1 | /*
|
---|
2 | * This is a TypeScript port of the original Java version, which was written by
|
---|
3 | * Gil Tene as described in
|
---|
4 | * https://github.com/HdrHistogram/HdrHistogram
|
---|
5 | * and released to the public domain, as explained at
|
---|
6 | * http://creativecommons.org/publicdomain/zero/1.0/
|
---|
7 | */
|
---|
8 | import RecordedValuesIterator from "./RecordedValuesIterator";
|
---|
9 | import PercentileIterator from "./PercentileIterator";
|
---|
10 | import HistogramIterationValue from "./HistogramIterationValue";
|
---|
11 | import { integerFormatter, floatFormatter } from "./formatters";
|
---|
12 | import ulp from "./ulp";
|
---|
13 | import Histogram, { NO_TAG, toSummary, HistogramSummary } from "./Histogram";
|
---|
14 |
|
---|
15 | const { pow, floor, ceil, log2, max, min } = Math;
|
---|
16 |
|
---|
17 | export abstract class JsHistogram implements Histogram {
|
---|
18 | static identityBuilder: number;
|
---|
19 |
|
---|
20 | identity: number;
|
---|
21 | autoResize: boolean = false;
|
---|
22 |
|
---|
23 | highestTrackableValue: number;
|
---|
24 | lowestDiscernibleValue: number;
|
---|
25 | numberOfSignificantValueDigits: number;
|
---|
26 |
|
---|
27 | bucketCount: number;
|
---|
28 | /**
|
---|
29 | * Power-of-two length of linearly scaled array slots in the counts array. Long enough to hold the first sequence of
|
---|
30 | * entries that must be distinguished by a single unit (determined by configured precision).
|
---|
31 | */
|
---|
32 | subBucketCount: number;
|
---|
33 | countsArrayLength: number;
|
---|
34 | wordSizeInBytes: number;
|
---|
35 |
|
---|
36 | startTimeStampMsec: number = Number.MAX_SAFE_INTEGER;
|
---|
37 | endTimeStampMsec: number = 0;
|
---|
38 | tag: string = NO_TAG;
|
---|
39 |
|
---|
40 | percentileIterator: PercentileIterator;
|
---|
41 | recordedValuesIterator: RecordedValuesIterator;
|
---|
42 |
|
---|
43 | // "Hot" accessed fields (used in the the value recording code path) are bunched here, such
|
---|
44 | // that they will have a good chance of ending up in the same cache line as the totalCounts and
|
---|
45 | // counts array reference fields that subclass implementations will typically add.
|
---|
46 |
|
---|
47 | /**
|
---|
48 | * Number of leading zeros in the largest value that can fit in bucket 0.
|
---|
49 | */
|
---|
50 | leadingZeroCountBase: number;
|
---|
51 | subBucketHalfCountMagnitude: number;
|
---|
52 | /**
|
---|
53 | * Largest k such that 2^k <= lowestDiscernibleValue
|
---|
54 | */
|
---|
55 | unitMagnitude: number;
|
---|
56 | subBucketHalfCount: number;
|
---|
57 |
|
---|
58 | lowestDiscernibleValueRounded: number;
|
---|
59 |
|
---|
60 | /**
|
---|
61 | * Biggest value that can fit in bucket 0
|
---|
62 | */
|
---|
63 | subBucketMask: number;
|
---|
64 | /**
|
---|
65 | * Lowest unitMagnitude bits are set
|
---|
66 | */
|
---|
67 | unitMagnitudeMask: number;
|
---|
68 |
|
---|
69 | maxValue: number = 0;
|
---|
70 | minNonZeroValue: number = Number.MAX_SAFE_INTEGER;
|
---|
71 |
|
---|
72 | _totalCount: number;
|
---|
73 |
|
---|
74 | incrementTotalCount() {
|
---|
75 | this._totalCount++;
|
---|
76 | }
|
---|
77 |
|
---|
78 | addToTotalCount(value: number) {
|
---|
79 | this._totalCount += value;
|
---|
80 | }
|
---|
81 |
|
---|
82 | setTotalCount(value: number) {
|
---|
83 | this._totalCount = value;
|
---|
84 | }
|
---|
85 |
|
---|
86 | /**
|
---|
87 | * Get the total count of all recorded values in the histogram
|
---|
88 | * @return the total count of all recorded values in the histogram
|
---|
89 | */
|
---|
90 | get totalCount() {
|
---|
91 | return this._totalCount;
|
---|
92 | }
|
---|
93 |
|
---|
94 | //
|
---|
95 | //
|
---|
96 | //
|
---|
97 | // Abstract, counts-type dependent methods to be provided by subclass implementations:
|
---|
98 | //
|
---|
99 | //
|
---|
100 | //
|
---|
101 |
|
---|
102 | abstract getCountAtIndex(index: number): number;
|
---|
103 |
|
---|
104 | abstract incrementCountAtIndex(index: number): void;
|
---|
105 |
|
---|
106 | abstract addToCountAtIndex(index: number, value: number): void;
|
---|
107 |
|
---|
108 | abstract setCountAtIndex(index: number, value: number): void;
|
---|
109 |
|
---|
110 | abstract clearCounts(): void;
|
---|
111 |
|
---|
112 | protected abstract _getEstimatedFootprintInBytes(): number;
|
---|
113 |
|
---|
114 | abstract resize(newHighestTrackableValue: number): void;
|
---|
115 |
|
---|
116 | private updatedMaxValue(value: number): void {
|
---|
117 | const internalValue: number = value + this.unitMagnitudeMask;
|
---|
118 | this.maxValue = internalValue;
|
---|
119 | }
|
---|
120 |
|
---|
121 | private updateMinNonZeroValue(value: number): void {
|
---|
122 | if (value <= this.unitMagnitudeMask) {
|
---|
123 | return;
|
---|
124 | }
|
---|
125 | const internalValue =
|
---|
126 | floor(value / this.lowestDiscernibleValueRounded) *
|
---|
127 | this.lowestDiscernibleValueRounded;
|
---|
128 | this.minNonZeroValue = internalValue;
|
---|
129 | }
|
---|
130 |
|
---|
131 | constructor(
|
---|
132 | lowestDiscernibleValue: number,
|
---|
133 | highestTrackableValue: number,
|
---|
134 | numberOfSignificantValueDigits: number
|
---|
135 | ) {
|
---|
136 | this.identity = 0;
|
---|
137 | this.highestTrackableValue = 0;
|
---|
138 | this.lowestDiscernibleValue = 0;
|
---|
139 | this.numberOfSignificantValueDigits = 0;
|
---|
140 | this.bucketCount = 0;
|
---|
141 | this.subBucketCount = 0;
|
---|
142 | this.countsArrayLength = 0;
|
---|
143 | this.wordSizeInBytes = 0;
|
---|
144 | // Verify argument validity
|
---|
145 | if (lowestDiscernibleValue < 1) {
|
---|
146 | throw new Error("lowestDiscernibleValue must be >= 1");
|
---|
147 | }
|
---|
148 | if (highestTrackableValue < 2 * lowestDiscernibleValue) {
|
---|
149 | throw new Error(
|
---|
150 | `highestTrackableValue must be >= 2 * lowestDiscernibleValue ( 2 * ${lowestDiscernibleValue} )`
|
---|
151 | );
|
---|
152 | }
|
---|
153 | if (
|
---|
154 | numberOfSignificantValueDigits < 0 ||
|
---|
155 | numberOfSignificantValueDigits > 5
|
---|
156 | ) {
|
---|
157 | throw new Error("numberOfSignificantValueDigits must be between 0 and 5");
|
---|
158 | }
|
---|
159 | this.identity = JsHistogram.identityBuilder++;
|
---|
160 |
|
---|
161 | this.init(
|
---|
162 | lowestDiscernibleValue,
|
---|
163 | highestTrackableValue,
|
---|
164 | numberOfSignificantValueDigits
|
---|
165 | );
|
---|
166 | }
|
---|
167 |
|
---|
168 | init(
|
---|
169 | lowestDiscernibleValue: number,
|
---|
170 | highestTrackableValue: number,
|
---|
171 | numberOfSignificantValueDigits: number
|
---|
172 | ) {
|
---|
173 | this.lowestDiscernibleValue = lowestDiscernibleValue;
|
---|
174 | this.highestTrackableValue = highestTrackableValue;
|
---|
175 | this.numberOfSignificantValueDigits = numberOfSignificantValueDigits;
|
---|
176 |
|
---|
177 | /*
|
---|
178 | * Given a 3 decimal point accuracy, the expectation is obviously for "+/- 1 unit at 1000". It also means that
|
---|
179 | * it's "ok to be +/- 2 units at 2000". The "tricky" thing is that it is NOT ok to be +/- 2 units at 1999. Only
|
---|
180 | * starting at 2000. So internally, we need to maintain single unit resolution to 2x 10^decimalPoints.
