[6a3a178] | 1 | (function(){
|
---|
| 2 |
|
---|
| 3 | // Copyright (c) 2005 Tom Wu
|
---|
| 4 | // All Rights Reserved.
|
---|
| 5 | // See "LICENSE" for details.
|
---|
| 6 |
|
---|
| 7 | // Basic JavaScript BN library - subset useful for RSA encryption.
|
---|
| 8 |
|
---|
| 9 | // Bits per digit
|
---|
| 10 | var dbits;
|
---|
| 11 |
|
---|
| 12 | // JavaScript engine analysis
|
---|
| 13 | var canary = 0xdeadbeefcafe;
|
---|
| 14 | var j_lm = ((canary&0xffffff)==0xefcafe);
|
---|
| 15 |
|
---|
| 16 | // (public) Constructor
|
---|
| 17 | function BigInteger(a,b,c) {
|
---|
| 18 | if(a != null)
|
---|
| 19 | if("number" == typeof a) this.fromNumber(a,b,c);
|
---|
| 20 | else if(b == null && "string" != typeof a) this.fromString(a,256);
|
---|
| 21 | else this.fromString(a,b);
|
---|
| 22 | }
|
---|
| 23 |
|
---|
| 24 | // return new, unset BigInteger
|
---|
| 25 | function nbi() { return new BigInteger(null); }
|
---|
| 26 |
|
---|
| 27 | // am: Compute w_j += (x*this_i), propagate carries,
|
---|
| 28 | // c is initial carry, returns final carry.
|
---|
| 29 | // c < 3*dvalue, x < 2*dvalue, this_i < dvalue
|
---|
| 30 | // We need to select the fastest one that works in this environment.
|
---|
| 31 |
|
---|
| 32 | // am1: use a single mult and divide to get the high bits,
|
---|
| 33 | // max digit bits should be 26 because
|
---|
| 34 | // max internal value = 2*dvalue^2-2*dvalue (< 2^53)
|
---|
| 35 | function am1(i,x,w,j,c,n) {
|
---|
| 36 | while(--n >= 0) {
|
---|
| 37 | var v = x*this[i++]+w[j]+c;
|
---|
| 38 | c = Math.floor(v/0x4000000);
|
---|
| 39 | w[j++] = v&0x3ffffff;
|
---|
| 40 | }
|
---|
| 41 | return c;
|
---|
| 42 | }
|
---|
| 43 | // am2 avoids a big mult-and-extract completely.
|
---|
| 44 | // Max digit bits should be <= 30 because we do bitwise ops
|
---|
| 45 | // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
|
---|
| 46 | function am2(i,x,w,j,c,n) {
|
---|
| 47 | var xl = x&0x7fff, xh = x>>15;
|
---|
| 48 | while(--n >= 0) {
|
---|
| 49 | var l = this[i]&0x7fff;
|
---|
| 50 | var h = this[i++]>>15;
|
---|
| 51 | var m = xh*l+h*xl;
|
---|
| 52 | l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);
|
---|
| 53 | c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
|
---|
| 54 | w[j++] = l&0x3fffffff;
|
---|
| 55 | }
|
---|
| 56 | return c;
|
---|
| 57 | }
|
---|
| 58 | // Alternately, set max digit bits to 28 since some
|
---|
| 59 | // browsers slow down when dealing with 32-bit numbers.
|
---|
| 60 | function am3(i,x,w,j,c,n) {
|
---|
| 61 | var xl = x&0x3fff, xh = x>>14;
|
---|
| 62 | while(--n >= 0) {
|
---|
| 63 | var l = this[i]&0x3fff;
|
---|
| 64 | var h = this[i++]>>14;
|
---|
| 65 | var m = xh*l+h*xl;
|
---|
| 66 | l = xl*l+((m&0x3fff)<<14)+w[j]+c;
|
---|
| 67 | c = (l>>28)+(m>>14)+xh*h;
|
---|
| 68 | w[j++] = l&0xfffffff;
|
---|
| 69 | }
|
---|
| 70 | return c;
|
---|
| 71 | }
|
---|
| 72 | var inBrowser = typeof navigator !== "undefined";
|
---|
| 73 | if(inBrowser && j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
|
---|
| 74 | BigInteger.prototype.am = am2;
|
---|
| 75 | dbits = 30;
|
---|
| 76 | }
|
---|
| 77 | else if(inBrowser && j_lm && (navigator.appName != "Netscape")) {
|
---|
| 78 | BigInteger.prototype.am = am1;
|
---|
| 79 | dbits = 26;
|
---|
| 80 | }
|
---|
| 81 | else { // Mozilla/Netscape seems to prefer am3
|
---|
| 82 | BigInteger.prototype.am = am3;
|
---|
| 83 | dbits = 28;
|
---|
| 84 | }
|
---|
| 85 |
|
---|
| 86 | BigInteger.prototype.DB = dbits;
|
---|
| 87 | BigInteger.prototype.DM = ((1<<dbits)-1);
|
---|
| 88 | BigInteger.prototype.DV = (1<<dbits);
|
---|
| 89 |
|
---|
| 90 | var BI_FP = 52;
|
---|
| 91 | BigInteger.prototype.FV = Math.pow(2,BI_FP);
|
---|
| 92 | BigInteger.prototype.F1 = BI_FP-dbits;
|
---|
| 93 | BigInteger.prototype.F2 = 2*dbits-BI_FP;
|
---|
| 94 |
|
---|
| 95 | // Digit conversions
|
---|
| 96 | var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
|
---|
| 97 | var BI_RC = new Array();
|
---|
| 98 | var rr,vv;
|
---|
| 99 | rr = "0".charCodeAt(0);
|
---|
| 100 | for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
|
---|
| 101 | rr = "a".charCodeAt(0);
|
---|
| 102 | for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
|
---|
| 103 | rr = "A".charCodeAt(0);
|
---|
| 104 | for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
|
---|
| 105 |
|
---|
| 106 | function int2char(n) { return BI_RM.charAt(n); }
|
---|
| 107 | function intAt(s,i) {
|
---|
| 108 | var c = BI_RC[s.charCodeAt(i)];
|
---|
| 109 | return (c==null)?-1:c;
|
---|
| 110 | }
|
---|
| 111 |
|
---|
| 112 | // (protected) copy this to r
|
---|
| 113 | function bnpCopyTo(r) {
|
---|
| 114 | for(var i = this.t-1; i >= 0; --i) r[i] = this[i];
|
---|
| 115 | r.t = this.t;
|
---|
| 116 | r.s = this.s;
|
---|
| 117 | }
|
---|
| 118 |
|
---|
| 119 | // (protected) set from integer value x, -DV <= x < DV
|
---|
| 120 | function bnpFromInt(x) {
|
---|
| 121 | this.t = 1;
|
---|
| 122 | this.s = (x<0)?-1:0;
|
---|
| 123 | if(x > 0) this[0] = x;
|
---|
| 124 | else if(x < -1) this[0] = x+this.DV;
|
---|
| 125 | else this.t = 0;
|
---|
| 126 | }
|
---|
| 127 |
|
---|
| 128 | // return bigint initialized to value
|
---|
| 129 | function nbv(i) { var r = nbi(); r.fromInt(i); return r; }
|
---|
| 130 |
|
---|
| 131 | // (protected) set from string and radix
|
---|
| 132 | function bnpFromString(s,b) {
|
---|
| 133 | var k;
|
---|
| 134 | if(b == 16) k = 4;
|
---|
| 135 | else if(b == 8) k = 3;
|
---|
| 136 | else if(b == 256) k = 8; // byte array
|
---|
| 137 | else if(b == 2) k = 1;
|
---|
| 138 | else if(b == 32) k = 5;
|
---|
| 139 | else if(b == 4) k = 2;
|
---|
| 140 | else { this.fromRadix(s,b); return; }
|
---|
| 141 | this.t = 0;
|
---|
| 142 | this.s = 0;
|
---|
| 143 | var i = s.length, mi = false, sh = 0;
|
---|
| 144 | while(--i >= 0) {
|
---|
| 145 | var x = (k==8)?s[i]&0xff:intAt(s,i);
|
---|
| 146 | if(x < 0) {
|
---|
| 147 | if(s.charAt(i) == "-") mi = true;
|
---|
| 148 | continue;
|
---|
| 149 | }
|
---|
| 150 | mi = false;
|
---|
| 151 | if(sh == 0)
|
---|
| 152 | this[this.t++] = x;
|
---|
| 153 | else if(sh+k > this.DB) {
|
---|
| 154 | this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;
