1 | /*
|
---|
2 | * This is a AssemblyScript port of the original Java version, which was written by
|
---|
3 | * Gil Tene as described in
|
---|
4 | * https://github.com/HdrHistogram/HdrHistogram
|
---|
5 | * and released to the public domain, as explained at
|
---|
6 | * http://creativecommons.org/publicdomain/zero/1.0/
|
---|
7 | */
|
---|
8 |
|
---|
9 | import { AbstractHistogramBase } from "./AbstractHistogramBase";
|
---|
10 | import RecordedValuesIterator from "./RecordedValuesIterator";
|
---|
11 | import PercentileIterator from "./PercentileIterator";
|
---|
12 |
|
---|
13 | import ulp from "./ulp";
|
---|
14 | import { FloatFormatter, IntegerFormatter } from "./formatters";
|
---|
15 | import ByteBuffer from "./ByteBuffer";
|
---|
16 | import { encodeIntoByteBuffer } from "./encoding";
|
---|
17 | import { PackedArray } from "./packedarray/PackedArray";
|
---|
18 |
|
---|
19 | export default class Histogram<T, U> extends AbstractHistogramBase<T, U> {
|
---|
20 | // "Hot" accessed fields (used in the the value recording code path) are bunched here, such
|
---|
21 | // that they will have a good chance of ending up in the same cache line as the totalCounts and
|
---|
22 | // counts array reference fields that subclass implementations will typically add.
|
---|
23 |
|
---|
24 | /**
|
---|
25 | * Number of leading zeros in the largest value that can fit in bucket 0.
|
---|
26 | */
|
---|
27 | leadingZeroCountBase: i32;
|
---|
28 | subBucketHalfCountMagnitude: i32;
|
---|
29 | /**
|
---|
30 | * Largest k such that 2^k <= lowestDiscernibleValue
|
---|
31 | */
|
---|
32 | unitMagnitude: i32;
|
---|
33 | subBucketHalfCount: i32;
|
---|
34 |
|
---|
35 | lowestDiscernibleValueRounded: u64;
|
---|
36 |
|
---|
37 | /**
|
---|
38 | * Biggest value that can fit in bucket 0
|
---|
39 | */
|
---|
40 | subBucketMask: u64;
|
---|
41 | /**
|
---|
42 | * Lowest unitMagnitude bits are set
|
---|
43 | */
|
---|
44 | unitMagnitudeMask: u64;
|
---|
45 |
|
---|
46 | maxValue: u64 = 0;
|
---|
47 | minNonZeroValue: u64 = U64.MAX_VALUE;
|
---|
48 |
|
---|
49 | counts: T;
|
---|
50 | totalCount: u64 = 0;
|
---|
51 |
|
---|
52 | constructor(
|
---|
53 | lowestDiscernibleValue: u64,
|
---|
54 | highestTrackableValue: u64,
|
---|
55 | numberOfSignificantValueDigits: u8
|
---|
56 | ) {
|
---|
57 | super();
|
---|
58 |
|
---|
59 | // Verify argument validity
|
---|
60 | if (lowestDiscernibleValue < 1) {
|
---|
61 | throw new Error("lowestDiscernibleValue must be >= 1");
|
---|
62 | }
|
---|
63 | if (highestTrackableValue < 2 * lowestDiscernibleValue) {
|
---|
64 | throw new Error(
|
---|
65 | `highestTrackableValue must be >= 2 * lowestDiscernibleValue ( 2 * ${lowestDiscernibleValue} )`
|
---|
66 | );
|
---|
67 | }
|
---|
68 | if (
|
---|
69 | numberOfSignificantValueDigits < 0 ||
|
---|
70 | numberOfSignificantValueDigits > 5
|
---|
71 | ) {
|
---|
72 | throw new Error("numberOfSignificantValueDigits must be between 0 and 5");
|
---|
73 | }
|
---|
74 | this.identity = AbstractHistogramBase.identityBuilder++;
|
---|
75 |
|
---|
76 | this.init(
|
---|
77 | lowestDiscernibleValue,
|
---|
78 | highestTrackableValue,
|
---|
79 | numberOfSignificantValueDigits,
|
---|
80 | 1.0
|
---|
81 | );
|
---|
82 | }
|
---|
83 |
|
---|
84 | init(
|
---|
85 | lowestDiscernibleValue: u64,
|
---|
86 | highestTrackableValue: u64,
|
---|
87 | numberOfSignificantValueDigits: u8,
|
---|
88 | integerToDoubleValueConversionRatio: f64
|
---|
89 | ): void {
|
---|
90 | this.lowestDiscernibleValue = lowestDiscernibleValue;
|
---|
91 | this.highestTrackableValue = highestTrackableValue;
|
---|
92 | this.numberOfSignificantValueDigits = numberOfSignificantValueDigits;
|
---|
93 | this.integerToDoubleValueConversionRatio = integerToDoubleValueConversionRatio;
|
---|
94 |
|
---|
95 | /*
|
---|
96 | * Given a 3 decimal point accuracy, the expectation is obviously for "+/- 1 unit at 1000". It also means that
|
---|
97 | * it's "ok to be +/- 2 units at 2000". The "tricky" thing is that it is NOT ok to be +/- 2 units at 1999. Only
|
---|
98 | * starting at 2000. So internally, we need to maintain single unit resolution to 2x 10^decimalPoints.
|
---|
99 | */
|
---|
100 | const largestValueWithSingleUnitResolution =
|
---|
101 | 2 * <u64>Math.pow(10, numberOfSignificantValueDigits);
|
---|
102 |
|
---|
103 | this.unitMagnitude = <i32>floor(Math.log2(<f64>lowestDiscernibleValue));
|
---|
104 |
|
---|
105 | //this.lowestDiscernibleValueRounded = pow(2, this.unitMagnitude);
|
---|
106 | this.unitMagnitudeMask = (1 << this.unitMagnitude) - 1;
|
---|
107 |
|
---|
108 | // We need to maintain power-of-two subBucketCount (for clean direct indexing) that is large enough to
|
---|
109 | // provide unit resolution to at least largestValueWithSingleUnitResolution. So figure out
|
---|
110 | // largestValueWithSingleUnitResolution's nearest power-of-two (rounded up), and use that:
|
---|
111 | const subBucketCountMagnitude = <i32>(
|
---|
112 | ceil(Math.log2(<f64>largestValueWithSingleUnitResolution))
|
---|
113 | );
|
---|
114 | this.subBucketHalfCountMagnitude = subBucketCountMagnitude - 1;
|
---|
115 | this.subBucketCount = 1 << subBucketCountMagnitude;
|
---|
116 | this.subBucketHalfCount = this.subBucketCount >> 1;
|
---|
117 | this.subBucketMask = (<u64>this.subBucketCount - 1) << this.unitMagnitude;
|
---|
118 |
|
---|
119 | this.establishSize(highestTrackableValue);
|
---|
120 | // @ts-ignore
|
---|
121 | this.counts = instantiate<T>(this.countsArrayLength);
|
---|
122 |
|
---|
123 | this.leadingZeroCountBase =
|
---|
124 | 64 - this.unitMagnitude - this.subBucketHalfCountMagnitude - 1;
|
---|
125 | this.percentileIterator = new PercentileIterator(this, 1);
|
---|
126 | this.recordedValuesIterator = new RecordedValuesIterator(this);
|
---|
127 | }
|
---|
128 |
|
---|
129 | /**
|
---|
130 | * The buckets (each of which has subBucketCount sub-buckets, here assumed to be 2048 as an example) overlap:
|
---|
131 | *
|
---|
132 | * <pre>
|
---|
133 | * The 0'th bucket covers from 0...2047 in multiples of 1, using all 2048 sub-buckets
|
---|
134 | * The 1'th bucket covers from 2048..4097 in multiples of 2, using only the top 1024 sub-buckets
|
---|
135 | * The 2'th bucket covers from 4096..8191 in multiple of 4, using only the top 1024 sub-buckets
|
---|
136 | * ...