|
---|
181 | */
|
---|
182 | const largestValueWithSingleUnitResolution =
|
---|
183 | 2 * floor(pow(10, numberOfSignificantValueDigits));
|
---|
184 |
|
---|
185 | this.unitMagnitude = floor(log2(lowestDiscernibleValue));
|
---|
186 |
|
---|
187 | this.lowestDiscernibleValueRounded = pow(2, this.unitMagnitude);
|
---|
188 | this.unitMagnitudeMask = this.lowestDiscernibleValueRounded - 1;
|
---|
189 |
|
---|
190 | // We need to maintain power-of-two subBucketCount (for clean direct indexing) that is large enough to
|
---|
191 | // provide unit resolution to at least largestValueWithSingleUnitResolution. So figure out
|
---|
192 | // largestValueWithSingleUnitResolution's nearest power-of-two (rounded up), and use that:
|
---|
193 | const subBucketCountMagnitude = ceil(
|
---|
194 | log2(largestValueWithSingleUnitResolution)
|
---|
195 | );
|
---|
196 | this.subBucketHalfCountMagnitude =
|
---|
197 | (subBucketCountMagnitude > 1 ? subBucketCountMagnitude : 1) - 1;
|
---|
198 | this.subBucketCount = pow(2, this.subBucketHalfCountMagnitude + 1);
|
---|
199 | this.subBucketHalfCount = this.subBucketCount / 2;
|
---|
200 | this.subBucketMask =
|
---|
201 | (floor(this.subBucketCount) - 1) * pow(2, this.unitMagnitude);
|
---|
202 |
|
---|
203 | this.establishSize(highestTrackableValue);
|
---|
204 |
|
---|
205 | this.leadingZeroCountBase =
|
---|
206 | 53 - this.unitMagnitude - this.subBucketHalfCountMagnitude - 1;
|
---|
207 | this.percentileIterator = new PercentileIterator(this, 1);
|
---|
208 | this.recordedValuesIterator = new RecordedValuesIterator(this);
|
---|
209 | }
|
---|
210 |
|
---|
211 | /**
|
---|
212 | * The buckets (each of which has subBucketCount sub-buckets, here assumed to be 2048 as an example) overlap:
|
---|
213 | *
|
---|
214 | * <pre>
|
---|
215 | * The 0'th bucket covers from 0...2047 in multiples of 1, using all 2048 sub-buckets
|
---|
216 | * The 1'th bucket covers from 2048..4097 in multiples of 2, using only the top 1024 sub-buckets
|
---|
217 | * The 2'th bucket covers from 4096..8191 in multiple of 4, using only the top 1024 sub-buckets
|
---|
218 | * ...
|
---|
219 | * </pre>
|
---|
220 | *
|
---|
221 | * Bucket 0 is "special" here. It is the only one that has 2048 entries. All the rest have 1024 entries (because
|
---|
222 | * their bottom half overlaps with and is already covered by the all of the previous buckets put together). In other
|
---|
223 | * words, the k'th bucket could represent 0 * 2^k to 2048 * 2^k in 2048 buckets with 2^k precision, but the midpoint
|
---|
224 | * of 1024 * 2^k = 2048 * 2^(k-1) = the k-1'th bucket's end, so we would use the previous bucket for those lower
|
---|
225 | * values as it has better precision.
|
---|
226 | */
|
---|
227 | establishSize(newHighestTrackableValue: number): void {
|
---|
228 | // establish counts array length:
|
---|
229 | this.countsArrayLength = this.determineArrayLengthNeeded(
|
---|
230 | newHighestTrackableValue
|
---|
231 | );
|
---|
232 | // establish exponent range needed to support the trackable value with no overflow:
|
---|
233 | this.bucketCount = this.getBucketsNeededToCoverValue(
|
---|
234 | newHighestTrackableValue
|
---|
235 | );
|
---|
236 | // establish the new highest trackable value:
|
---|
237 | this.highestTrackableValue = newHighestTrackableValue;
|
---|
238 | }
|
---|
239 |
|
---|
240 | determineArrayLengthNeeded(highestTrackableValue: number): number {
|
---|
241 | if (highestTrackableValue < 2 * this.lowestDiscernibleValue) {
|
---|
242 | throw new Error(
|
---|
243 | "highestTrackableValue (" +
|
---|
244 | highestTrackableValue +
|
---|
245 | ") cannot be < (2 * lowestDiscernibleValue)"
|
---|
246 | );
|
---|
247 | }
|
---|
248 | //determine counts array length needed:
|
---|
249 | const countsArrayLength = this.getLengthForNumberOfBuckets(
|
---|
250 | this.getBucketsNeededToCoverValue(highestTrackableValue)
|
---|
251 | );
|
---|
252 | return countsArrayLength;
|
---|
253 | }
|
---|
254 |
|
---|
255 | /**
|
---|
256 | * If we have N such that subBucketCount * 2^N > max value, we need storage for N+1 buckets, each with enough
|
---|
257 | * slots to hold the top half of the subBucketCount (the lower half is covered by previous buckets), and the +1
|
---|
258 | * being used for the lower half of the 0'th bucket. Or, equivalently, we need 1 more bucket to capture the max
|
---|
259 | * value if we consider the sub-bucket length to be halved.