|
---|
| 155 | this[this.t++] = (x>>(this.DB-sh));
|
---|
| 156 | }
|
---|
| 157 | else
|
---|
| 158 | this[this.t-1] |= x<<sh;
|
---|
| 159 | sh += k;
|
---|
| 160 | if(sh >= this.DB) sh -= this.DB;
|
---|
| 161 | }
|
---|
| 162 | if(k == 8 && (s[0]&0x80) != 0) {
|
---|
| 163 | this.s = -1;
|
---|
| 164 | if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;
|
---|
| 165 | }
|
---|
| 166 | this.clamp();
|
---|
| 167 | if(mi) BigInteger.ZERO.subTo(this,this);
|
---|
| 168 | }
|
---|
| 169 |
|
---|
| 170 | // (protected) clamp off excess high words
|
---|
| 171 | function bnpClamp() {
|
---|
| 172 | var c = this.s&this.DM;
|
---|
| 173 | while(this.t > 0 && this[this.t-1] == c) --this.t;
|
---|
| 174 | }
|
---|
| 175 |
|
---|
| 176 | // (public) return string representation in given radix
|
---|
| 177 | function bnToString(b) {
|
---|
| 178 | if(this.s < 0) return "-"+this.negate().toString(b);
|
---|
| 179 | var k;
|
---|
| 180 | if(b == 16) k = 4;
|
---|
| 181 | else if(b == 8) k = 3;
|
---|
| 182 | else if(b == 2) k = 1;
|
---|
| 183 | else if(b == 32) k = 5;
|
---|
| 184 | else if(b == 4) k = 2;
|
---|
| 185 | else return this.toRadix(b);
|
---|
| 186 | var km = (1<<k)-1, d, m = false, r = "", i = this.t;
|
---|
| 187 | var p = this.DB-(i*this.DB)%k;
|
---|
| 188 | if(i-- > 0) {
|
---|
| 189 | if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); }
|
---|
| 190 | while(i >= 0) {
|
---|
| 191 | if(p < k) {
|
---|
| 192 | d = (this[i]&((1<<p)-1))<<(k-p);
|
---|
| 193 | d |= this[--i]>>(p+=this.DB-k);
|
---|
| 194 | }
|
---|
| 195 | else {
|
---|
| 196 | d = (this[i]>>(p-=k))&km;
|
---|
| 197 | if(p <= 0) { p += this.DB; --i; }
|
---|
| 198 | }
|
---|
| 199 | if(d > 0) m = true;
|
---|
| 200 | if(m) r += int2char(d);
|
---|
| 201 | }
|
---|
| 202 | }
|
---|
| 203 | return m?r:"0";
|
---|
| 204 | }
|
---|
| 205 |
|
---|
| 206 | // (public) -this
|
---|
| 207 | function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }
|
---|
| 208 |
|
---|
| 209 | // (public) |this|
|
---|
| 210 | function bnAbs() { return (this.s<0)?this.negate():this; }
|
---|
| 211 |
|
---|
| 212 | // (public) return + if this > a, - if this < a, 0 if equal
|
---|
| 213 | function bnCompareTo(a) {
|
---|
| 214 | var r = this.s-a.s;
|
---|
| 215 | if(r != 0) return r;
|
---|
| 216 | var i = this.t;
|
---|
| 217 | r = i-a.t;
|
---|
| 218 | if(r != 0) return (this.s<0)?-r:r;
|
---|
| 219 | while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;
|
---|
| 220 | return 0;
|
---|
| 221 | }
|
---|
| 222 |
|
---|
| 223 | // returns bit length of the integer x
|
---|
| 224 | function nbits(x) {
|
---|
| 225 | var r = 1, t;
|
---|
| 226 | if((t=x>>>16) != 0) { x = t; r += 16; }
|
---|
| 227 | if((t=x>>8) != 0) { x = t; r += 8; }
|
---|
| 228 | if((t=x>>4) != 0) { x = t; r += 4; }
|
---|
| 229 | if((t=x>>2) != 0) { x = t; r += 2; }
|
---|
| 230 | if((t=x>>1) != 0) { x = t; r += 1; }
|
---|
| 231 | return r;
|
---|
| 232 | }
|
---|
| 233 |
|
---|
| 234 | // (public) return the number of bits in "this"
|
---|
| 235 | function bnBitLength() {
|
---|
| 236 | if(this.t <= 0) return 0;
|
---|
| 237 | return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));
|
---|
| 238 | }
|
---|
| 239 |
|
---|
| 240 | // (protected) r = this << n*DB
|
---|
| 241 | function bnpDLShiftTo(n,r) {
|
---|
| 242 | var i;
|
---|
| 243 | for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
|
---|
| 244 | for(i = n-1; i >= 0; --i) r[i] = 0;
|
---|
| 245 | r.t = this.t+n;
|
---|
| 246 | r.s = this.s;
|
---|
| 247 | }
|
---|
| 248 |
|
---|
| 249 | // (protected) r = this >> n*DB
|
---|
| 250 | function bnpDRShiftTo(n,r) {
|
---|
| 251 | for(var i = n; i < this.t; ++i) r[i-n] = this[i];
|
---|
| 252 | r.t = Math.max(this.t-n,0);
|
---|
| 253 | r.s = this.s;
|
---|
| 254 | }
|
---|
| 255 |
|
---|
| 256 | // (protected) r = this << n
|
---|
| 257 | function bnpLShiftTo(n,r) {
|
---|
| 258 | var bs = n%this.DB;
|
---|
| 259 | var cbs = this.DB-bs;
|
---|
| 260 | var bm = (1<<cbs)-1;
|
---|
| 261 | var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;
|
---|
| 262 | for(i = this.t-1; i >= 0; --i) {
|
---|
| 263 | r[i+ds+1] = (this[i]>>cbs)|c;
|
---|
| 264 | c = (this[i]&bm)<<bs;
|
---|
| 265 | }
|
---|
| 266 | for(i = ds-1; i >= 0; --i) r[i] = 0;
|
---|
| 267 | r[ds] = c;
|
---|
| 268 | r.t = this.t+ds+1;
|
---|
| 269 | r.s = this.s;
|
---|
| 270 | r.clamp();
|
---|
| 271 | }
|
---|
| 272 |
|
---|
| 273 | // (protected) r = this >> n
|
---|
| 274 | function bnpRShiftTo(n,r) {
|
---|
| 275 | r.s = this.s;
|
---|
| 276 | var ds = Math.floor(n/this.DB);
|
---|
| 277 | if(ds >= this.t) { r.t = 0; return; }
|
---|
| 278 | var bs = n%this.DB;
|
---|
| 279 | var cbs = this.DB-bs;
|
---|
| 280 | var bm = (1<<bs)-1;
|
---|
| 281 | r[0] = this[ds]>>bs;
|
---|
| 282 | for(var i = ds+1; i < this.t; ++i) {
|
---|
| 283 | r[i-ds-1] |= (this[i]&bm)<<cbs;
|
---|
| 284 | r[i-ds] = this[i]>>bs;
|
---|
| 285 | }
|
---|
| 286 | if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;
|
---|
| 287 | r.t = this.t-ds;
|
---|
| 288 | r.clamp();
|
---|
| 289 | }
|
---|
| 290 |
|
---|
| 291 | // (protected) r = this - a
|
---|
| 292 | function bnpSubTo(a,r) {
|
---|
| 293 | var i = 0, c = 0, m = Math.min(a.t,this.t);
|
---|
| 294 | while(i < m) {
|
---|
| 295 | c += this[i]-a[i];
|
---|
| 296 | r[i++] = c&this.DM;
|
---|
| 297 | c >>= this.DB;
|
---|
| 298 | }
|
---|
| 299 | if(a.t < this.t) {
|
---|
| 300 | c -= a.s;
|
---|
| 301 | while(i < this.t) {
|
---|
| 302 | c += this[i];
|
---|
| 303 | r[i++] = c&this.DM;
|
---|
| 304 | c >>= this.DB;
|
---|
| 305 | }
|
---|
| 306 | c += this.s;
|
---|
| 307 | }
|
---|
| 308 | else {
|
---|
| 309 | c += this.s;
|
---|
| 310 | while(i < a.t) {
|
---|
| 311 | c -= a[i];
|
---|
| 312 | r[i++] = c&this.DM;
|
---|
| 313 | c >>= this.DB;
|
---|
| 314 | }
|
---|
| 315 | c -= a.s;
|
---|
| 316 | }
|
---|
| 317 | r.s = (c<0)?-1:0;
|
---|
| 318 | if(c < -1) r[i++] = this.DV+c;
|
---|
| 319 | else if(c > 0) r[i++] = c;
|
---|
| 320 | r.t = i;
|
---|
| 321 | r.clamp();
|
---|
| 322 | }
|
---|
| 323 |
|
---|
| 324 | // (protected) r = this * a, r != this,a (HAC 14.12)
|
---|
| 325 | // "this" should be the larger one if appropriate.