|
---|
137 | * </pre>
|
---|
138 | *
|
---|
139 | * Bucket 0 is "special" here. It is the only one that has 2048 entries. All the rest have 1024 entries (because
|
---|
140 | * their bottom half overlaps with and is already covered by the all of the previous buckets put together). In other
|
---|
141 | * words, the k'th bucket could represent 0 * 2^k to 2048 * 2^k in 2048 buckets with 2^k precision, but the midpoint
|
---|
142 | * of 1024 * 2^k = 2048 * 2^(k-1) = the k-1'th bucket's end, so we would use the previous bucket for those lower
|
---|
143 | * values as it has better precision.
|
---|
144 | */
|
---|
145 | establishSize(newHighestTrackableValue: u64): void {
|
---|
146 | // establish counts array length:
|
---|
147 | this.countsArrayLength = this.determineArrayLengthNeeded(
|
---|
148 | newHighestTrackableValue
|
---|
149 | );
|
---|
150 | // establish exponent range needed to support the trackable value with no overflow:
|
---|
151 | this.bucketCount = this.getBucketsNeededToCoverValue(
|
---|
152 | newHighestTrackableValue
|
---|
153 | );
|
---|
154 | // establish the new highest trackable value:
|
---|
155 | this.highestTrackableValue = newHighestTrackableValue;
|
---|
156 | }
|
---|
157 |
|
---|
158 | determineArrayLengthNeeded(highestTrackableValue: u64): i32 {
|
---|
159 | if (highestTrackableValue < 2 * this.lowestDiscernibleValue) {
|
---|
160 | throw new Error(
|
---|
161 | "highestTrackableValue cannot be < (2 * lowestDiscernibleValue)"
|
---|
162 | );
|
---|
163 | }
|
---|
164 | //determine counts array length needed:
|
---|
165 | const countsArrayLength = this.getLengthForNumberOfBuckets(
|
---|
166 | this.getBucketsNeededToCoverValue(highestTrackableValue)
|
---|
167 | );
|
---|
168 | return countsArrayLength;
|
---|
169 | }
|
---|
170 |
|
---|
171 | /**
|
---|
172 | * If we have N such that subBucketCount * 2^N > max value, we need storage for N+1 buckets, each with enough
|
---|
173 | * slots to hold the top half of the subBucketCount (the lower half is covered by previous buckets), and the +1
|
---|
174 | * being used for the lower half of the 0'th bucket. Or, equivalently, we need 1 more bucket to capture the max
|
---|
175 | * value if we consider the sub-bucket length to be halved.
|
---|
176 | */
|
---|
177 | getLengthForNumberOfBuckets(numberOfBuckets: i32): i32 {
|
---|
178 | const lengthNeeded: i32 =
|
---|
179 | (numberOfBuckets + 1) * (this.subBucketCount >> 1);
|
---|
180 | return lengthNeeded;
|
---|
181 | }
|
---|
182 |
|
---|
183 | getBucketsNeededToCoverValue(value: u64): i32 {
|
---|
184 | // the k'th bucket can express from 0 * 2^k to subBucketCount * 2^k in units of 2^k
|
---|
185 | let smallestUntrackableValue =
|
---|
186 | (<u64>this.subBucketCount) << this.unitMagnitude;
|
---|
187 | // always have at least 1 bucket
|
---|
188 | let bucketsNeeded = 1;
|
---|
189 | while (smallestUntrackableValue <= value) {
|
---|
190 | if (smallestUntrackableValue > u64.MAX_VALUE >> 1) {
|
---|
191 | // next shift will overflow, meaning that bucket could represent values up to ones greater than
|
---|
192 | // Number.MAX_SAFE_INTEGER, so it's the last bucket
|
---|
193 | return bucketsNeeded + 1;
|
---|
194 | }
|
---|
195 | smallestUntrackableValue = smallestUntrackableValue << 1;
|
---|
196 | bucketsNeeded++;
|
---|
197 | }
|
---|
198 | return bucketsNeeded;
|
---|
199 | }
|
---|
200 |
|
---|
201 | /**
|
---|
202 | * Record a value in the histogram
|
---|
203 | *
|
---|
204 | * @param value The value to be recorded
|
---|
205 | * @throws may throw Error if value is exceeds highestTrackableValue
|
---|
206 | */
|
---|
207 | recordValue(value: u64): void {
|
---|
208 | this.recordSingleValue(value);
|
---|
209 | }
|
---|
210 |
|
---|
211 | recordSingleValue(value: u64): void {
|
---|
212 | const countsIndex = this.countsArrayIndex(value);
|
---|
213 | if (countsIndex >= this.countsArrayLength) {
|
---|
214 | // @ts-ignore
|
---|
215 | this.handleRecordException(<U>1, value);
|
---|
216 | } else {
|
---|
217 | this.incrementCountAtIndex(countsIndex);
|
---|
218 | }
|
---|
219 | this.updateMinAndMax(value);
|
---|
220 | this.incrementTotalCount();
|
---|
221 | }
|
---|
222 |
|
---|
223 | handleRecordException(count: u64, value: u64): void {
|
---|
224 | if (!this.autoResize) {
|
---|
225 | throw new Error(
|
---|
226 | "Value " + value.toString() + " is outside of histogram covered range"
|
---|
227 | );
|
---|
228 | }
|
---|
229 | this.resize(value);
|
---|
230 | const countsIndex: i32 = this.countsArrayIndex(value);
|
---|
231 | this.addToCountAtIndex(countsIndex, count);
|
---|
232 | this.highestTrackableValue = this.highestEquivalentValue(
|
---|
233 | this.valueFromIndex(this.countsArrayLength - 1)
|
---|
234 | );
|
---|
235 | }
|
---|
236 |
|
---|
237 | countsArrayIndex(value: u64): i32 {
|
---|
238 | if (value < 0) {
|
---|
239 | throw new Error("Histogram recorded value cannot be negative.");
|
---|
240 | }
|
---|
241 | const bucketIndex = this.getBucketIndex(value);
|
---|
242 | const subBucketIndex = this.getSubBucketIndex(value, bucketIndex);
|
---|
243 | return this.computeCountsArrayIndex(bucketIndex, subBucketIndex);
|
---|
244 | }
|
---|
245 |
|
---|
246 | private computeCountsArrayIndex(bucketIndex: i32, subBucketIndex: i32): i32 {
|
---|
247 | assert(subBucketIndex < this.subBucketCount);
|
---|
248 | assert(bucketIndex == 0 || subBucketIndex >= this.subBucketHalfCount);
|
---|
249 |
|
---|
250 | // Calculate the index for the first entry that will be used in the bucket (halfway through subBucketCount).