|
---|
260 | */
|
---|
261 | getLengthForNumberOfBuckets(numberOfBuckets: number): number {
|
---|
262 | const lengthNeeded: number =
|
---|
263 | (numberOfBuckets + 1) * (this.subBucketCount / 2);
|
---|
264 | return lengthNeeded;
|
---|
265 | }
|
---|
266 |
|
---|
267 | getBucketsNeededToCoverValue(value: number): number {
|
---|
268 | // the k'th bucket can express from 0 * 2^k to subBucketCount * 2^k in units of 2^k
|
---|
269 | let smallestUntrackableValue =
|
---|
270 | this.subBucketCount * pow(2, this.unitMagnitude);
|
---|
271 | // always have at least 1 bucket
|
---|
272 | let bucketsNeeded = 1;
|
---|
273 | while (smallestUntrackableValue <= value) {
|
---|
274 | if (smallestUntrackableValue > Number.MAX_SAFE_INTEGER / 2) {
|
---|
275 | // TODO check array max size in JavaScript
|
---|
276 | // next shift will overflow, meaning that bucket could represent values up to ones greater than
|
---|
277 | // Number.MAX_SAFE_INTEGER, so it's the last bucket
|
---|
278 | return bucketsNeeded + 1;
|
---|
279 | }
|
---|
280 | smallestUntrackableValue = smallestUntrackableValue * 2;
|
---|
281 | bucketsNeeded++;
|
---|
282 | }
|
---|
283 | return bucketsNeeded;
|
---|
284 | }
|
---|
285 |
|
---|
286 | /**
|
---|
287 | * Record a value in the histogram
|
---|
288 | *
|
---|
289 | * @param value The value to be recorded
|
---|
290 | * @throws may throw Error if value is exceeds highestTrackableValue
|
---|
291 | */
|
---|
292 | recordValue(value: number) {
|
---|
293 | this.recordSingleValue(value);
|
---|
294 | }
|
---|
295 |
|
---|
296 | recordSingleValue(value: number) {
|
---|
297 | const countsIndex = this.countsArrayIndex(value);
|
---|
298 | if (countsIndex >= this.countsArrayLength) {
|
---|
299 | this.handleRecordException(1, value);
|
---|
300 | } else {
|
---|
301 | this.incrementCountAtIndex(countsIndex);
|
---|
302 | }
|
---|
303 | this.updateMinAndMax(value);
|
---|
304 | this.incrementTotalCount();
|
---|
305 | }
|
---|
306 |
|
---|
307 | handleRecordException(count: number, value: number) {
|
---|
308 | if (!this.autoResize) {
|
---|
309 | throw new Error(
|
---|
310 | "Value " + value + " is outside of histogram covered range"
|
---|
311 | );
|
---|
312 | }
|
---|
313 | this.resize(value);
|
---|
314 | var countsIndex: number = this.countsArrayIndex(value);
|
---|
315 | this.addToCountAtIndex(countsIndex, count);
|
---|
316 | this.highestTrackableValue = this.highestEquivalentValue(
|
---|
317 | this.valueFromIndex(this.countsArrayLength - 1)
|
---|
318 | );
|
---|
319 | }
|
---|
320 |
|
---|
321 | countsArrayIndex(value: number): number {
|
---|
322 | if (value < 0) {
|
---|
323 | throw new Error("Histogram recorded value cannot be negative.");
|
---|
324 | }
|
---|
325 | const bucketIndex = this.getBucketIndex(value);
|
---|
326 | const subBucketIndex = this.getSubBucketIndex(value, bucketIndex);
|
---|
327 | return this.computeCountsArrayIndex(bucketIndex, subBucketIndex);
|
---|
328 | }
|
---|
329 |
|
---|
330 | private computeCountsArrayIndex(bucketIndex: number, subBucketIndex: number) {
|
---|
331 | // TODO
|
---|
332 | //assert(subBucketIndex < subBucketCount);
|
---|
333 | //assert(bucketIndex == 0 || (subBucketIndex >= subBucketHalfCount));
|
---|
334 |
|
---|
335 | // Calculate the index for the first entry that will be used in the bucket (halfway through subBucketCount).
|
---|
336 | // For bucketIndex 0, all subBucketCount entries may be used, but bucketBaseIndex is still set in the middle.
|
---|
337 | const bucketBaseIndex =
|
---|
338 | (bucketIndex + 1) * pow(2, this.subBucketHalfCountMagnitude);
|
---|
339 | // Calculate the offset in the bucket. This subtraction will result in a positive value in all buckets except
|
---|
340 | // the 0th bucket (since a value in that bucket may be less than half the bucket's 0 to subBucketCount range).
|
---|
341 | // However, this works out since we give bucket 0 twice as much space.
|
---|
342 | const offsetInBucket = subBucketIndex - this.subBucketHalfCount;
|
---|
343 | // The following is the equivalent of ((subBucketIndex - subBucketHalfCount) + bucketBaseIndex;
|
---|
344 | return bucketBaseIndex + offsetInBucket;
|
---|
345 | }
|
---|
346 |
|
---|
347 | /**
|
---|
348 | * @return the lowest (and therefore highest precision) bucket index that can represent the value
|
---|
349 | */
|
---|
350 | getBucketIndex(value: number) {
|
---|
351 | // Calculates the number of powers of two by which the value is greater than the biggest value that fits in
|
---|
352 | // bucket 0. This is the bucket index since each successive bucket can hold a value 2x greater.
|
---|
353 | // The mask maps small values to bucket 0.
|
---|
354 |
|
---|
355 | // return this.leadingZeroCountBase - Long.numberOfLeadingZeros(value | subBucketMask);
|
---|
356 | return max(
|
---|
357 | floor(log2(value)) -
|
---|
358 | this.subBucketHalfCountMagnitude -
|
---|
359 | this.unitMagnitude,
|
---|
360 | 0
|
---|
361 | );
|
---|
362 | }
|
---|
363 |
|
---|
364 | getSubBucketIndex(value: number, bucketIndex: number) {
|
---|
365 | // For bucketIndex 0, this is just value, so it may be anywhere in 0 to subBucketCount.
|
---|
366 | // For other bucketIndex, this will always end up in the top half of subBucketCount: assume that for some bucket
|
---|
367 | // k > 0, this calculation will yield a value in the bottom half of 0 to subBucketCount. Then, because of how
|
---|
368 | // buckets overlap, it would have also been in the top half of bucket k-1, and therefore would have
|
---|
369 | // returned k-1 in getBucketIndex(). Since we would then shift it one fewer bits here, it would be twice as big,
|
---|
370 | // and therefore in the top half of subBucketCount.
|
---|
371 | return floor(value / pow(2, bucketIndex + this.unitMagnitude));
|
---|
372 | }
|
---|
373 |
|
---|
374 | updateMinAndMax(value: number) {
|
---|
375 | if (value > this.maxValue) {
|
---|
376 | this.updatedMaxValue(value);
|
---|
377 | }
|
---|
378 | if (value < this.minNonZeroValue && value !== 0) {
|
---|
379 | this.updateMinNonZeroValue(value);
|
---|
380 | }
|
---|
381 | }
|
---|
382 |
|
---|
383 | /**
|
---|
384 | * Get the value at a given percentile.
|
---|
385 | * When the given percentile is > 0.0, the value returned is the value that the given
|
---|
386 | * percentage of the overall recorded value entries in the histogram are either smaller than
|
---|
387 | * or equivalent to. When the given percentile is 0.0, the value returned is the value that all value
|
---|
388 | * entries in the histogram are either larger than or equivalent to.
|
---|
389 | * <p>
|
---|
390 | * Note that two values are "equivalent" in this statement if
|
---|
391 | * {@link org.HdrHistogram.JsHistogram#valuesAreEquivalent} would return true.
|
---|
392 | *
|
---|
393 | * @param percentile The percentile for which to return the associated value
|
---|
394 | * @return The value that the given percentage of the overall recorded value entries in the
|
---|
395 | * histogram are either smaller than or equivalent to. When the percentile is 0.0, returns the
|
---|
396 | * value that all value entries in the histogram are either larger than or equivalent to.