|
---|
| 326 | function bnpMultiplyTo(a,r) {
|
---|
| 327 | var x = this.abs(), y = a.abs();
|
---|
| 328 | var i = x.t;
|
---|
| 329 | r.t = i+y.t;
|
---|
| 330 | while(--i >= 0) r[i] = 0;
|
---|
| 331 | for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);
|
---|
| 332 | r.s = 0;
|
---|
| 333 | r.clamp();
|
---|
| 334 | if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
|
---|
| 335 | }
|
---|
| 336 |
|
---|
| 337 | // (protected) r = this^2, r != this (HAC 14.16)
|
---|
| 338 | function bnpSquareTo(r) {
|
---|
| 339 | var x = this.abs();
|
---|
| 340 | var i = r.t = 2*x.t;
|
---|
| 341 | while(--i >= 0) r[i] = 0;
|
---|
| 342 | for(i = 0; i < x.t-1; ++i) {
|
---|
| 343 | var c = x.am(i,x[i],r,2*i,0,1);
|
---|
| 344 | if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {
|
---|
| 345 | r[i+x.t] -= x.DV;
|
---|
| 346 | r[i+x.t+1] = 1;
|
---|
| 347 | }
|
---|
| 348 | }
|
---|
| 349 | if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);
|
---|
| 350 | r.s = 0;
|
---|
| 351 | r.clamp();
|
---|
| 352 | }
|
---|
| 353 |
|
---|
| 354 | // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
|
---|
| 355 | // r != q, this != m. q or r may be null.
|
---|
| 356 | function bnpDivRemTo(m,q,r) {
|
---|
| 357 | var pm = m.abs();
|
---|
| 358 | if(pm.t <= 0) return;
|
---|
| 359 | var pt = this.abs();
|
---|
| 360 | if(pt.t < pm.t) {
|
---|
| 361 | if(q != null) q.fromInt(0);
|
---|
| 362 | if(r != null) this.copyTo(r);
|
---|
| 363 | return;
|
---|
| 364 | }
|
---|
| 365 | if(r == null) r = nbi();
|
---|
| 366 | var y = nbi(), ts = this.s, ms = m.s;
|
---|
| 367 | var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus
|
---|
| 368 | if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
|
---|
| 369 | else { pm.copyTo(y); pt.copyTo(r); }
|
---|
| 370 | var ys = y.t;
|
---|
| 371 | var y0 = y[ys-1];
|
---|
| 372 | if(y0 == 0) return;
|
---|
| 373 | var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0);
|
---|
| 374 | var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2;
|
---|
| 375 | var i = r.t, j = i-ys, t = (q==null)?nbi():q;
|
---|
| 376 | y.dlShiftTo(j,t);
|
---|
| 377 | if(r.compareTo(t) >= 0) {
|
---|
| 378 | r[r.t++] = 1;
|
---|
| 379 | r.subTo(t,r);
|
---|
| 380 | }
|
---|
| 381 | BigInteger.ONE.dlShiftTo(ys,t);
|
---|
| 382 | t.subTo(y,y); // "negative" y so we can replace sub with am later
|
---|
| 383 | while(y.t < ys) y[y.t++] = 0;
|
---|
| 384 | while(--j >= 0) {
|
---|
| 385 | // Estimate quotient digit
|
---|
| 386 | var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);
|
---|
| 387 | if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out
|
---|
| 388 | y.dlShiftTo(j,t);
|
---|
| 389 | r.subTo(t,r);
|
---|
| 390 | while(r[i] < --qd) r.subTo(t,r);
|
---|
| 391 | }
|
---|
| 392 | }
|
---|
| 393 | if(q != null) {
|
---|
| 394 | r.drShiftTo(ys,q);
|
---|
| 395 | if(ts != ms) BigInteger.ZERO.subTo(q,q);
|
---|
| 396 | }
|
---|
| 397 | r.t = ys;
|
---|
| 398 | r.clamp();
|
---|
| 399 | if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder
|
---|
| 400 | if(ts < 0) BigInteger.ZERO.subTo(r,r);
|
---|
| 401 | }
|
---|
| 402 |
|
---|
| 403 | // (public) this mod a
|
---|
| 404 | function bnMod(a) {
|
---|
| 405 | var r = nbi();
|
---|
| 406 | this.abs().divRemTo(a,null,r);
|
---|
| 407 | if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
|
---|
| 408 | return r;
|
---|
| 409 | }
|
---|
| 410 |
|
---|
| 411 | // Modular reduction using "classic" algorithm
|
---|
| 412 | function Classic(m) { this.m = m; }
|
---|
| 413 | function cConvert(x) {
|
---|
| 414 | if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
|
---|
| 415 | else return x;
|
---|
| 416 | }
|
---|
| 417 | function cRevert(x) { return x; }
|
---|
| 418 | function cReduce(x) { x.divRemTo(this.m,null,x); }
|
---|
| 419 | function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
|
---|
| 420 | function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
|
---|
| 421 |
|
---|
| 422 | Classic.prototype.convert = cConvert;
|
---|
| 423 | Classic.prototype.revert = cRevert;
|
---|
| 424 | Classic.prototype.reduce = cReduce;
|
---|
| 425 | Classic.prototype.mulTo = cMulTo;
|
---|
| 426 | Classic.prototype.sqrTo = cSqrTo;
|
---|
| 427 |
|
---|
| 428 | // (protected) return "-1/this % 2^DB"; useful for Mont. reduction
|
---|
| 429 | // justification:
|
---|
| 430 | // xy == 1 (mod m)
|
---|
| 431 | // xy = 1+km
|
---|
| 432 | // xy(2-xy) = (1+km)(1-km)
|
---|
| 433 | // x[y(2-xy)] = 1-k^2m^2
|
---|
| 434 | // x[y(2-xy)] == 1 (mod m^2)
|
---|
| 435 | // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
|
---|
| 436 | // should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
|
---|
| 437 | // JS multiply "overflows" differently from C/C++, so care is needed here.