|
---|
251 | // For bucketIndex 0, all subBucketCount entries may be used, but bucketBaseIndex is still set in the middle.
|
---|
252 | const bucketBaseIndex =
|
---|
253 | (bucketIndex + 1) * (1 << this.subBucketHalfCountMagnitude);
|
---|
254 | // Calculate the offset in the bucket. This subtraction will result in a positive value in all buckets except
|
---|
255 | // the 0th bucket (since a value in that bucket may be less than half the bucket's 0 to subBucketCount range).
|
---|
256 | // However, this works out since we give bucket 0 twice as much space.
|
---|
257 | const offsetInBucket = subBucketIndex - this.subBucketHalfCount;
|
---|
258 | // The following is the equivalent of ((subBucketIndex - subBucketHalfCount) + bucketBaseIndex;
|
---|
259 | return bucketBaseIndex + offsetInBucket;
|
---|
260 | }
|
---|
261 |
|
---|
262 | /**
|
---|
263 | * @return the lowest (and therefore highest precision) bucket index that can represent the value
|
---|
264 | */
|
---|
265 | getBucketIndex(value: u64): i32 {
|
---|
266 | // Calculates the number of powers of two by which the value is greater than the biggest value that fits in
|
---|
267 | // bucket 0. This is the bucket index since each successive bucket can hold a value 2x greater.
|
---|
268 | // The mask maps small values to bucket 0.
|
---|
269 | // return this.leadingZeroCountBase - Long.numberOfLeadingZeros(value | subBucketMask);
|
---|
270 |
|
---|
271 | return this.leadingZeroCountBase - <i32>clz(value | this.subBucketMask);
|
---|
272 | /*return <i32>(
|
---|
273 | max(
|
---|
274 | floor(Math.log2(<f64>value)) -
|
---|
275 | this.subBucketHalfCountMagnitude -
|
---|
276 | this.unitMagnitude,
|
---|
277 | 0
|
---|
278 | )
|
---|
279 | );*/
|
---|
280 | }
|
---|
281 |
|
---|
282 | getSubBucketIndex(value: u64, bucketIndex: i32): i32 {
|
---|
283 | // For bucketIndex 0, this is just value, so it may be anywhere in 0 to subBucketCount.
|
---|
284 | // For other bucketIndex, this will always end up in the top half of subBucketCount: assume that for some bucket
|
---|
285 | // k > 0, this calculation will yield a value in the bottom half of 0 to subBucketCount. Then, because of how
|
---|
286 | // buckets overlap, it would have also been in the top half of bucket k-1, and therefore would have
|
---|
287 | // returned k-1 in getBucketIndex(). Since we would then shift it one fewer bits here, it would be twice as big,
|
---|
288 | // and therefore in the top half of subBucketCount.
|
---|
289 | return <i32>(value >> (bucketIndex + this.unitMagnitude));
|
---|
290 | }
|
---|
291 |
|
---|
292 | /**
|
---|
293 | * Get the size (in value units) of the range of values that are equivalent to the given value within the
|
---|
294 | * histogram's resolution. Where "equivalent" means that value samples recorded for any two
|
---|
295 | * equivalent values are counted in a common total count.
|
---|
296 | *
|
---|
297 | * @param value The given value
|
---|
298 | * @return The size of the range of values equivalent to the given value.
|
---|
299 | */
|
---|
300 | sizeOfEquivalentValueRange(value: u64): u64 {
|
---|
301 | const bucketIndex = this.getBucketIndex(value);
|
---|
302 | const distanceToNextValue = (<u64>1) << (this.unitMagnitude + bucketIndex);
|
---|
303 | return distanceToNextValue;
|
---|
304 | }
|
---|
305 |
|
---|
306 | /**
|
---|
307 | * Get the lowest value that is equivalent to the given value within the histogram's resolution.
|
---|
308 | * Where "equivalent" means that value samples recorded for any two
|
---|
309 | * equivalent values are counted in a common total count.
|
---|
310 | *
|
---|
311 | * @param value The given value
|
---|
312 | * @return The lowest value that is equivalent to the given value within the histogram's resolution.
|
---|
313 | */
|
---|
314 | lowestEquivalentValue(value: u64): u64 {
|
---|
315 | const bucketIndex = this.getBucketIndex(value);
|
---|
316 | const subBucketIndex = this.getSubBucketIndex(value, bucketIndex);
|
---|
317 | const thisValueBaseLevel = this.valueFromIndexes(
|
---|
318 | bucketIndex,
|
---|
319 | subBucketIndex
|
---|
320 | );
|
---|
321 | return thisValueBaseLevel;
|
---|
322 | }
|
---|
323 |
|
---|
324 | /**
|
---|
325 | * Get the highest value that is equivalent to the given value within the histogram's resolution.
|
---|
326 | * Where "equivalent" means that value samples recorded for any two
|
---|
327 | * equivalent values are counted in a common total count.
|
---|
328 | *
|
---|
329 | * @param value The given value
|
---|
330 | * @return The highest value that is equivalent to the given value within the histogram's resolution.
|
---|
331 | */
|
---|
332 | highestEquivalentValue(value: u64): u64 {
|
---|
333 | return this.nextNonEquivalentValue(value) - 1;
|
---|
334 | }
|
---|
335 |
|
---|
336 | /**
|
---|
337 | * Get the next value that is not equivalent to the given value within the histogram's resolution.
|
---|
338 | * Where "equivalent" means that value samples recorded for any two
|
---|
339 | * equivalent values are counted in a common total count.