|
---|
397 | */
|
---|
398 | getValueAtPercentile(percentile: number) {
|
---|
399 | const requestedPercentile = min(percentile, 100); // Truncate down to 100%
|
---|
400 |
|
---|
401 | // round count up to nearest integer, to ensure that the largest value that the requested percentile
|
---|
402 | // of overall recorded values is actually included. However, this must be done with care:
|
---|
403 | //
|
---|
404 | // First, Compute fp value for count at the requested percentile. Note that fp result end up
|
---|
405 | // being 1 ulp larger than the correct integer count for this percentile:
|
---|
406 | const fpCountAtPercentile = (requestedPercentile / 100.0) * this.totalCount;
|
---|
407 | // Next, round up, but make sure to prevent <= 1 ulp inaccurancies in the above fp math from
|
---|
408 | // making us skip a count:
|
---|
409 | const countAtPercentile = max(
|
---|
410 | ceil(fpCountAtPercentile - ulp(fpCountAtPercentile)), // round up
|
---|
411 | 1 // Make sure we at least reach the first recorded entry
|
---|
412 | );
|
---|
413 |
|
---|
414 | let totalToCurrentIndex = 0;
|
---|
415 | for (let i = 0; i < this.countsArrayLength; i++) {
|
---|
416 | totalToCurrentIndex += this.getCountAtIndex(i);
|
---|
417 | if (totalToCurrentIndex >= countAtPercentile) {
|
---|
418 | var valueAtIndex: number = this.valueFromIndex(i);
|
---|
419 | return percentile === 0.0
|
---|
420 | ? this.lowestEquivalentValue(valueAtIndex)
|
---|
421 | : this.highestEquivalentValue(valueAtIndex);
|
---|
422 | }
|
---|
423 | }
|
---|
424 | return 0;
|
---|
425 | }
|
---|
426 |
|
---|
427 | valueFromIndexes(bucketIndex: number, subBucketIndex: number) {
|
---|
428 | return subBucketIndex * pow(2, bucketIndex + this.unitMagnitude);
|
---|
429 | }
|
---|
430 |
|
---|
431 | valueFromIndex(index: number) {
|
---|
432 | let bucketIndex = floor(index / this.subBucketHalfCount) - 1;
|
---|
433 | let subBucketIndex =
|
---|
434 | (index % this.subBucketHalfCount) + this.subBucketHalfCount;
|
---|
435 | if (bucketIndex < 0) {
|
---|
436 | subBucketIndex -= this.subBucketHalfCount;
|
---|
437 | bucketIndex = 0;
|
---|
438 | }
|
---|
439 | return this.valueFromIndexes(bucketIndex, subBucketIndex);
|
---|
440 | }
|
---|
441 |
|
---|
442 | /**
|
---|
443 | * Get the lowest value that is equivalent to the given value within the histogram's resolution.
|
---|
444 | * Where "equivalent" means that value samples recorded for any two
|
---|
445 | * equivalent values are counted in a common total count.
|
---|
446 | *
|
---|
447 | * @param value The given value
|
---|
448 | * @return The lowest value that is equivalent to the given value within the histogram's resolution.
|
---|
449 | */
|
---|
450 | lowestEquivalentValue(value: number) {
|
---|
451 | const bucketIndex = this.getBucketIndex(value);
|
---|
452 | const subBucketIndex = this.getSubBucketIndex(value, bucketIndex);
|
---|
453 | const thisValueBaseLevel = this.valueFromIndexes(
|
---|
454 | bucketIndex,
|
---|
455 | subBucketIndex
|
---|
456 | );
|
---|
457 | return thisValueBaseLevel;
|
---|
458 | }
|
---|
459 |
|
---|
460 | /**
|
---|
461 | * Get the highest value that is equivalent to the given value within the histogram's resolution.
|
---|
462 | * Where "equivalent" means that value samples recorded for any two
|
---|
463 | * equivalent values are counted in a common total count.
|
---|
464 | *
|
---|
465 | * @param value The given value
|
---|
466 | * @return The highest value that is equivalent to the given value within the histogram's resolution.
|
---|
467 | */
|
---|
468 | highestEquivalentValue(value: number) {
|
---|
469 | return this.nextNonEquivalentValue(value) - 1;
|
---|
470 | }
|
---|
471 |
|
---|
472 | /**
|
---|
473 | * Get the next value that is not equivalent to the given value within the histogram's resolution.
|
---|
474 | * Where "equivalent" means that value samples recorded for any two
|
---|
475 | * equivalent values are counted in a common total count.
|
---|
476 | *
|
---|
477 | * @param value The given value
|
---|
478 | * @return The next value that is not equivalent to the given value within the histogram's resolution.
|
---|
479 | */
|
---|
480 | nextNonEquivalentValue(value: number) {
|
---|
481 | return (
|
---|
482 | this.lowestEquivalentValue(value) + this.sizeOfEquivalentValueRange(value)
|
---|
483 | );
|
---|
484 | }
|
---|
485 |
|
---|
486 | /**
|
---|
487 | * Get the size (in value units) of the range of values that are equivalent to the given value within the
|
---|
488 | * histogram's resolution. Where "equivalent" means that value samples recorded for any two
|
---|
489 | * equivalent values are counted in a common total count.
|
---|
490 | *
|
---|
491 | * @param value The given value
|
---|
492 | * @return The size of the range of values equivalent to the given value.
|
---|
493 | */
|
---|
494 | sizeOfEquivalentValueRange(value: number) {
|
---|
495 | const bucketIndex = this.getBucketIndex(value);
|
---|
496 | const subBucketIndex = this.getSubBucketIndex(value, bucketIndex);
|
---|
497 | const distanceToNextValue = pow(
|
---|
498 | 2,
|
---|
499 | this.unitMagnitude +
|
---|
500 | (subBucketIndex >= this.subBucketCount ? bucketIndex + 1 : bucketIndex)
|
---|
501 | );
|
---|
502 | return distanceToNextValue;
|
---|
503 | }
|
---|
504 |
|
---|
505 | /**
|
---|
506 | * Get a value that lies in the middle (rounded up) of the range of values equivalent the given value.
|
---|
507 | * Where "equivalent" means that value samples recorded for any two
|
---|
508 | * equivalent values are counted in a common total count.
|
---|
509 | *
|
---|
510 | * @param value The given value
|
---|
511 | * @return The value lies in the middle (rounded up) of the range of values equivalent the given value.
|
---|
512 | */
|
---|
513 | medianEquivalentValue(value: number) {
|
---|
514 | return (
|
---|
515 | this.lowestEquivalentValue(value) +
|
---|
516 | floor(this.sizeOfEquivalentValueRange(value) / 2)
|
---|
517 | );
|
---|
518 | }
|
---|
519 |
|
---|
520 | /**
|
---|
521 | * Get the computed mean value of all recorded values in the histogram
|
---|
522 | *
|
---|
523 | * @return the mean value (in value units) of the histogram data
|
---|
524 | */
|
---|
525 | get mean() {
|
---|
526 | if (this.totalCount === 0) {
|
---|
527 | return 0;
|
---|
528 | }
|
---|
529 | this.recordedValuesIterator.reset();
|
---|
530 | let totalValue = 0;
|
---|
531 | while (this.recordedValuesIterator.hasNext()) {
|
---|
532 | const iterationValue = this.recordedValuesIterator.next();
|
---|
533 | totalValue +=
|
---|
534 | this.medianEquivalentValue(iterationValue.valueIteratedTo) *
|
---|
535 | iterationValue.countAtValueIteratedTo;
|
---|
536 | }
|
---|
537 | return totalValue / this.totalCount;
|
---|
538 | }
|
---|
539 |
|
---|
540 | private getStdDeviation(mean: number = this.mean) {
|
---|
541 | if (this.totalCount === 0) {
|
---|
542 | return 0;
|
---|
543 | }
|
---|
544 | let geometric_deviation_total = 0.0;
|
---|
545 | this.recordedValuesIterator.reset();
|
---|
546 | while (this.recordedValuesIterator.hasNext()) {
|
---|
547 | const iterationValue = this.recordedValuesIterator.next();
|
---|
548 | const deviation =
|
---|
549 | this.medianEquivalentValue(iterationValue.valueIteratedTo) - mean;
|
---|
550 | geometric_deviation_total +=
|
---|
551 | deviation * deviation * iterationValue.countAddedInThisIterationStep;
|
---|
552 | }
|
---|
553 | const std_deviation = Math.sqrt(
|
---|
554 | geometric_deviation_total / this.totalCount
|
---|
555 | );
|
---|
556 | return std_deviation;
|
---|
557 | }
|
---|
558 |
|
---|
559 | /**
|
---|
560 | * Get the computed standard deviation of all recorded values in the histogram
|
---|
561 | *
|
---|
562 | * @return the standard deviation (in value units) of the histogram data
|
---|
563 | */
|
---|
564 | get stdDeviation() {
|
---|
565 | if (this.totalCount === 0) {
|
---|
566 | return 0;
|
---|
567 | }
|
---|
568 | const mean = this.mean;
|
---|
569 | let geometric_deviation_total = 0.0;
|
---|
570 | this.recordedValuesIterator.reset();
|
---|
571 | while (this.recordedValuesIterator.hasNext()) {
|
---|
572 | const iterationValue = this.recordedValuesIterator.next();
|
---|
573 | const deviation =
|
---|
574 | this.medianEquivalentValue(iterationValue.valueIteratedTo) - mean;
|
---|
575 | geometric_deviation_total +=
|
---|
576 | deviation * deviation * iterationValue.countAddedInThisIterationStep;
|
---|
577 | }
|
---|
578 | const std_deviation = Math.sqrt(
|
---|
579 | geometric_deviation_total / this.totalCount
|
---|
580 | );
|
---|
581 | return std_deviation;
|
---|
582 | }
|
---|
583 |
|
---|
584 | /**
|
---|
585 | * Produce textual representation of the value distribution of histogram data by percentile. The distribution is
|
---|
586 | * output with exponentially increasing resolution, with each exponentially decreasing half-distance containing
|
---|
587 | * <i>dumpTicksPerHalf</i> percentile reporting tick points.