|
---|
| 438 | function bnpInvDigit() {
|
---|
| 439 | if(this.t < 1) return 0;
|
---|
| 440 | var x = this[0];
|
---|
| 441 | if((x&1) == 0) return 0;
|
---|
| 442 | var y = x&3; // y == 1/x mod 2^2
|
---|
| 443 | y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
|
---|
| 444 | y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8
|
---|
| 445 | y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16
|
---|
| 446 | // last step - calculate inverse mod DV directly;
|
---|
| 447 | // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
|
---|
| 448 | y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits
|
---|
| 449 | // we really want the negative inverse, and -DV < y < DV
|
---|
| 450 | return (y>0)?this.DV-y:-y;
|
---|
| 451 | }
|
---|
| 452 |
|
---|
| 453 | // Montgomery reduction
|
---|
| 454 | function Montgomery(m) {
|
---|
| 455 | this.m = m;
|
---|
| 456 | this.mp = m.invDigit();
|
---|
| 457 | this.mpl = this.mp&0x7fff;
|
---|
| 458 | this.mph = this.mp>>15;
|
---|
| 459 | this.um = (1<<(m.DB-15))-1;
|
---|
| 460 | this.mt2 = 2*m.t;
|
---|
| 461 | }
|
---|
| 462 |
|
---|
| 463 | // xR mod m
|
---|
| 464 | function montConvert(x) {
|
---|
| 465 | var r = nbi();
|
---|
| 466 | x.abs().dlShiftTo(this.m.t,r);
|
---|
| 467 | r.divRemTo(this.m,null,r);
|
---|
| 468 | if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
|
---|
| 469 | return r;
|
---|
| 470 | }
|
---|
| 471 |
|
---|
| 472 | // x/R mod m
|
---|
| 473 | function montRevert(x) {
|
---|
| 474 | var r = nbi();
|
---|
| 475 | x.copyTo(r);
|
---|
| 476 | this.reduce(r);
|
---|
| 477 | return r;
|
---|
| 478 | }
|
---|
| 479 |
|
---|
| 480 | // x = x/R mod m (HAC 14.32)
|
---|
| 481 | function montReduce(x) {
|
---|
| 482 | while(x.t <= this.mt2) // pad x so am has enough room later
|
---|
| 483 | x[x.t++] = 0;
|
---|
| 484 | for(var i = 0; i < this.m.t; ++i) {
|
---|
| 485 | // faster way of calculating u0 = x[i]*mp mod DV
|
---|
| 486 | var j = x[i]&0x7fff;
|
---|
| 487 | var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM;
|
---|
| 488 | // use am to combine the multiply-shift-add into one call
|
---|
| 489 | j = i+this.m.t;
|
---|
| 490 | x[j] += this.m.am(0,u0,x,i,0,this.m.t);
|
---|
| 491 | // propagate carry
|
---|
| 492 | while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }
|
---|
| 493 | }
|
---|
| 494 | x.clamp();
|
---|
| 495 | x.drShiftTo(this.m.t,x);
|
---|
| 496 | if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
|
---|
| 497 | }
|
---|
| 498 |
|
---|
| 499 | // r = "x^2/R mod m"; x != r
|
---|
| 500 | function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
|
---|
| 501 |
|
---|
| 502 | // r = "xy/R mod m"; x,y != r
|
---|
| 503 | function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
|
---|
| 504 |
|
---|
| 505 | Montgomery.prototype.convert = montConvert;
|
---|
| 506 | Montgomery.prototype.revert = montRevert;
|
---|
| 507 | Montgomery.prototype.reduce = montReduce;
|
---|
| 508 | Montgomery.prototype.mulTo = montMulTo;
|
---|
| 509 | Montgomery.prototype.sqrTo = montSqrTo;
|
---|
| 510 |
|
---|
| 511 | // (protected) true iff this is even
|
---|
| 512 | function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }
|
---|
| 513 |
|
---|
| 514 | // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
|
---|
| 515 | function bnpExp(e,z) {
|
---|
| 516 | if(e > 0xffffffff || e < 1) return BigInteger.ONE;
|
---|
| 517 | var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
|
---|
| 518 | g.copyTo(r);
|
---|
| 519 | while(--i >= 0) {
|
---|
| 520 | z.sqrTo(r,r2);
|
---|
| 521 | if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
|
---|
| 522 | else { var t = r; r = r2; r2 = t; }
|
---|
| 523 | }
|
---|
| 524 | return z.revert(r);
|
---|
| 525 | }
|
---|
| 526 |
|
---|
| 527 | // (public) this^e % m, 0 <= e < 2^32
|
---|
| 528 | function bnModPowInt(e,m) {
|
---|
| 529 | var z;
|
---|
| 530 | if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
|
---|
| 531 | return this.exp(e,z);
|
---|
| 532 | }
|
---|
| 533 |
|
---|
| 534 | // protected
|
---|
| 535 | BigInteger.prototype.copyTo = bnpCopyTo;
|
---|
| 536 | BigInteger.prototype.fromInt = bnpFromInt;
|
---|
| 537 | BigInteger.prototype.fromString = bnpFromString;
|
---|
| 538 | BigInteger.prototype.clamp = bnpClamp;
|
---|
| 539 | BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
|
---|
| 540 | BigInteger.prototype.drShiftTo = bnpDRShiftTo;
|
---|
| 541 | BigInteger.prototype.lShiftTo = bnpLShiftTo;
|
---|
| 542 | BigInteger.prototype.rShiftTo = bnpRShiftTo;
|
---|
| 543 | BigInteger.prototype.subTo = bnpSubTo;
|
---|
| 544 | BigInteger.prototype.multiplyTo = bnpMultiplyTo;
|
---|
| 545 | BigInteger.prototype.squareTo = bnpSquareTo;
|
---|
| 546 | BigInteger.prototype.divRemTo = bnpDivRemTo;
|
---|
| 547 | BigInteger.prototype.invDigit = bnpInvDigit;
|
---|
| 548 | BigInteger.prototype.isEven = bnpIsEven;
|
---|
| 549 | BigInteger.prototype.exp = bnpExp;
|
---|
| 550 |
|
---|
| 551 | // public
|
---|
| 552 | BigInteger.prototype.toString = bnToString;
|
---|
| 553 | BigInteger.prototype.negate = bnNegate;
|
---|
| 554 | BigInteger.prototype.abs = bnAbs;
|
---|
| 555 | BigInteger.prototype.compareTo = bnCompareTo;
|
---|
| 556 | BigInteger.prototype.bitLength = bnBitLength;
|
---|
| 557 | BigInteger.prototype.mod = bnMod;
|
---|
| 558 | BigInteger.prototype.modPowInt = bnModPowInt;
|
---|
| 559 |
|
---|
| 560 | // "constants"
|
---|
| 561 | BigInteger.ZERO = nbv(0);
|
---|
| 562 | BigInteger.ONE = nbv(1);
|
---|
| 563 |
|
---|
| 564 | // Copyright (c) 2005-2009 Tom Wu
|
---|
| 565 | // All Rights Reserved.
|
---|
| 566 | // See "LICENSE" for details.
|
---|
| 567 |
|
---|
| 568 | // Extended JavaScript BN functions, required for RSA private ops.