|
---|
340 | *
|
---|
341 | * @param value The given value
|
---|
342 | * @return The next value that is not equivalent to the given value within the histogram's resolution.
|
---|
343 | */
|
---|
344 | nextNonEquivalentValue(value: u64): u64 {
|
---|
345 | return (
|
---|
346 | this.lowestEquivalentValue(value) + this.sizeOfEquivalentValueRange(value)
|
---|
347 | );
|
---|
348 | }
|
---|
349 |
|
---|
350 | /**
|
---|
351 | * Get a value that lies in the middle (rounded up) of the range of values equivalent the given value.
|
---|
352 | * Where "equivalent" means that value samples recorded for any two
|
---|
353 | * equivalent values are counted in a common total count.
|
---|
354 | *
|
---|
355 | * @param value The given value
|
---|
356 | * @return The value lies in the middle (rounded up) of the range of values equivalent the given value.
|
---|
357 | */
|
---|
358 | medianEquivalentValue(value: u64): u64 {
|
---|
359 | return (
|
---|
360 | this.lowestEquivalentValue(value) +
|
---|
361 | (this.sizeOfEquivalentValueRange(value) >> 1)
|
---|
362 | );
|
---|
363 | }
|
---|
364 |
|
---|
365 | /**
|
---|
366 | * Get the computed mean value of all recorded values in the histogram
|
---|
367 | *
|
---|
368 | * @return the mean value (in value units) of the histogram data
|
---|
369 | */
|
---|
370 | getMean(): f64 {
|
---|
371 | if (this.totalCount === 0) {
|
---|
372 | return 0;
|
---|
373 | }
|
---|
374 | this.recordedValuesIterator.reset();
|
---|
375 | let totalValue = <u64>0;
|
---|
376 | while (this.recordedValuesIterator.hasNext()) {
|
---|
377 | const iterationValue = this.recordedValuesIterator.next();
|
---|
378 | totalValue +=
|
---|
379 | this.medianEquivalentValue(iterationValue.valueIteratedTo) *
|
---|
380 | iterationValue.countAtValueIteratedTo;
|
---|
381 | }
|
---|
382 |
|
---|
383 | return (<f64>totalValue * <f64>1) / <f64>this.totalCount;
|
---|
384 | }
|
---|
385 |
|
---|
386 | computeStdDeviation(mean: f64): f64 {
|
---|
387 | if (this.totalCount === 0) {
|
---|
388 | return 0;
|
---|
389 | }
|
---|
390 | let geometric_deviation_total: f64 = 0.0;
|
---|
391 | this.recordedValuesIterator.reset();
|
---|
392 | while (this.recordedValuesIterator.hasNext()) {
|
---|
393 | const iterationValue = this.recordedValuesIterator.next();
|
---|
394 | const deviation =
|
---|
395 | <f64>this.medianEquivalentValue(iterationValue.valueIteratedTo) - mean;
|
---|
396 | geometric_deviation_total +=
|
---|
397 | deviation *
|
---|
398 | deviation *
|
---|
399 | <f64>iterationValue.countAddedInThisIterationStep;
|
---|
400 | }
|
---|
401 | const std_deviation = Math.sqrt(
|
---|
402 | geometric_deviation_total / <f64>this.totalCount
|
---|
403 | );
|
---|
404 | return std_deviation;
|
---|
405 | }
|
---|
406 |
|
---|
407 | /**
|
---|
408 | * Get the computed standard deviation of all recorded values in the histogram
|
---|
409 | *
|
---|
410 | * @return the standard deviation (in value units) of the histogram data
|
---|
411 | */
|
---|
412 | getStdDeviation(): f64 {
|
---|
413 | if (this.totalCount === 0) {
|
---|
414 | return 0;
|
---|
415 | }
|
---|
416 | const mean = this.getMean();
|
---|
417 | return this.computeStdDeviation(mean);
|
---|
418 | }
|
---|
419 |
|
---|
420 | private updatedMaxValue(value: u64): void {
|
---|
421 | const internalValue: u64 = value + this.unitMagnitudeMask;
|
---|
422 | this.maxValue = internalValue;
|
---|
423 | }
|
---|
424 |
|
---|
425 | private updateMinNonZeroValue(value: u64): void {
|
---|
426 | if (value <= this.unitMagnitudeMask) {
|
---|
427 | return;
|
---|
428 | }
|
---|
429 | const internalValue = value & ~this.unitMagnitudeMask; // Min unit-equivalent value;
|
---|
430 | this.minNonZeroValue = internalValue;
|
---|
431 | }
|
---|
432 |
|
---|
433 | updateMinAndMax(value: u64): void {
|
---|
434 | if (value > this.maxValue) {
|
---|
435 | this.updatedMaxValue(value);
|
---|
436 | }
|
---|
437 | if (value < this.minNonZeroValue && value !== 0) {
|
---|
438 | this.updateMinNonZeroValue(value);
|
---|
439 | }
|
---|
440 | }
|
---|
441 |
|
---|
442 | recordCountAtValue(count: u64, value: u64): void {
|
---|
443 | const countsIndex = this.countsArrayIndex(value);
|
---|
444 | if (countsIndex >= this.countsArrayLength) {
|
---|
445 | this.handleRecordException(count, value);
|
---|
446 | } else {
|
---|
447 | this.addToCountAtIndex(countsIndex, count);
|
---|
448 | }
|
---|
449 | this.updateMinAndMax(value);
|
---|
450 | this.totalCount += count;
|
---|
451 | }
|
---|
452 |
|
---|
453 | recordSingleValueWithExpectedInterval(
|
---|
454 | value: u64,
|
---|
455 | expectedIntervalBetweenValueSamples: u64
|
---|
456 | ): void {
|
---|
457 | this.recordSingleValue(value);
|
---|
458 | if (
|
---|
459 | value < expectedIntervalBetweenValueSamples ||
|
---|
460 | expectedIntervalBetweenValueSamples === 0
|
---|
461 | ) {
|
---|
462 | return;
|
---|
463 | }
|
---|
464 | for (
|
---|
465 | let missingValue = value - expectedIntervalBetweenValueSamples;
|
---|
466 | missingValue >= expectedIntervalBetweenValueSamples;
|
---|
467 | missingValue -= expectedIntervalBetweenValueSamples
|
---|
468 | ) {
|
---|
469 | this.recordSingleValue(missingValue);
|
---|
470 | }
|
---|
471 | }
|
---|
472 |
|
---|
473 | private recordValueWithCountAndExpectedInterval(
|
---|
474 | value: u64,
|
---|
475 | count: u64,
|
---|
476 | expectedIntervalBetweenValueSamples: u64
|
---|
477 | ): void {
|
---|
478 | this.recordCountAtValue(count, value);
|
---|
479 | if (
|
---|
480 | expectedIntervalBetweenValueSamples <= 0 ||
|
---|
481 | value <= expectedIntervalBetweenValueSamples
|
---|
482 | ) {
|
---|
483 | return;
|
---|
484 | }
|
---|
485 |
|
---|
486 | for (
|
---|
487 | let missingValue = value - expectedIntervalBetweenValueSamples;
|
---|
488 | missingValue >= expectedIntervalBetweenValueSamples;
|
---|
489 | missingValue -= expectedIntervalBetweenValueSamples
|
---|
490 | ) {
|
---|
491 | this.recordCountAtValue(count, missingValue);
|
---|
492 | }
|
---|
493 | }
|
---|
494 |
|
---|
495 | addWhileCorrectingForCoordinatedOmission(
|
---|
496 | otherHistogram: Histogram<T, U>,
|
---|
497 | expectedIntervalBetweenValueSamples: u64
|
---|
498 | ): void {
|
---|
499 | const toHistogram = this;
|
---|
500 |
|
---|
501 | const otherValues = new RecordedValuesIterator<T, U>(otherHistogram);