|
---|
588 | *
|
---|
589 | * @param printStream Stream into which the distribution will be output
|
---|
590 | * <p>
|
---|
591 | * @param percentileTicksPerHalfDistance The number of reporting points per exponentially decreasing half-distance
|
---|
592 | * <p>
|
---|
593 | * @param outputValueUnitScalingRatio The scaling factor by which to divide histogram recorded values units in
|
---|
594 | * output
|
---|
595 | * @param useCsvFormat Output in CSV format if true. Otherwise use plain text form.
|
---|
596 | */
|
---|
597 | outputPercentileDistribution(
|
---|
598 | percentileTicksPerHalfDistance = 5,
|
---|
599 | outputValueUnitScalingRatio = 1,
|
---|
600 | useCsvFormat = false
|
---|
601 | ): string {
|
---|
602 | let result = "";
|
---|
603 | if (useCsvFormat) {
|
---|
604 | result += '"Value","Percentile","TotalCount","1/(1-Percentile)"\n';
|
---|
605 | } else {
|
---|
606 | result += " Value Percentile TotalCount 1/(1-Percentile)\n\n";
|
---|
607 | }
|
---|
608 |
|
---|
609 | const iterator = this.percentileIterator;
|
---|
610 | iterator.reset(percentileTicksPerHalfDistance);
|
---|
611 |
|
---|
612 | let lineFormatter: (iterationValue: HistogramIterationValue) => string;
|
---|
613 | let lastLineFormatter: (iterationValue: HistogramIterationValue) => string;
|
---|
614 |
|
---|
615 | if (useCsvFormat) {
|
---|
616 | const valueFormatter = floatFormatter(
|
---|
617 | 0,
|
---|
618 | this.numberOfSignificantValueDigits
|
---|
619 | );
|
---|
620 | const percentileFormatter = floatFormatter(0, 12);
|
---|
621 | const lastFormatter = floatFormatter(0, 2);
|
---|
622 |
|
---|
623 | lineFormatter = (iterationValue: HistogramIterationValue) =>
|
---|
624 | valueFormatter(
|
---|
625 | iterationValue.valueIteratedTo / outputValueUnitScalingRatio
|
---|
626 | ) +
|
---|
627 | "," +
|
---|
628 | percentileFormatter(iterationValue.percentileLevelIteratedTo / 100) +
|
---|
629 | "," +
|
---|
630 | iterationValue.totalCountToThisValue +
|
---|
631 | "," +
|
---|
632 | lastFormatter(
|
---|
633 | 1 / (1 - iterationValue.percentileLevelIteratedTo / 100)
|
---|
634 | ) +
|
---|
635 | "\n";
|
---|
636 | lastLineFormatter = (iterationValue: HistogramIterationValue) =>
|
---|
637 | valueFormatter(
|
---|
638 | iterationValue.valueIteratedTo / outputValueUnitScalingRatio
|
---|
639 | ) +
|
---|
640 | "," +
|
---|
641 | percentileFormatter(iterationValue.percentileLevelIteratedTo / 100) +
|
---|
642 | "," +
|
---|
643 | iterationValue.totalCountToThisValue +
|
---|
644 | ",Infinity\n";
|
---|
645 | } else {
|
---|
646 | const valueFormatter = floatFormatter(
|
---|
647 | 12,
|
---|
648 | this.numberOfSignificantValueDigits
|
---|
649 | );
|
---|
650 | const percentileFormatter = floatFormatter(2, 12);
|
---|
651 | const totalCountFormatter = integerFormatter(10);
|
---|
652 | const lastFormatter = floatFormatter(14, 2);
|
---|
653 |
|
---|
654 | lineFormatter = (iterationValue: HistogramIterationValue) =>
|
---|
655 | valueFormatter(
|
---|
656 | iterationValue.valueIteratedTo / outputValueUnitScalingRatio
|
---|
657 | ) +
|
---|
658 | " " +
|
---|
659 | percentileFormatter(iterationValue.percentileLevelIteratedTo / 100) +
|
---|
660 | " " +
|
---|
661 | totalCountFormatter(iterationValue.totalCountToThisValue) +
|
---|
662 | " " +
|
---|
663 | lastFormatter(
|
---|
664 | 1 / (1 - iterationValue.percentileLevelIteratedTo / 100)
|
---|
665 | ) +
|
---|
666 | "\n";
|
---|
667 |
|
---|
668 | lastLineFormatter = (iterationValue: HistogramIterationValue) =>
|
---|
669 | valueFormatter(
|
---|
670 | iterationValue.valueIteratedTo / outputValueUnitScalingRatio
|
---|
671 | ) +
|
---|
672 | " " +
|
---|
673 | percentileFormatter(iterationValue.percentileLevelIteratedTo / 100) +
|
---|
674 | " " +
|
---|
675 | totalCountFormatter(iterationValue.totalCountToThisValue) +
|
---|
676 | "\n";
|
---|
677 | }
|
---|
678 |
|
---|
679 | while (iterator.hasNext()) {
|
---|
680 | const iterationValue = iterator.next();
|
---|
681 | if (iterationValue.percentileLevelIteratedTo < 100) {
|
---|
682 | result += lineFormatter(iterationValue);
|
---|
683 | } else {
|
---|
684 | result += lastLineFormatter(iterationValue);
|
---|
685 | }
|
---|
686 | }
|
---|
687 |
|
---|
688 | if (!useCsvFormat) {
|
---|
689 | // Calculate and output mean and std. deviation.
|
---|
690 | // Note: mean/std. deviation numbers are very often completely irrelevant when
|
---|
691 | // data is extremely non-normal in distribution (e.g. in cases of strong multi-modal
|
---|
692 | // response time distribution associated with GC pauses). However, reporting these numbers
|
---|
693 | // can be very useful for contrasting with the detailed percentile distribution
|
---|
694 | // reported by outputPercentileDistribution(). It is not at all surprising to find
|
---|
695 | // percentile distributions where results fall many tens or even hundreds of standard
|
---|
696 | // deviations away from the mean - such results simply indicate that the data sampled
|
---|
697 | // exhibits a very non-normal distribution, highlighting situations for which the std.