|
---|
| 569 |
|
---|
| 570 | // Version 1.1: new BigInteger("0", 10) returns "proper" zero
|
---|
| 571 | // Version 1.2: square() API, isProbablePrime fix
|
---|
| 572 |
|
---|
| 573 | // (public)
|
---|
| 574 | function bnClone() { var r = nbi(); this.copyTo(r); return r; }
|
---|
| 575 |
|
---|
| 576 | // (public) return value as integer
|
---|
| 577 | function bnIntValue() {
|
---|
| 578 | if(this.s < 0) {
|
---|
| 579 | if(this.t == 1) return this[0]-this.DV;
|
---|
| 580 | else if(this.t == 0) return -1;
|
---|
| 581 | }
|
---|
| 582 | else if(this.t == 1) return this[0];
|
---|
| 583 | else if(this.t == 0) return 0;
|
---|
| 584 | // assumes 16 < DB < 32
|
---|
| 585 | return ((this[1]&((1<<(32-this.DB))-1))<<this.DB)|this[0];
|
---|
| 586 | }
|
---|
| 587 |
|
---|
| 588 | // (public) return value as byte
|
---|
| 589 | function bnByteValue() { return (this.t==0)?this.s:(this[0]<<24)>>24; }
|
---|
| 590 |
|
---|
| 591 | // (public) return value as short (assumes DB>=16)
|
---|
| 592 | function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; }
|
---|
| 593 |
|
---|
| 594 | // (protected) return x s.t. r^x < DV
|
---|
| 595 | function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); }
|
---|
| 596 |
|
---|
| 597 | // (public) 0 if this == 0, 1 if this > 0
|
---|
| 598 | function bnSigNum() {
|
---|
| 599 | if(this.s < 0) return -1;
|
---|
| 600 | else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
|
---|
| 601 | else return 1;
|
---|
| 602 | }
|
---|
| 603 |
|
---|
| 604 | // (protected) convert to radix string
|
---|
| 605 | function bnpToRadix(b) {
|
---|
| 606 | if(b == null) b = 10;
|
---|
| 607 | if(this.signum() == 0 || b < 2 || b > 36) return "0";
|
---|
| 608 | var cs = this.chunkSize(b);
|
---|
| 609 | var a = Math.pow(b,cs);
|
---|
| 610 | var d = nbv(a), y = nbi(), z = nbi(), r = "";
|
---|
| 611 | this.divRemTo(d,y,z);
|
---|
| 612 | while(y.signum() > 0) {
|
---|
| 613 | r = (a+z.intValue()).toString(b).substr(1) + r;
|
---|
| 614 | y.divRemTo(d,y,z);
|
---|
| 615 | }
|
---|
| 616 | return z.intValue().toString(b) + r;
|
---|
| 617 | }
|
---|
| 618 |
|
---|
| 619 | // (protected) convert from radix string
|
---|
| 620 | function bnpFromRadix(s,b) {
|
---|
| 621 | this.fromInt(0);
|
---|
| 622 | if(b == null) b = 10;
|
---|
| 623 | var cs = this.chunkSize(b);
|
---|
| 624 | var d = Math.pow(b,cs), mi = false, j = 0, w = 0;
|
---|
| 625 | for(var i = 0; i < s.length; ++i) {
|
---|
| 626 | var x = intAt(s,i);
|
---|
| 627 | if(x < 0) {
|
---|
| 628 | if(s.charAt(i) == "-" && this.signum() == 0) mi = true;
|
---|
| 629 | continue;
|
---|
| 630 | }
|
---|
| 631 | w = b*w+x;
|
---|
| 632 | if(++j >= cs) {
|
---|
| 633 | this.dMultiply(d);
|
---|
| 634 | this.dAddOffset(w,0);
|
---|
| 635 | j = 0;
|
---|
| 636 | w = 0;
|
---|
| 637 | }
|
---|
| 638 | }
|
---|
| 639 | if(j > 0) {
|
---|
| 640 | this.dMultiply(Math.pow(b,j));
|
---|
| 641 | this.dAddOffset(w,0);
|
---|
| 642 | }
|
---|
| 643 | if(mi) BigInteger.ZERO.subTo(this,this);
|
---|
| 644 | }
|
---|
| 645 |
|
---|
| 646 | // (protected) alternate constructor
|
---|
| 647 | function bnpFromNumber(a,b,c) {
|
---|
| 648 | if("number" == typeof b) {
|
---|
| 649 | // new BigInteger(int,int,RNG)
|
---|
| 650 | if(a < 2) this.fromInt(1);
|
---|
| 651 | else {
|
---|
| 652 | this.fromNumber(a,c);
|
---|
| 653 | if(!this.testBit(a-1)) // force MSB set
|
---|
| 654 | this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this);
|
---|
| 655 | if(this.isEven()) this.dAddOffset(1,0); // force odd
|
---|
| 656 | while(!this.isProbablePrime(b)) {
|
---|
| 657 | this.dAddOffset(2,0);
|
---|
| 658 | if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this);
|
---|
| 659 | }
|
---|
| 660 | }
|
---|
| 661 | }
|
---|
| 662 | else {
|
---|
| 663 | // new BigInteger(int,RNG)
|
---|
| 664 | var x = new Array(), t = a&7;
|
---|
| 665 | x.length = (a>>3)+1;
|
---|
| 666 | b.nextBytes(x);
|
---|
| 667 | if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0;
|
---|
| 668 | this.fromString(x,256);
|
---|
| 669 | }
|
---|
| 670 | }
|
---|
| 671 |
|
---|
| 672 | // (public) convert to bigendian byte array
|
---|
| 673 | function bnToByteArray() {
|
---|
| 674 | var i = this.t, r = new Array();
|
---|
| 675 | r[0] = this.s;
|
---|
| 676 | var p = this.DB-(i*this.DB)%8, d, k = 0;
|
---|
| 677 | if(i-- > 0) {
|
---|
| 678 | if(p < this.DB && (d = this[i]>>p) != (this.s&this.DM)>>p)
|
---|
| 679 | r[k++] = d|(this.s<<(this.DB-p));
|
---|
| 680 | while(i >= 0) {
|
---|
| 681 | if(p < 8) {
|
---|
| 682 | d = (this[i]&((1<<p)-1))<<(8-p);
|
---|
| 683 | d |= this[--i]>>(p+=this.DB-8);
|
---|
| 684 | }
|
---|
| 685 | else {
|
---|
| 686 | d = (this[i]>>(p-=8))&0xff;
|
---|
| 687 | if(p <= 0) { p += this.DB; --i; }
|
---|
| 688 | }
|
---|
| 689 | if((d&0x80) != 0) d |= -256;
|
---|
| 690 | if(k == 0 && (this.s&0x80) != (d&0x80)) ++k;
|
---|
| 691 | if(k > 0 || d != this.s) r[k++] = d;
|
---|
| 692 | }
|
---|
| 693 | }
|
---|
| 694 | return r;
|
---|
| 695 | }
|
---|
| 696 |
|
---|
| 697 | function bnEquals(a) { return(this.compareTo(a)==0); }
|
---|
| 698 | function bnMin(a) { return(this.compareTo(a)<0)?this:a; }
|
---|
| 699 | function bnMax(a) { return(this.compareTo(a)>0)?this:a; }
|
---|
| 700 |
|
---|
| 701 | // (protected) r = this op a (bitwise)
|
---|
| 702 | function bnpBitwiseTo(a,op,r) {
|
---|
| 703 | var i, f, m = Math.min(a.t,this.t);
|
---|
| 704 | for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]);
|
---|
| 705 | if(a.t < this.t) {
|
---|
| 706 | f = a.s&this.DM;
|
---|
| 707 | for(i = m; i < this.t; ++i) r[i] = op(this[i],f);
|
---|
| 708 | r.t = this.t;