|
---|
502 |
|
---|
503 | while (otherValues.hasNext()) {
|
---|
504 | const v = otherValues.next();
|
---|
505 | toHistogram.recordValueWithCountAndExpectedInterval(
|
---|
506 | v.valueIteratedTo,
|
---|
507 | v.countAtValueIteratedTo,
|
---|
508 | expectedIntervalBetweenValueSamples
|
---|
509 | );
|
---|
510 | }
|
---|
511 | }
|
---|
512 |
|
---|
513 | copyCorrectedForCoordinatedOmission(
|
---|
514 | expectedIntervalBetweenValueSamples: u64
|
---|
515 | ): Histogram<T, U> {
|
---|
516 | const copy = new Histogram<T, U>(
|
---|
517 | this.lowestDiscernibleValue,
|
---|
518 | this.highestTrackableValue,
|
---|
519 | this.numberOfSignificantValueDigits
|
---|
520 | );
|
---|
521 | copy.addWhileCorrectingForCoordinatedOmission(
|
---|
522 | this,
|
---|
523 | expectedIntervalBetweenValueSamples
|
---|
524 | );
|
---|
525 | return copy;
|
---|
526 | }
|
---|
527 |
|
---|
528 | /**
|
---|
529 | * Get the value at a given percentile.
|
---|
530 | * When the given percentile is > 0.0, the value returned is the value that the given
|
---|
531 | * percentage of the overall recorded value entries in the histogram are either smaller than
|
---|
532 | * or equivalent to. When the given percentile is 0.0, the value returned is the value that all value
|
---|
533 | * entries in the histogram are either larger than or equivalent to.
|
---|
534 | * <p>
|
---|
535 | * Note that two values are "equivalent" in this statement if
|
---|
536 | * {@link org.HdrHistogram.AbstractHistogram#valuesAreEquivalent} would return true.
|
---|
537 | *
|
---|
538 | * @param percentile The percentile for which to return the associated value
|
---|
539 | * @return The value that the given percentage of the overall recorded value entries in the
|
---|
540 | * histogram are either smaller than or equivalent to. When the percentile is 0.0, returns the
|
---|
541 | * value that all value entries in the histogram are either larger than or equivalent to.
|
---|
542 | */
|
---|
543 | getValueAtPercentile(percentile: f64): u64 {
|
---|
544 | const requestedPercentile = min(percentile, <f64>100); // Truncate down to 100%
|
---|
545 |
|
---|
546 | // round count up to nearest integer, to ensure that the largest value that the requested percentile
|
---|
547 | // of overall recorded values is actually included. However, this must be done with care:
|
---|
548 | //
|
---|
549 | // First, Compute fp value for count at the requested percentile. Note that fp result end up
|
---|
550 | // being 1 ulp larger than the correct integer count for this percentile:
|
---|
551 | const fpCountAtPercentile =
|
---|
552 | (requestedPercentile / 100.0) * <f64>this.totalCount;
|
---|
553 | // Next, round up, but make sure to prevent <= 1 ulp inaccurancies in the above fp math from
|
---|
554 | // making us skip a count:
|
---|
555 | const countAtPercentile = <u64>max(
|
---|
556 | ceil(fpCountAtPercentile - ulp(fpCountAtPercentile)), // round up
|
---|
557 | 1 // Make sure we at least reach the first recorded entry
|
---|
558 | );
|
---|
559 |
|
---|
560 | let totalToCurrentIndex: u64 = 0;
|
---|
561 | for (let i = 0; i < this.countsArrayLength; i++) {
|
---|
562 | totalToCurrentIndex += this.getCountAtIndex(i);
|
---|
563 | if (totalToCurrentIndex >= countAtPercentile) {
|
---|
564 | var valueAtIndex: u64 = this.valueFromIndex(i);
|
---|
565 | return percentile === 0.0
|
---|
566 | ? this.lowestEquivalentValue(valueAtIndex)
|
---|
567 | : this.highestEquivalentValue(valueAtIndex);
|
---|
568 | }
|
---|
569 | }
|
---|
570 | return 0;
|
---|
571 | }
|
---|
572 |
|
---|
573 | valueFromIndexes(bucketIndex: i32, subBucketIndex: i32): u64 {
|
---|
574 | return (<u64>subBucketIndex) << (bucketIndex + this.unitMagnitude);
|
---|
575 | }
|
---|
576 |
|
---|
577 | valueFromIndex(index: i32): u64 {
|
---|
578 | let bucketIndex = (index >> this.subBucketHalfCountMagnitude) - 1;
|
---|
579 | let subBucketIndex =
|
---|
580 | (index & (this.subBucketHalfCount - 1)) + this.subBucketHalfCount;
|
---|
581 | if (bucketIndex < 0) {
|
---|
582 | subBucketIndex -= this.subBucketHalfCount;
|
---|
583 | bucketIndex = 0;
|
---|
584 | }
|
---|
585 | return this.valueFromIndexes(bucketIndex, subBucketIndex);
|
---|
586 | }
|
---|
587 |
|
---|
588 | incrementCountAtIndex(index: i32): void {
|
---|
589 | // @ts-ignore
|
---|
590 | const currentCount = unchecked(this.counts[index]);
|
---|
591 | const newCount = currentCount + 1;
|
---|
592 | if (newCount < 0) {
|
---|
593 | throw new Error(
|
---|
594 | newCount.toString() + " would overflow short integer count"
|
---|
595 | );
|
---|
596 | }
|
---|
597 | // @ts-ignore
|
---|
598 | unchecked((this.counts[index] = newCount));
|
---|
599 | }
|
---|
600 |
|
---|
601 | setCountAtIndex(index: i32, value: u64): void {
|
---|
602 | // @ts-ignore
|
---|
603 | unchecked((this.counts[index] = <U>value));
|
---|
604 | }
|
---|
605 |
|
---|
606 | addToCountAtIndex(index: i32, value: u64): void {
|
---|
607 | // @ts-ignore
|
---|
608 | const currentCount = unchecked(this.counts[index]);
|
---|
609 | const newCount = currentCount + value;
|
---|
610 | if (newCount < 0) {
|
---|
611 | throw newCount + " would overflow short integer count";
|
---|
612 | }
|
---|
613 | // @ts-ignore
|
---|
614 | unchecked((this.counts[index] = <U>newCount));
|
---|
615 | }
|
---|
616 |
|
---|
617 | incrementTotalCount(): void {
|
---|
618 | this.totalCount++;
|
---|
619 | }
|
---|
620 |
|
---|
621 | getCountAtIndex(index: i32): u64 {
|
---|
622 | // @ts-ignore
|
---|
623 | return unchecked(<u64>this.counts[index]);
|
---|
624 | }
|
---|
625 |
|
---|
626 | resize(newHighestTrackableValue: u64): void {
|
---|
627 | this.establishSize(newHighestTrackableValue);
|
---|
628 | // @ts-ignore
|
---|
629 | this.counts = this.counts.resize(this.countsArrayLength);
|
---|
630 | }
|
---|
631 |
|
---|
632 | add<V, W>(otherHistogram: Histogram<V, W>): void {
|
---|
633 | const highestRecordableValue = this.highestEquivalentValue(
|
---|
634 | this.valueFromIndex(this.countsArrayLength - 1)
|
---|
635 | );
|
---|
636 |
|
---|
637 | if (highestRecordableValue < otherHistogram.maxValue) {
|
---|
638 | if (!this.autoResize) {
|
---|
639 | throw new Error(
|
---|
640 | "The other histogram includes values that do not fit in this histogram's range."