|
---|
698 | // deviation metric is a useless indicator.
|
---|
699 | //
|
---|
700 | const formatter = floatFormatter(12, this.numberOfSignificantValueDigits);
|
---|
701 | const _mean = this.mean;
|
---|
702 | const mean = formatter(_mean / outputValueUnitScalingRatio);
|
---|
703 | const std_deviation = formatter(
|
---|
704 | this.getStdDeviation(_mean) / outputValueUnitScalingRatio
|
---|
705 | );
|
---|
706 | const max = formatter(this.maxValue / outputValueUnitScalingRatio);
|
---|
707 | const intFormatter = integerFormatter(12);
|
---|
708 | const totalCount = intFormatter(this.totalCount);
|
---|
709 | const bucketCount = intFormatter(this.bucketCount);
|
---|
710 | const subBucketCount = intFormatter(this.subBucketCount);
|
---|
711 |
|
---|
712 | result += `#[Mean = ${mean}, StdDeviation = ${std_deviation}]
|
---|
713 | #[Max = ${max}, Total count = ${totalCount}]
|
---|
714 | #[Buckets = ${bucketCount}, SubBuckets = ${subBucketCount}]
|
---|
715 | `;
|
---|
716 | }
|
---|
717 |
|
---|
718 | return result;
|
---|
719 | }
|
---|
720 |
|
---|
721 | get summary(): HistogramSummary {
|
---|
722 | return toSummary(this);
|
---|
723 | }
|
---|
724 |
|
---|
725 | toJSON(): HistogramSummary {
|
---|
726 | return this.summary;
|
---|
727 | }
|
---|
728 |
|
---|
729 | inspect() {
|
---|
730 | return this.toString();
|
---|
731 | }
|
---|
732 |
|
---|
733 | [Symbol.for("nodejs.util.inspect.custom")]() {
|
---|
734 | return this.toString();
|
---|
735 | }
|
---|
736 |
|
---|
737 | /**
|
---|
738 | * Provide a (conservatively high) estimate of the Histogram's total footprint in bytes
|
---|
739 | *
|
---|
740 | * @return a (conservatively high) estimate of the Histogram's total footprint in bytes
|
---|
741 | */
|
---|
742 | get estimatedFootprintInBytes() {
|
---|
743 | return this._getEstimatedFootprintInBytes();
|
---|
744 | }
|
---|
745 |
|
---|
746 | recordSingleValueWithExpectedInterval(
|
---|
747 | value: number,
|
---|
748 | expectedIntervalBetweenValueSamples: number
|
---|
749 | ) {
|
---|
750 | this.recordSingleValue(value);
|
---|
751 | if (expectedIntervalBetweenValueSamples <= 0) {
|
---|
752 | return;
|
---|
753 | }
|
---|
754 | for (
|
---|
755 | let missingValue = value - expectedIntervalBetweenValueSamples;
|
---|
756 | missingValue >= expectedIntervalBetweenValueSamples;
|
---|
757 | missingValue -= expectedIntervalBetweenValueSamples
|
---|
758 | ) {
|
---|
759 | this.recordSingleValue(missingValue);
|
---|
760 | }
|
---|
761 | }
|
---|
762 |
|
---|
763 | private recordCountAtValue(count: number, value: number) {
|
---|
764 | const countsIndex = this.countsArrayIndex(value);
|
---|
765 | if (countsIndex >= this.countsArrayLength) {
|
---|
766 | this.handleRecordException(count, value);
|
---|
767 | } else {
|
---|
768 | this.addToCountAtIndex(countsIndex, count);
|
---|
769 | }
|
---|
770 | this.updateMinAndMax(value);
|
---|
771 | this.addToTotalCount(count);
|
---|
772 | }
|
---|
773 |
|
---|
774 | /**
|
---|
775 | * Record a value in the histogram (adding to the value's current count)
|
---|
776 | *
|
---|
777 | * @param value The value to be recorded
|
---|
778 | * @param count The number of occurrences of this value to record
|
---|
779 | * @throws ArrayIndexOutOfBoundsException (may throw) if value is exceeds highestTrackableValue
|
---|
780 | */
|
---|
781 | recordValueWithCount(value: number, count: number) {
|
---|
782 | this.recordCountAtValue(count, value);
|
---|
783 | }
|
---|
784 |
|
---|
785 | /**
|
---|
786 | * Record a value in the histogram.
|
---|
787 | * <p>
|
---|
788 | * To compensate for the loss of sampled values when a recorded value is larger than the expected
|
---|
789 | * interval between value samples, Histogram will auto-generate an additional series of decreasingly-smaller
|
---|
790 | * (down to the expectedIntervalBetweenValueSamples) value records.
|
---|
791 | * <p>
|
---|
792 | * Note: This is a at-recording correction method, as opposed to the post-recording correction method provided
|
---|
793 | * by {@link #copyCorrectedForCoordinatedOmission(long)}.
|
---|
794 | * The two methods are mutually exclusive, and only one of the two should be be used on a given data set to correct
|
---|
795 | * for the same coordinated omission issue.
|
---|
796 | * <p>
|
---|
797 | * See notes in the description of the Histogram calls for an illustration of why this corrective behavior is
|
---|
798 | * important.
|
---|
799 | *
|
---|
800 | * @param value The value to record
|
---|
801 | * @param expectedIntervalBetweenValueSamples If expectedIntervalBetweenValueSamples is larger than 0, add
|
---|
802 | * auto-generated value records as appropriate if value is larger
|
---|
803 | * than expectedIntervalBetweenValueSamples
|
---|
804 | * @throws ArrayIndexOutOfBoundsException (may throw) if value is exceeds highestTrackableValue
|
---|
805 | */
|
---|
806 | recordValueWithExpectedInterval(
|
---|
807 | value: number,
|
---|
808 | expectedIntervalBetweenValueSamples: number
|
---|
809 | ) {
|
---|
810 | this.recordSingleValueWithExpectedInterval(
|
---|
811 | value,
|
---|
812 | expectedIntervalBetweenValueSamples
|
---|
813 | );
|
---|
814 | }
|
---|
815 |
|
---|
816 | private recordValueWithCountAndExpectedInterval(
|
---|
817 | value: number,
|
---|
818 | count: number,
|
---|
819 | expectedIntervalBetweenValueSamples: number
|
---|
820 | ) {
|
---|
821 | this.recordCountAtValue(count, value);
|
---|
822 | if (expectedIntervalBetweenValueSamples <= 0) {
|
---|
823 | return;
|
---|
824 | }
|
---|
825 | for (
|
---|
826 | let missingValue = value - expectedIntervalBetweenValueSamples;
|
---|
827 | missingValue >= expectedIntervalBetweenValueSamples;
|
---|
828 | missingValue -= expectedIntervalBetweenValueSamples
|
---|
829 | ) {
|
---|
830 | this.recordCountAtValue(count, missingValue);
|
---|
831 | }
|
---|
832 | }
|
---|
833 |
|
---|
834 | /**
|
---|
835 | * Add the contents of another histogram to this one, while correcting the incoming data for coordinated omission.
|
---|
836 | * <p>
|
---|
837 | * To compensate for the loss of sampled values when a recorded value is larger than the expected
|
---|
838 | * interval between value samples, the values added will include an auto-generated additional series of
|
---|
839 | * decreasingly-smaller (down to the expectedIntervalBetweenValueSamples) value records for each count found
|
---|
840 | * in the current histogram that is larger than the expectedIntervalBetweenValueSamples.
