unchecked(this.array[index]);
|
---|
| 969 | }
|
---|
| 970 |
|
---|
| 971 | @operator("[]=") private __set(index: i32, value: U): void {
|
---|
| 972 | // @ts-ignore
|
---|
| 973 | unchecked((this.array[index] = value));
|
---|
| 974 | }
|
---|
| 975 | }
|
---|
| 976 |
|
---|
| 977 | export type Uint8Storage = Storage<Uint8Array, u8>;
|
---|
| 978 | export type Uint16Storage = Storage<Uint16Array, u16>;
|
---|
| 979 | export type Uint32Storage = Storage<Uint32Array, u32>;
|
---|
| 980 | export type Uint64Storage = Storage<Uint64Array, u64>;
|
---|
| 981 |
|
---|
| 982 | export class Histogram8 extends Histogram<Uint8Storage, u8> {}
|
---|
| 983 | export class Histogram16 extends Histogram<Uint16Storage, u16> {}
|
---|
| 984 | export class Histogram32 extends Histogram<Uint32Storage, u32> {}
|
---|
| 985 | export class Histogram64 extends Histogram<Uint64Storage, u64> {}
|
---|
| 986 | export class PackedHistogram extends Histogram<PackedArray, u64> {}
|
---|