|
---|
641 | );
|
---|
642 | }
|
---|
643 | this.resize(otherHistogram.maxValue);
|
---|
644 | }
|
---|
645 |
|
---|
646 | if (
|
---|
647 | this.bucketCount === otherHistogram.bucketCount &&
|
---|
648 | this.subBucketCount === otherHistogram.subBucketCount &&
|
---|
649 | this.unitMagnitude === otherHistogram.unitMagnitude
|
---|
650 | ) {
|
---|
651 | // Counts arrays are of the same length and meaning, so we can just iterate and add directly:
|
---|
652 | let observedOtherTotalCount = <u64>0;
|
---|
653 | for (let i = 0; i < otherHistogram.countsArrayLength; i++) {
|
---|
654 | const otherCount = otherHistogram.getCountAtIndex(i);
|
---|
655 | if (otherCount > 0) {
|
---|
656 | this.addToCountAtIndex(i, otherCount);
|
---|
657 | observedOtherTotalCount += otherCount;
|
---|
658 | }
|
---|
659 | }
|
---|
660 | this.totalCount += observedOtherTotalCount;
|
---|
661 | this.updatedMaxValue(max(this.maxValue, otherHistogram.maxValue));
|
---|
662 | this.updateMinNonZeroValue(
|
---|
663 | min(this.minNonZeroValue, otherHistogram.minNonZeroValue)
|
---|
664 | );
|
---|
665 | } else {
|
---|
666 | // Arrays are not a direct match (or the other could change on the fly in some valid way),
|
---|
667 | // so we can't just stream through and add them. Instead, go through the array and add each
|
---|
668 | // non-zero value found at it's proper value:
|
---|
669 |
|
---|
670 | // Do max value first, to avoid max value updates on each iteration:
|
---|
671 | const otherMaxIndex = otherHistogram.countsArrayIndex(
|
---|
672 | otherHistogram.maxValue
|
---|
673 | );
|
---|
674 | let otherCount = otherHistogram.getCountAtIndex(otherMaxIndex);
|
---|
675 | this.recordCountAtValue(
|
---|
676 | otherCount,
|
---|
677 | otherHistogram.valueFromIndex(otherMaxIndex)
|
---|
678 | );
|
---|
679 |
|
---|
680 | // Record the remaining values, up to but not including the max value:
|
---|
681 | for (let i = 0; i < otherMaxIndex; i++) {
|
---|
682 | otherCount = otherHistogram.getCountAtIndex(i);
|
---|
683 | if (otherCount > 0) {
|
---|
684 | this.recordCountAtValue(otherCount, otherHistogram.valueFromIndex(i));
|
---|
685 | }
|
---|
686 | }
|
---|
687 | }
|
---|
688 | this.startTimeStampMsec = min(
|
---|
689 | this.startTimeStampMsec,
|
---|
690 | otherHistogram.startTimeStampMsec
|
---|
691 | );
|
---|
692 | this.endTimeStampMsec = max(
|
---|
693 | this.endTimeStampMsec,
|
---|
694 | otherHistogram.endTimeStampMsec
|
---|
695 | );
|
---|
696 | }
|
---|
697 |
|
---|
698 | /**
|
---|
699 | * Get the count of recorded values at a specific value (to within the histogram resolution at the value level).
|
---|
700 | *
|
---|
701 | * @param value The value for which to provide the recorded count
|
---|
702 | * @return The total count of values recorded in the histogram within the value range that is
|
---|
703 | * {@literal >=} lowestEquivalentValue(<i>value</i>) and {@literal <=} highestEquivalentValue(<i>value</i>)
|
---|
704 | */
|
---|
705 | private getCountAtValue(value: u64): u64 {
|
---|
706 | const index = min(
|
---|
707 | max(0, this.countsArrayIndex(value)),
|
---|
708 | this.countsArrayLength - 1
|
---|
709 | );
|
---|
710 | return this.getCountAtIndex(index);
|
---|
711 | }
|
---|
712 |
|
---|
713 | establishInternalTackingValues(
|
---|
714 | lengthToCover: i32 = this.countsArrayLength
|
---|
715 | ): void {
|
---|
716 | this.maxValue = 0;
|
---|
717 | this.minNonZeroValue = u64.MAX_VALUE;
|
---|
718 | let maxIndex: i32 = -1;
|
---|
719 | let minNonZeroIndex = -1;
|
---|
720 | let observedTotalCount: u64 = 0;
|
---|
721 | for (let index: i32 = 0; index < lengthToCover; index++) {
|
---|
722 | const countAtIndex: u64 = this.getCountAtIndex(index);
|
---|
723 | if (countAtIndex > 0) {
|
---|
724 | observedTotalCount += countAtIndex;
|
---|
725 | maxIndex = index;
|
---|
726 | if (minNonZeroIndex == -1 && index != 0) {
|
---|
727 | minNonZeroIndex = index;
|
---|
728 | }
|
---|
729 | }
|
---|
730 | }
|
---|
731 | if (maxIndex >= 0) {
|
---|
732 | this.updatedMaxValue(
|
---|
733 | this.highestEquivalentValue(this.valueFromIndex(maxIndex))
|
---|
734 | );
|
---|
735 | }
|
---|
736 | if (minNonZeroIndex >= 0) {
|
---|
737 | this.updateMinNonZeroValue(this.valueFromIndex(minNonZeroIndex));
|
---|
738 | }
|
---|
739 | this.totalCount = observedTotalCount;
|
---|
740 | }
|
---|
741 |
|
---|
742 | subtract<V, W>(otherHistogram: Histogram<V, W>): void {
|
---|
743 | const highestRecordableValue = this.valueFromIndex(
|
---|
744 | this.countsArrayLength - 1
|
---|
745 | );
|
---|
746 | if (highestRecordableValue < otherHistogram.maxValue) {
|
---|
747 | if (!this.autoResize) {
|
---|
748 | throw new Error(
|
---|
749 | "The other histogram includes values that do not fit in this histogram's range."