|
---|
| 709 | }
|
---|
| 710 | else {
|
---|
| 711 | f = this.s&this.DM;
|
---|
| 712 | for(i = m; i < a.t; ++i) r[i] = op(f,a[i]);
|
---|
| 713 | r.t = a.t;
|
---|
| 714 | }
|
---|
| 715 | r.s = op(this.s,a.s);
|
---|
| 716 | r.clamp();
|
---|
| 717 | }
|
---|
| 718 |
|
---|
| 719 | // (public) this & a
|
---|
| 720 | function op_and(x,y) { return x&y; }
|
---|
| 721 | function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; }
|
---|
| 722 |
|
---|
| 723 | // (public) this | a
|
---|
| 724 | function op_or(x,y) { return x|y; }
|
---|
| 725 | function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; }
|
---|
| 726 |
|
---|
| 727 | // (public) this ^ a
|
---|
| 728 | function op_xor(x,y) { return x^y; }
|
---|
| 729 | function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; }
|
---|
| 730 |
|
---|
| 731 | // (public) this & ~a
|
---|
| 732 | function op_andnot(x,y) { return x&~y; }
|
---|
| 733 | function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; }
|
---|
| 734 |
|
---|
| 735 | // (public) ~this
|
---|
| 736 | function bnNot() {
|
---|
| 737 | var r = nbi();
|
---|
| 738 | for(var i = 0; i < this.t; ++i) r[i] = this.DM&~this[i];
|
---|
| 739 | r.t = this.t;
|
---|
| 740 | r.s = ~this.s;
|
---|
| 741 | return r;
|
---|
| 742 | }
|
---|
| 743 |
|
---|
| 744 | // (public) this << n
|
---|
| 745 | function bnShiftLeft(n) {
|
---|
| 746 | var r = nbi();
|
---|
| 747 | if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r);
|
---|
| 748 | return r;
|
---|
| 749 | }
|
---|
| 750 |
|
---|
| 751 | // (public) this >> n
|
---|
| 752 | function bnShiftRight(n) {
|
---|
| 753 | var r = nbi();
|
---|
| 754 | if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r);
|
---|
| 755 | return r;
|
---|
| 756 | }
|
---|
| 757 |
|
---|
| 758 | // return index of lowest 1-bit in x, x < 2^31
|
---|
| 759 | function lbit(x) {
|
---|
| 760 | if(x == 0) return -1;
|
---|
| 761 | var r = 0;
|
---|
| 762 | if((x&0xffff) == 0) { x >>= 16; r += 16; }
|
---|
| 763 | if((x&0xff) == 0) { x >>= 8; r += 8; }
|
---|
| 764 | if((x&0xf) == 0) { x >>= 4; r += 4; }
|
---|
| 765 | if((x&3) == 0) { x >>= 2; r += 2; }
|
---|
| 766 | if((x&1) == 0) ++r;
|
---|
| 767 | return r;
|
---|
| 768 | }
|
---|
| 769 |
|
---|
| 770 | // (public) returns index of lowest 1-bit (or -1 if none)
|
---|
| 771 | function bnGetLowestSetBit() {
|
---|
| 772 | for(var i = 0; i < this.t; ++i)
|
---|
| 773 | if(this[i] != 0) return i*this.DB+lbit(this[i]);
|
---|
| 774 | if(this.s < 0) return this.t*this.DB;
|
---|
| 775 | return -1;
|
---|
| 776 | }
|
---|
| 777 |
|
---|
| 778 | // return number of 1 bits in x
|
---|
| 779 | function cbit(x) {
|
---|
| 780 | var r = 0;
|
---|
| 781 | while(x != 0) { x &= x-1; ++r; }
|
---|
| 782 | return r;
|
---|
| 783 | }
|
---|
| 784 |
|
---|
| 785 | // (public) return number of set bits
|
---|
| 786 | function bnBitCount() {
|
---|
| 787 | var r = 0, x = this.s&this.DM;
|
---|
| 788 | for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x);
|
---|
| 789 | return r;
|
---|
| 790 | }
|
---|
| 791 |
|
---|
| 792 | // (public) true iff nth bit is set
|
---|
| 793 | function bnTestBit(n) {
|
---|
| 794 | var j = Math.floor(n/this.DB);
|
---|
| 795 | if(j >= this.t) return(this.s!=0);
|
---|
| 796 | return((this[j]&(1<<(n%this.DB)))!=0);
|
---|
| 797 | }
|
---|
| 798 |
|
---|
| 799 | // (protected) this op (1<<n)
|
---|
| 800 | function bnpChangeBit(n,op) {
|
---|
| 801 | var r = BigInteger.ONE.shiftLeft(n);
|
---|
| 802 | this.bitwiseTo(r,op,r);
|
---|
| 803 | return r;
|
---|
| 804 | }
|
---|
| 805 |
|
---|
| 806 | // (public) this | (1<<n)
|
---|
| 807 | function bnSetBit(n) { return this.changeBit(n,op_or); }
|
---|
| 808 |
|
---|
| 809 | // (public) this & ~(1<<n)
|
---|
| 810 | function bnClearBit(n) { return this.changeBit(n,op_andnot); }
|
---|
| 811 |
|
---|
| 812 | // (public) this ^ (1<<n)
|
---|
| 813 | function bnFlipBit(n) { return this.changeBit(n,op_xor); }
|
---|
| 814 |
|
---|
| 815 | // (protected) r = this + a
|
---|
| 816 | function bnpAddTo(a,r) {
|
---|
| 817 | var i = 0, c = 0, m = Math.min(a.t,this.t);
|
---|
| 818 | while(i < m) {
|
---|
| 819 | c += this[i]+a[i];
|
---|
| 820 | r[i++] = c&this.DM;
|
---|
| 821 | c >>= this.DB;
|
---|
| 822 | }
|
---|
| 823 | if(a.t < this.t) {
|
---|
| 824 | c += a.s;
|
---|
| 825 | while(i < this.t) {
|
---|
| 826 | c += this[i];
|
---|
| 827 | r[i++] = c&this.DM;
|
---|
| 828 | c >>= this.DB;
|
---|
| 829 | }
|
---|
| 830 | c += this.s;
|
---|
| 831 | }
|
---|
| 832 | else {
|
---|
| 833 | c += this.s;
|
---|
| 834 | while(i < a.t) {
|
---|
| 835 | c += a[i];
|
---|
| 836 | r[i++] = c&this.DM;
|
---|
| 837 | c >>= this.DB;
|
---|
| 838 | }
|
---|
| 839 | c += a.s;
|
---|
| 840 | }
|
---|
| 841 | r.s = (c<0)?-1:0;
|
---|
| 842 | if(c > 0) r[i++] = c;
|
---|
| 843 | else if(c < -1) r[i++] = this.DV+c;
|
---|
| 844 | r.t = i;
|
---|
| 845 | r.clamp();
|
---|
| 846 | }
|
---|
| 847 |
|
---|
| 848 | // (public) this + a
|
---|
| 849 | function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; }
|
---|
| 850 |
|
---|
| 851 | // (public) this - a
|
---|
| 852 | function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; }
|
---|
| 853 |
|
---|
| 854 | // (public) this * a
|
---|
| 855 | function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; }
|
---|
| 856 |
|
---|
| 857 | // (public) this^2
|
---|
| 858 | function bnSquare() { var r = nbi(); this.squareTo(r); return r; }
|
---|
| 859 |
|
---|
| 860 | // (public) this / a
|
---|
| 861 | function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; }
|
---|
| 862 |
|
---|
| 863 | // (public) this % a
|
---|