|
---|
841 | *
|
---|
842 | * Note: This is a post-recording correction method, as opposed to the at-recording correction method provided
|
---|
843 | * by {@link #recordValueWithExpectedInterval(long, long) recordValueWithExpectedInterval}. The two
|
---|
844 | * methods are mutually exclusive, and only one of the two should be be used on a given data set to correct
|
---|
845 | * for the same coordinated omission issue.
|
---|
846 | * by
|
---|
847 | * <p>
|
---|
848 | * See notes in the description of the Histogram calls for an illustration of why this corrective behavior is
|
---|
849 | * important.
|
---|
850 | *
|
---|
851 | * @param otherHistogram The other histogram. highestTrackableValue and largestValueWithSingleUnitResolution must match.
|
---|
852 | * @param expectedIntervalBetweenValueSamples If expectedIntervalBetweenValueSamples is larger than 0, add
|
---|
853 | * auto-generated value records as appropriate if value is larger
|
---|
854 | * than expectedIntervalBetweenValueSamples
|
---|
855 | * @throws ArrayIndexOutOfBoundsException (may throw) if values exceed highestTrackableValue
|
---|
856 | */
|
---|
857 | addWhileCorrectingForCoordinatedOmission(
|
---|
858 | otherHistogram: JsHistogram,
|
---|
859 | expectedIntervalBetweenValueSamples: number
|
---|
860 | ) {
|
---|
861 | const toHistogram = this;
|
---|
862 |
|
---|
863 | const otherValues = new RecordedValuesIterator(otherHistogram);
|
---|
864 |
|
---|
865 | while (otherValues.hasNext()) {
|
---|
866 | const v = otherValues.next();
|
---|
867 | toHistogram.recordValueWithCountAndExpectedInterval(
|
---|
868 | v.valueIteratedTo,
|
---|
869 | v.countAtValueIteratedTo,
|
---|
870 | expectedIntervalBetweenValueSamples
|
---|
871 | );
|
---|
872 | }
|
---|
873 | }
|
---|
874 |
|
---|
875 | /**
|
---|
876 | * Get a copy of this histogram, corrected for coordinated omission.
|
---|
877 | * <p>
|
---|
878 | * To compensate for the loss of sampled values when a recorded value is larger than the expected
|
---|
879 | * interval between value samples, the new histogram will include an auto-generated additional series of
|
---|
880 | * decreasingly-smaller (down to the expectedIntervalBetweenValueSamples) value records for each count found
|
---|
881 | * in the current histogram that is larger than the expectedIntervalBetweenValueSamples.
|
---|
882 | *
|
---|
883 | * Note: This is a post-correction method, as opposed to the at-recording correction method provided
|
---|
884 | * by {@link #recordValueWithExpectedInterval(long, long) recordValueWithExpectedInterval}. The two
|
---|
885 | * methods are mutually exclusive, and only one of the two should be be used on a given data set to correct
|
---|
886 | * for the same coordinated omission issue.
|
---|
887 | * by
|
---|
888 | * <p>
|
---|
889 | * See notes in the description of the Histogram calls for an illustration of why this corrective behavior is
|
---|
890 | * important.
|
---|
891 | *
|
---|
892 | * @param expectedIntervalBetweenValueSamples If expectedIntervalBetweenValueSamples is larger than 0, add
|
---|
893 | * auto-generated value records as appropriate if value is larger
|
---|
894 | * than expectedIntervalBetweenValueSamples
|
---|
895 | * @return a copy of this histogram, corrected for coordinated omission.
|
---|
896 | */
|
---|
897 | abstract copyCorrectedForCoordinatedOmission(
|
---|
898 | expectedIntervalBetweenValueSamples: number
|
---|
899 | ): JsHistogram;
|
---|
900 |
|
---|
901 | /**
|
---|
902 | * Add the contents of another histogram to this one.
|
---|
903 | * <p>
|
---|
904 | * As part of adding the contents, the start/end timestamp range of this histogram will be
|
---|
905 | * extended to include the start/end timestamp range of the other histogram.
|
---|
906 | *
|
---|
907 | * @param otherHistogram The other histogram.
|
---|
908 | * @throws (may throw) if values in fromHistogram's are
|
---|
909 | * higher than highestTrackableValue.
|
---|
910 | */
|
---|
911 | add(otherHistogram: JsHistogram) {
|
---|
912 | if (!(otherHistogram instanceof JsHistogram)) {
|
---|
913 | // should be impossible to be in this situation but actually
|
---|
914 | // TypeScript has some flaws...
|
---|
915 | throw new Error("Cannot add a WASM histogram to a regular JS histogram");
|
---|
916 | }
|
---|
917 | const highestRecordableValue = this.highestEquivalentValue(
|
---|
918 | this.valueFromIndex(this.countsArrayLength - 1)
|
---|
919 | );
|
---|
920 |
|
---|
921 | if (highestRecordableValue < otherHistogram.maxValue) {
|
---|
922 | if (!this.autoResize) {
|
---|
923 | throw new Error(
|
---|
924 | "The other histogram includes values that do not fit in this histogram's range."
|
---|
925 | );
|
---|
926 | }
|
---|
927 | this.resize(otherHistogram.maxValue);
|
---|
928 | }
|
---|
929 |
|
---|
930 | if (
|
---|
931 | this.bucketCount === otherHistogram.bucketCount &&
|
---|
932 | this.subBucketCount === otherHistogram.subBucketCount &&
|
---|
933 | this.unitMagnitude === otherHistogram.unitMagnitude
|
---|
934 | ) {
|
---|
935 | // Counts arrays are of the same length and meaning, so we can just iterate and add directly:
|
---|
936 | let observedOtherTotalCount = 0;
|
---|
937 | for (let i = 0; i < otherHistogram.countsArrayLength; i++) {
|
---|
938 | const otherCount = otherHistogram.getCountAtIndex(i);
|
---|
939 | if (otherCount > 0) {
|
---|
940 | this.addToCountAtIndex(i, otherCount);
|
---|
941 | observedOtherTotalCount += otherCount;
|
---|
942 | }
|
---|
943 | }
|
---|
944 | this.setTotalCount(this.totalCount + observedOtherTotalCount);
|
---|
945 | this.updatedMaxValue(max(this.maxValue, otherHistogram.maxValue));
|
---|
946 | this.updateMinNonZeroValue(
|
---|
947 | min(this.minNonZeroValue, otherHistogram.minNonZeroValue)
|
---|
948 | );
|
---|
949 | } else {
|
---|
950 | // Arrays are not a direct match (or the other could change on the fly in some valid way),
|
---|
951 | // so we can't just stream through and add them. Instead, go through the array and add each
|
---|
952 | // non-zero value found at it's proper value:
|
---|
953 |
|
---|
954 | // Do max value first, to avoid max value updates on each iteration:
|
---|
955 | const otherMaxIndex = otherHistogram.countsArrayIndex(
|
---|
956 | otherHistogram.maxValue
|
---|
957 | );
|
---|
958 | let otherCount = otherHistogram.getCountAtIndex(otherMaxIndex);
|
---|
959 | this.recordCountAtValue(
|
---|
960 | otherCount,
|
---|
961 | otherHistogram.valueFromIndex(otherMaxIndex)
|
---|
962 | );
|
---|
963 |
|
---|
964 | // Record the remaining values, up to but not including the max value:
|
---|
965 | for (let i = 0; i < otherMaxIndex; i++) {
|
---|
966 | otherCount = otherHistogram.getCountAtIndex(i);
|
---|
967 | if (otherCount > 0) {
|
---|
968 | this.recordCountAtValue(otherCount, otherHistogram.valueFromIndex(i));
|
---|
969 | }
|
---|
970 | }
|
---|
971 | }
|
---|
972 | this.startTimeStampMsec = min(
|
---|
973 | this.startTimeStampMsec,
|
---|
974 | otherHistogram.startTimeStampMsec
|
---|
975 | );
|
---|
976 | this.endTimeStampMsec = max(
|
---|
977 | this.endTimeStampMsec,
|
---|
978 | otherHistogram.endTimeStampMsec
|
---|
979 | );
|
---|
980 | }
|
---|
981 |
|
---|
982 | /**
|
---|
983 | * Get the count of recorded values at a specific value (to within the histogram resolution at the value level).