|
---|
750 | );
|
---|
751 | }
|
---|
752 | this.resize(otherHistogram.maxValue);
|
---|
753 | }
|
---|
754 |
|
---|
755 | if (
|
---|
756 | this.bucketCount === otherHistogram.bucketCount &&
|
---|
757 | this.subBucketCount === otherHistogram.subBucketCount &&
|
---|
758 | this.unitMagnitude === otherHistogram.unitMagnitude
|
---|
759 | ) {
|
---|
760 | // optim
|
---|
761 | // Counts arrays are of the same length and meaning, so we can just iterate and add directly:
|
---|
762 | let observedOtherTotalCount: u64 = 0;
|
---|
763 | for (let i = 0; i < otherHistogram.countsArrayLength; i++) {
|
---|
764 | const otherCount = otherHistogram.getCountAtIndex(i);
|
---|
765 | if (otherCount > 0) {
|
---|
766 | this.addToCountAtIndex(i, -otherCount);
|
---|
767 | observedOtherTotalCount += otherCount;
|
---|
768 | }
|
---|
769 | }
|
---|
770 | this.totalCount = this.totalCount - observedOtherTotalCount;
|
---|
771 | } else {
|
---|
772 | for (let i = 0; i < otherHistogram.countsArrayLength; i++) {
|
---|
773 | const otherCount = otherHistogram.getCountAtIndex(i);
|
---|
774 | if (otherCount > 0) {
|
---|
775 | const otherValue = otherHistogram.valueFromIndex(i);
|
---|
776 | if (this.getCountAtValue(otherValue) < otherCount) {
|
---|
777 | throw new Error(
|
---|
778 | "otherHistogram count (" +
|
---|
779 | otherCount.toString() +
|
---|
780 | ") at value " +
|
---|
781 | otherValue.toString() +
|
---|
782 | " is larger than this one's (" +
|
---|
783 | this.getCountAtValue(otherValue).toString() +
|
---|
784 | ")"
|
---|
785 | );
|
---|
786 | }
|
---|
787 | this.recordCountAtValue(-otherCount, otherValue);
|
---|
788 | }
|
---|
789 | }
|
---|
790 | }
|
---|
791 | // With subtraction, the max and minNonZero values could have changed:
|
---|
792 | if (
|
---|
793 | this.getCountAtValue(this.maxValue) <= 0 ||
|
---|
794 | this.getCountAtValue(this.minNonZeroValue) <= 0
|
---|
795 | ) {
|
---|
796 | this.establishInternalTackingValues();
|
---|
797 | }
|
---|
798 | }
|
---|
799 |
|
---|
800 | /**
|
---|
801 | * Produce textual representation of the value distribution of histogram data by percentile. The distribution is
|
---|
802 | * output with exponentially increasing resolution, with each exponentially decreasing half-distance containing
|
---|
803 | * <i>dumpTicksPerHalf</i> percentile reporting tick points.
|
---|
804 | *
|
---|
805 | * @param printStream Stream into which the distribution will be output
|
---|
806 | * <p>
|
---|
807 | * @param percentileTicksPerHalfDistance The number of reporting points per exponentially decreasing half-distance
|
---|
808 | * <p>
|
---|
809 | * @param outputValueUnitScalingRatio The scaling factor by which to divide histogram recorded values units in
|
---|
810 | * output
|
---|
811 | * @param useCsvFormat Output in CSV format if true. Otherwise use plain text form.
|
---|
812 | */
|
---|
813 | outputPercentileDistribution(
|
---|
814 | percentileTicksPerHalfDistance: i32 = 5,
|
---|
815 | outputValueUnitScalingRatio: f64 = 1
|
---|
816 | ): string {
|
---|
817 | let result = "";
|
---|
818 | result += " Value Percentile TotalCount 1/(1-Percentile)\n\n";
|
---|
819 |
|
---|
820 | const iterator = this.percentileIterator;
|
---|
821 | iterator.reset(percentileTicksPerHalfDistance);
|
---|
822 |
|
---|
823 | const valueFormatter = new FloatFormatter(
|
---|
824 | 12,
|
---|
825 | this.numberOfSignificantValueDigits
|
---|
826 | );
|
---|
827 | const percentileFormatter = new FloatFormatter(2, 12);
|
---|
828 | const totalCountFormatter = new IntegerFormatter(10);
|
---|
829 | const lastFormatter = new FloatFormatter(14, 2);
|
---|
830 |
|
---|
831 | while (iterator.hasNext()) {
|
---|
832 | const iterationValue = iterator.next();
|
---|
833 | if (iterationValue.percentileLevelIteratedTo < 100) {
|
---|
834 | result +=
|
---|
835 | valueFormatter.format(
|
---|
836 | <f64>iterationValue.valueIteratedTo / outputValueUnitScalingRatio
|
---|
837 | ) +
|
---|
838 | " " +
|
---|
839 | percentileFormatter.format(
|
---|
840 | iterationValue.percentileLevelIteratedTo / <f64>100
|
---|
841 | ) +
|
---|
842 | " " +
|
---|
843 | totalCountFormatter.format(iterationValue.totalCountToThisValue) +
|
---|
844 | " " +
|
---|
845 | lastFormatter.format(
|
---|
846 | <f64>1 /
|
---|
847 | (<f64>1 - iterationValue.percentileLevelIteratedTo / <f64>100)
|
---|
848 | ) +
|
---|
849 | "\n";
|
---|
850 | } else {
|
---|
851 | result +=
|
---|
852 | valueFormatter.format(
|
---|
853 | <f64>iterationValue.valueIteratedTo / outputValueUnitScalingRatio
|
---|
854 | ) +
|
---|
855 | " " +
|
---|
856 | percentileFormatter.format(
|
---|
857 | iterationValue.percentileLevelIteratedTo / <f64>100
|
---|
858 | ) +
|
---|
859 | " " +
|
---|
860 | totalCountFormatter.format(iterationValue.totalCountToThisValue) +
|
---|
861 | "\n";
|
---|
862 | }
|
---|
863 | }
|
---|
864 |
|
---|
865 | // Calculate and output mean and std. deviation.