| 864 | function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; }
|
---|
| 865 |
|
---|
| 866 | // (public) [this/a,this%a]
|
---|
| 867 | function bnDivideAndRemainder(a) {
|
---|
| 868 | var q = nbi(), r = nbi();
|
---|
| 869 | this.divRemTo(a,q,r);
|
---|
| 870 | return new Array(q,r);
|
---|
| 871 | }
|
---|
| 872 |
|
---|
| 873 | // (protected) this *= n, this >= 0, 1 < n < DV
|
---|
| 874 | function bnpDMultiply(n) {
|
---|
| 875 | this[this.t] = this.am(0,n-1,this,0,0,this.t);
|
---|
| 876 | ++this.t;
|
---|
| 877 | this.clamp();
|
---|
| 878 | }
|
---|
| 879 |
|
---|
| 880 | // (protected) this += n << w words, this >= 0
|
---|
| 881 | function bnpDAddOffset(n,w) {
|
---|
| 882 | if(n == 0) return;
|
---|
| 883 | while(this.t <= w) this[this.t++] = 0;
|
---|
| 884 | this[w] += n;
|
---|
| 885 | while(this[w] >= this.DV) {
|
---|
| 886 | this[w] -= this.DV;
|
---|
| 887 | if(++w >= this.t) this[this.t++] = 0;
|
---|
| 888 | ++this[w];
|
---|
| 889 | }
|
---|
| 890 | }
|
---|
| 891 |
|
---|
| 892 | // A "null" reducer
|
---|
| 893 | function NullExp() {}
|
---|
| 894 | function nNop(x) { return x; }
|
---|
| 895 | function nMulTo(x,y,r) { x.multiplyTo(y,r); }
|
---|
| 896 | function nSqrTo(x,r) { x.squareTo(r); }
|
---|
| 897 |
|
---|
| 898 | NullExp.prototype.convert = nNop;
|
---|
| 899 | NullExp.prototype.revert = nNop;
|
---|
| 900 | NullExp.prototype.mulTo = nMulTo;
|
---|
| 901 | NullExp.prototype.sqrTo = nSqrTo;
|
---|
| 902 |
|
---|
| 903 | // (public) this^e
|
---|
| 904 | function bnPow(e) { return this.exp(e,new NullExp()); }
|
---|
| 905 |
|
---|
| 906 | // (protected) r = lower n words of "this * a", a.t <= n
|
---|
| 907 | // "this" should be the larger one if appropriate.
|
---|
| 908 | function bnpMultiplyLowerTo(a,n,r) {
|
---|
| 909 | var i = Math.min(this.t+a.t,n);
|
---|
| 910 | r.s = 0; // assumes a,this >= 0
|
---|
| 911 | r.t = i;
|
---|
| 912 | while(i > 0) r[--i] = 0;
|
---|
| 913 | var j;
|
---|
| 914 | for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t);
|
---|
| 915 | for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i);
|
---|
| 916 | r.clamp();
|
---|
| 917 | }
|
---|
| 918 |
|
---|
| 919 | // (protected) r = "this * a" without lower n words, n > 0
|
---|
| 920 | // "this" should be the larger one if appropriate.
|
---|
| 921 | function bnpMultiplyUpperTo(a,n,r) {
|
---|
| 922 | --n;
|
---|
| 923 | var i = r.t = this.t+a.t-n;
|
---|
| 924 | r.s = 0; // assumes a,this >= 0
|
---|
| 925 | while(--i >= 0) r[i] = 0;
|
---|
| 926 | for(i = Math.max(n-this.t,0); i < a.t; ++i)
|
---|
| 927 | r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n);
|
---|
| 928 | r.clamp();
|
---|
| 929 | r.drShiftTo(1,r);
|
---|
| 930 | }
|
---|
| 931 |
|
---|
| 932 | // Barrett modular reduction
|
---|
| 933 | function Barrett(m) {
|
---|
| 934 | // setup Barrett
|
---|
| 935 | this.r2 = nbi();
|
---|
| 936 | this.q3 = nbi();
|
---|
| 937 | BigInteger.ONE.dlShiftTo(2*m.t,this.r2);
|
---|
| 938 | this.mu = this.r2.divide(m);
|
---|
| 939 | this.m = m;
|
---|
| 940 | }
|
---|
| 941 |
|
---|
| 942 | function barrettConvert(x) {
|
---|
| 943 | if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m);
|
---|
| 944 | else if(x.compareTo(this.m) < 0) return x;
|
---|
| 945 | else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; }
|
---|
| 946 | }
|
---|
| 947 |
|
---|
| 948 | function barrettRevert(x) { return x; }
|
---|
| 949 |
|
---|
| 950 | // x = x mod m (HAC 14.42)
|
---|
| 951 | function barrettReduce(x) {
|
---|
| 952 | x.drShiftTo(this.m.t-1,this.r2);
|
---|
| 953 | if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); }
|
---|
| 954 | this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3);
|
---|
| 955 | this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2);
|
---|
| 956 | while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1);
|
---|
| 957 | x.subTo(this.r2,x);
|
---|
| 958 | while(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
|
---|
| 959 | }
|
---|
| 960 |
|
---|
| 961 | // r = x^2 mod m; x != r
|
---|
| 962 | function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
|
---|
| 963 |
|
---|
| 964 | // r = x*y mod m; x,y != r
|
---|
| 965 | function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
|
---|
| 966 |
|
---|
| 967 | Barrett.prototype.convert = barrettConvert;
|
---|
| 968 | Barrett.prototype.revert = barrettRevert;
|
---|
| 969 | Barrett.prototype.reduce = barrettReduce;
|
---|
| 970 | Barrett.prototype.mulTo = barrettMulTo;
|
---|
| 971 | Barrett.prototype.sqrTo = barrettSqrTo;
|
---|
| 972 |
|
---|
| 973 | // (public) this^e % m (HAC 14.85)
|
---|
| 974 | function bnModPow(e,m) {
|
---|
| 975 | var i = e.bitLength(), k, r = nbv(1), z;
|
---|
| 976 | if(i <= 0) return r;
|
---|
| 977 | else if(i < 18) k = 1;
|
---|
| 978 | else if(i < 48) k = 3;
|
---|
| 979 | else if(i < 144) k = 4;
|
---|
| 980 | else if(i < 768) k = 5;
|
---|
| 981 | else k = 6;
|
---|
| 982 | if(i < 8)
|
---|
| 983 | z = new Classic(m);
|
---|
| 984 | else if(m.isEven())
|
---|
| 985 | z = new Barrett(m);
|
---|
| 986 | else
|
---|
| 987 | z = new Montgomery(m);
|
---|
| 988 |
|
---|
| 989 | // precomputation
|
---|
| 990 | var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1;
|
---|
| 991 | g[1] = z.convert(this);
|
---|
| 992 | if(k > 1) {
|
---|
| 993 | var g2 = nbi();
|
---|
| 994 | z.sqrTo(g[1],g2);
|
---|
| 995 | while(n <= km) {
|
---|
| 996 | g[n] = nbi();
|
---|
| 997 | z.mulTo(g2,g[n-2],g[n]);
|
---|
| 998 | n += 2;
|
---|
| 999 | }
|
---|
| 1000 | }
|
---|
| 1001 |
|
---|
| 1002 | var j = e.t-1, w, is1 = true, r2 = nbi(), t;
|
---|
| 1003 | i = nbits(e[j])-1;