|
---|
984 | *
|
---|
985 | * @param value The value for which to provide the recorded count
|
---|
986 | * @return The total count of values recorded in the histogram within the value range that is
|
---|
987 | * {@literal >=} lowestEquivalentValue(<i>value</i>) and {@literal <=} highestEquivalentValue(<i>value</i>)
|
---|
988 | */
|
---|
989 | private getCountAtValue(value: number) {
|
---|
990 | const index = min(
|
---|
991 | max(0, this.countsArrayIndex(value)),
|
---|
992 | this.countsArrayLength - 1
|
---|
993 | );
|
---|
994 | return this.getCountAtIndex(index);
|
---|
995 | }
|
---|
996 |
|
---|
997 | /**
|
---|
998 | * Subtract the contents of another histogram from this one.
|
---|
999 | * <p>
|
---|
1000 | * The start/end timestamps of this histogram will remain unchanged.
|
---|
1001 | *
|
---|
1002 | * @param otherHistogram The other histogram.
|
---|
1003 | * @throws ArrayIndexOutOfBoundsException (may throw) if values in otherHistogram's are higher than highestTrackableValue.
|
---|
1004 | *
|
---|
1005 | */
|
---|
1006 | subtract(otherHistogram: JsHistogram) {
|
---|
1007 | const highestRecordableValue = this.valueFromIndex(
|
---|
1008 | this.countsArrayLength - 1
|
---|
1009 | );
|
---|
1010 | if (!(otherHistogram instanceof JsHistogram)) {
|
---|
1011 | // should be impossible to be in this situation but actually
|
---|
1012 | // TypeScript has some flaws...
|
---|
1013 | throw new Error(
|
---|
1014 | "Cannot subtract a WASM histogram to a regular JS histogram"
|
---|
1015 | );
|
---|
1016 | }
|
---|
1017 | if (highestRecordableValue < otherHistogram.maxValue) {
|
---|
1018 | if (!this.autoResize) {
|
---|
1019 | throw new Error(
|
---|
1020 | "The other histogram includes values that do not fit in this histogram's range."
|
---|
1021 | );
|
---|
1022 | }
|
---|
1023 | this.resize(otherHistogram.maxValue);
|
---|
1024 | }
|
---|
1025 |
|
---|
1026 | if (
|
---|
1027 | this.bucketCount === otherHistogram.bucketCount &&
|
---|
1028 | this.subBucketCount === otherHistogram.subBucketCount &&
|
---|
1029 | this.unitMagnitude === otherHistogram.unitMagnitude
|
---|
1030 | ) {
|
---|
1031 | // optim
|
---|
1032 | // Counts arrays are of the same length and meaning, so we can just iterate and add directly:
|
---|
1033 | let observedOtherTotalCount = 0;
|
---|
1034 | for (let i = 0; i < otherHistogram.countsArrayLength; i++) {
|
---|
1035 | const otherCount = otherHistogram.getCountAtIndex(i);
|
---|
1036 | if (otherCount > 0) {
|
---|
1037 | this.addToCountAtIndex(i, -otherCount);
|
---|
1038 | observedOtherTotalCount += otherCount;
|
---|
1039 | }
|
---|
1040 | }
|
---|
1041 | this.setTotalCount(this.totalCount - observedOtherTotalCount);
|
---|
1042 | } else {
|
---|
1043 | for (let i = 0; i < otherHistogram.countsArrayLength; i++) {
|
---|
1044 | const otherCount = otherHistogram.getCountAtIndex(i);
|
---|
1045 | if (otherCount > 0) {
|
---|
1046 | const otherValue = otherHistogram.valueFromIndex(i);
|
---|
1047 | if (this.getCountAtValue(otherValue) < otherCount) {
|
---|
1048 | throw new Error(
|
---|
1049 | "otherHistogram count (" +
|
---|
1050 | otherCount +
|
---|
1051 | ") at value " +
|
---|
1052 | otherValue +
|
---|
1053 | " is larger than this one's (" +
|
---|
1054 | this.getCountAtValue(otherValue) +
|
---|
1055 | ")"
|
---|
1056 | );
|
---|
1057 | }
|
---|
1058 | this.recordCountAtValue(-otherCount, otherValue);
|
---|
1059 | }
|
---|
1060 | }
|
---|
1061 | }
|
---|
1062 | // With subtraction, the max and minNonZero values could have changed:
|
---|
1063 | if (
|
---|
1064 | this.getCountAtValue(this.maxValue) <= 0 ||
|
---|
1065 | this.getCountAtValue(this.minNonZeroValue) <= 0
|
---|
1066 | ) {
|
---|
1067 | this.establishInternalTackingValues();
|
---|
1068 | }
|
---|
1069 | }
|
---|
1070 |
|
---|
1071 | establishInternalTackingValues(lengthToCover = this.countsArrayLength) {
|
---|
1072 | this.maxValue = 0;
|
---|
1073 | this.minNonZeroValue = Number.MAX_VALUE;
|
---|
1074 | let maxIndex = -1;
|
---|
1075 | let minNonZeroIndex = -1;
|
---|
1076 | let observedTotalCount = 0;
|
---|
1077 | for (let index = 0; index < lengthToCover; index++) {
|
---|
1078 | const countAtIndex = this.getCountAtIndex(index);
|
---|
1079 | if (countAtIndex > 0) {
|
---|
1080 | observedTotalCount += countAtIndex;
|
---|
1081 | maxIndex = index;
|
---|
1082 | if (minNonZeroIndex == -1 && index != 0) {
|
---|
1083 | minNonZeroIndex = index;
|
---|
1084 | }
|
---|
1085 | }
|
---|
1086 | }
|
---|
1087 | if (maxIndex >= 0) {
|
---|
1088 | this.updatedMaxValue(
|
---|
1089 | this.highestEquivalentValue(this.valueFromIndex(maxIndex))
|
---|
1090 | );
|
---|
1091 | }
|
---|
1092 | if (minNonZeroIndex >= 0) {
|
---|
1093 | this.updateMinNonZeroValue(this.valueFromIndex(minNonZeroIndex));
|
---|
1094 | }
|
---|
1095 | this.setTotalCount(observedTotalCount);
|
---|
1096 | }
|
---|
1097 |
|
---|
1098 | reset() {
|
---|
1099 | this.clearCounts();
|
---|
1100 | this.setTotalCount(0);
|
---|
1101 | this.startTimeStampMsec = 0;
|
---|
1102 | this.endTimeStampMsec = 0;
|
---|
1103 | this.tag = NO_TAG;
|
---|
1104 | this.maxValue = 0;
|
---|
1105 | this.minNonZeroValue = Number.MAX_SAFE_INTEGER;
|
---|
1106 | }
|
---|
1107 |
|
---|
1108 | destroy() {
|
---|
1109 | // no op - not needed here
|
---|
1110 | }
|
---|
1111 | }
|
---|
1112 |
|
---|
1113 | export { JsHistogram as default };
|
---|