|
---|
866 | // Note: mean/std. deviation numbers are very often completely irrelevant when
|
---|
867 | // data is extremely non-normal in distribution (e.g. in cases of strong multi-modal
|
---|
868 | // response time distribution associated with GC pauses). However, reporting these numbers
|
---|
869 | // can be very useful for contrasting with the detailed percentile distribution
|
---|
870 | // reported by outputPercentileDistribution(). It is not at all surprising to find
|
---|
871 | // percentile distributions where results fall many tens or even hundreds of standard
|
---|
872 | // deviations away from the mean - such results simply indicate that the data sampled
|
---|
873 | // exhibits a very non-normal distribution, highlighting situations for which the std.
|
---|
874 | // deviation metric is a useless indicator.
|
---|
875 | //
|
---|
876 | const formatter = new FloatFormatter(
|
---|
877 | 12,
|
---|
878 | this.numberOfSignificantValueDigits
|
---|
879 | );
|
---|
880 | const _mean = this.getMean();
|
---|
881 | const mean = formatter.format(_mean / outputValueUnitScalingRatio);
|
---|
882 | const std_deviation = formatter.format(
|
---|
883 | this.computeStdDeviation(_mean) / outputValueUnitScalingRatio
|
---|
884 | );
|
---|
885 | const max = formatter.format(
|
---|
886 | <f64>this.maxValue / outputValueUnitScalingRatio
|
---|
887 | );
|
---|
888 | const intFormatter = new IntegerFormatter(12);
|
---|
889 | const totalCount = intFormatter.format(this.totalCount);
|
---|
890 | const bucketCount = intFormatter.format(this.bucketCount);
|
---|
891 | const subBucketCount = intFormatter.format(this.subBucketCount);
|
---|
892 | // #[Mean = 50.0,
|
---|
893 | // #[Mean = 50.000,
|
---|
894 | result +=
|
---|
895 | `#[Mean = ` +
|
---|
896 | mean.toString() +
|
---|
897 | `, StdDeviation = ` +
|
---|
898 | std_deviation.toString() +
|
---|
899 | `]
|
---|
900 | #[Max = ` +
|
---|
901 | max.toString() +
|
---|
902 | `, Total count = ` +
|
---|
903 | totalCount.toString() +
|
---|
904 | `]
|
---|
905 | #[Buckets = ` +
|
---|
906 | bucketCount.toString() +
|
---|
907 | `, SubBuckets = ` +
|
---|
908 | subBucketCount.toString() +
|
---|
909 | `]
|
---|
910 | `;
|
---|
911 |
|
---|
912 | return result;
|
---|
913 | }
|
---|
914 |
|
---|
915 | encode(): Uint8Array {
|
---|
916 | const buffer = ByteBuffer.allocate(1024);
|
---|
917 | encodeIntoByteBuffer(this, buffer);
|
---|
918 | return buffer.data.slice(0, buffer.position);
|
---|
919 | }
|
---|
920 |
|
---|
921 | public get estimatedFootprintInBytes(): i32 {
|
---|
922 | // @ts-ignore
|
---|
923 | return offsetof<Histogram<T, U>>() + this.counts.estimatedFootprintInBytes;
|
---|
924 | }
|
---|
925 |
|
---|
926 | clearCounts(): void {
|
---|
927 | // @ts-ignore
|
---|
928 | this.counts.clear();
|
---|
929 | }
|
---|
930 |
|
---|
931 | reset(): void {
|
---|
932 | this.clearCounts();
|
---|
933 | this.totalCount = 0;
|
---|
934 | this.startTimeStampMsec = 0;
|
---|
935 | this.endTimeStampMsec = 0;
|
---|
936 | //this.tag = NO_TAG;
|
---|
937 | this.maxValue = 0;
|
---|
938 | this.minNonZeroValue = U64.MAX_VALUE;
|
---|
939 | }
|
---|
940 | }
|
---|
941 |
|
---|
942 | export class Storage<T, U> {
|
---|
943 | [key: number]: number;
|
---|
944 | array: T;
|
---|
945 | constructor(size: i32) {
|
---|
946 | this.array = instantiate<T>(size);
|
---|
947 | }
|
---|
948 |
|
---|
949 | public get estimatedFootprintInBytes(): i32 {
|
---|
950 | // @ts-ignore
|
---|
951 | return offsetof<Storage<T, U>>() + this.array.byteLength;
|
---|
952 | }
|
---|
953 |
|
---|
954 | resize(newSize: i32): Storage<T, U> {
|
---|
955 | const newArray = new Storage<T, U>(newSize);
|
---|
956 | // @ts-ignore
|
---|
957 | newArray.array.set(this.array);
|
---|
958 | return newArray;
|
---|
959 | }
|
---|
960 |
|
---|
961 | clear(): void {
|
---|
962 | // @ts-ignore
|
---|
963 | this.array.fill(0);
|
---|
964 | }
|
---|
965 |
|
---|
966 | @operator("[]") private __get(index: i32): U {
|
---|
967 | // @ts-ignore
|
---|
968 | return unchecked(this.array[index]);
|
---|
969 | }
|
---|
970 |
|
---|
971 | @operator("[]=") private __set(index: i32, value: U): void {
|
---|
972 | // @ts-ignore
|
---|
973 | unchecked((this.array[index] = value));
|
---|
974 | }
|
---|
975 | }
|
---|
976 |
|
---|
977 | export type Uint8Storage = Storage<Uint8Array, u8>;
|
---|
978 | export type Uint16Storage = Storage<Uint16Array, u16>;
|
---|
979 | export type Uint32Storage = Storage<Uint32Array, u32>;
|
---|
980 | export type Uint64Storage = Storage<Uint64Array, u64>;
|
---|
981 |
|
---|
982 | export class Histogram8 extends Histogram<Uint8Storage, u8> {}
|
---|
983 | export class Histogram16 extends Histogram<Uint16Storage, u16> {}
|
---|
984 | export class Histogram32 extends Histogram<Uint32Storage, u32> {}
|
---|
985 | export class Histogram64 extends Histogram<Uint64Storage, u64> {}
|
---|
986 | export class PackedHistogram extends Histogram<PackedArray, u64> {}
|
---|