|
---|
| 1004 | while(j >= 0) {
|
---|
| 1005 | if(i >= k1) w = (e[j]>>(i-k1))&km;
|
---|
| 1006 | else {
|
---|
| 1007 | w = (e[j]&((1<<(i+1))-1))<<(k1-i);
|
---|
| 1008 | if(j > 0) w |= e[j-1]>>(this.DB+i-k1);
|
---|
| 1009 | }
|
---|
| 1010 |
|
---|
| 1011 | n = k;
|
---|
| 1012 | while((w&1) == 0) { w >>= 1; --n; }
|
---|
| 1013 | if((i -= n) < 0) { i += this.DB; --j; }
|
---|
| 1014 | if(is1) { // ret == 1, don't bother squaring or multiplying it
|
---|
| 1015 | g[w].copyTo(r);
|
---|
| 1016 | is1 = false;
|
---|
| 1017 | }
|
---|
| 1018 | else {
|
---|
| 1019 | while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; }
|
---|
| 1020 | if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; }
|
---|
| 1021 | z.mulTo(r2,g[w],r);
|
---|
| 1022 | }
|
---|
| 1023 |
|
---|
| 1024 | while(j >= 0 && (e[j]&(1<<i)) == 0) {
|
---|
| 1025 | z.sqrTo(r,r2); t = r; r = r2; r2 = t;
|
---|
| 1026 | if(--i < 0) { i = this.DB-1; --j; }
|
---|
| 1027 | }
|
---|
| 1028 | }
|
---|
| 1029 | return z.revert(r);
|
---|
| 1030 | }
|
---|
| 1031 |
|
---|
| 1032 | // (public) gcd(this,a) (HAC 14.54)
|
---|
| 1033 | function bnGCD(a) {
|
---|
| 1034 | var x = (this.s<0)?this.negate():this.clone();
|
---|
| 1035 | var y = (a.s<0)?a.negate():a.clone();
|
---|
| 1036 | if(x.compareTo(y) < 0) { var t = x; x = y; y = t; }
|
---|
| 1037 | var i = x.getLowestSetBit(), g = y.getLowestSetBit();
|
---|
| 1038 | if(g < 0) return x;
|
---|
| 1039 | if(i < g) g = i;
|
---|
| 1040 | if(g > 0) {
|
---|
| 1041 | x.rShiftTo(g,x);
|
---|
| 1042 | y.rShiftTo(g,y);
|
---|
| 1043 | }
|
---|
| 1044 | while(x.signum() > 0) {
|
---|
| 1045 | if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x);
|
---|
| 1046 | if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y);
|
---|
| 1047 | if(x.compareTo(y) >= 0) {
|
---|
| 1048 | x.subTo(y,x);
|
---|
| 1049 | x.rShiftTo(1,x);
|
---|
| 1050 | }
|
---|
| 1051 | else {
|
---|
| 1052 | y.subTo(x,y);
|
---|
| 1053 | y.rShiftTo(1,y);
|
---|
| 1054 | }
|
---|
| 1055 | }
|
---|
| 1056 | if(g > 0) y.lShiftTo(g,y);
|
---|
| 1057 | return y;
|
---|
| 1058 | }
|
---|
| 1059 |
|
---|
| 1060 | // (protected) this % n, n < 2^26
|
---|
| 1061 | function bnpModInt(n) {
|
---|
| 1062 | if(n <= 0) return 0;
|
---|
| 1063 | var d = this.DV%n, r = (this.s<0)?n-1:0;
|
---|
| 1064 | if(this.t > 0)
|
---|
| 1065 | if(d == 0) r = this[0]%n;
|
---|
| 1066 | else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n;
|
---|
| 1067 | return r;
|
---|
| 1068 | }
|
---|
| 1069 |
|
---|
| 1070 | // (public) 1/this % m (HAC 14.61)
|
---|
| 1071 | function bnModInverse(m) {
|
---|
| 1072 | var ac = m.isEven();
|
---|
| 1073 | if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;
|
---|
| 1074 | var u = m.clone(), v = this.clone();
|
---|
| 1075 | var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1);
|
---|
| 1076 | while(u.signum() != 0) {
|
---|
| 1077 | while(u.isEven()) {
|
---|
| 1078 | u.rShiftTo(1,u);
|
---|
| 1079 | if(ac) {
|
---|
| 1080 | if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); }
|
---|
| 1081 | a.rShiftTo(1,a);
|
---|
| 1082 | }
|
---|
| 1083 | else if(!b.isEven()) b.subTo(m,b);
|
---|
| 1084 | b.rShiftTo(1,b);
|
---|
| 1085 | }
|
---|
| 1086 | while(v.isEven()) {
|
---|
| 1087 | v.rShiftTo(1,v);
|
---|
| 1088 | if(ac) {
|
---|
| 1089 | if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); }
|
---|
| 1090 | c.rShiftTo(1,c);
|
---|
| 1091 | }
|
---|
| 1092 | else if(!d.isEven()) d.subTo(m,d);
|
---|
| 1093 | d.rShiftTo(1,d);
|
---|
| 1094 | }
|
---|
| 1095 | if(u.compareTo(v) >= 0) {
|
---|
| 1096 | u.subTo(v,u);
|
---|
| 1097 | if(ac) a.subTo(c,a);
|
---|
| 1098 | b.subTo(d,b);
|
---|
| 1099 | }
|
---|
| 1100 | else {
|
---|
| 1101 | v.subTo(u,v);
|
---|
| 1102 | if(ac) c.subTo(a,c);
|
---|
| 1103 | d.subTo(b,d);
|
---|
| 1104 | }
|
---|
| 1105 | }
|
---|
| 1106 | if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
|
---|
| 1107 | if(d.compareTo(m) >= 0) return d.subtract(m);
|
---|
| 1108 | if(d.signum() < 0) d.addTo(m,d); else return d;
|
---|
| 1109 | if(d.signum() < 0) return d.add(m); else return d;
|
---|
| 1110 | }
|
---|
| 1111 |
|
---|
| 1112 | var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997];
|
---|
| 1113 | var lplim = (1<<26)/lowprimes[lowprimes.length-1];
|
---|
| 1114 |
|
---|
| 1115 | // (public) test primality with certainty >= 1-.5^t
|
---|
| 1116 | function bnIsProbablePrime(t) {
|
---|
| 1117 | var i, x = this.abs();
|
---|
| 1118 | if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) {
|
---|
| 1119 | for(i = 0; i < lowprimes.length; ++i)
|
---|
| 1120 | if(x[0] == lowprimes[i]) return true;
|
---|
| 1121 | return false;
|
---|
| 1122 | }
|
---|
| 1123 | if(x.isEven()) return false;
|
---|
| 1124 | i = 1;
|
---|
| 1125 | while(i < lowprimes.length) {
|
---|
| 1126 | var m = lowprimes[i], j = i+1;
|
---|
| 1127 | while(j < lowprimes.length && m < lplim) m *= lowprimes[j++];
|
---|
| 1128 | m = x.modInt(m);
|
---|
| 1129 | while(i < j) if(m%lowprimes[i++] == 0) return false;
|
---|
| 1130 | }
|
---|
| 1131 | return x.millerRabin(t);
|
---|
| 1132 | }
|
---|
| 1133 |
|
---|
| 1134 | // (protected) true if probably prime (HAC 4.24, Miller-Rabin)
|
---|
| 1135 | function bnpMillerRabin(t) {
|
---|
| 1136 | var n1 = this.subtract(BigInteger.ONE);
|
---|
| 1137 | var k = n1.getLowestSetBit();
|
---|
| 1138 | if(k <= 0) return false;
|
---|
| 1139 | var r = n1.shiftRight(k);
|
---|
| 1140 | t = (t+1)>>1;
|
---|
| 1141 | if(t > lowprimes.length) t = lowprimes.length;
|
---|
| 1142 | var a = nbi();
|
---|
| 1143 | for(var i = 0; i < t; ++i) {
|
---|
| 1144 | //Pick bases at random, instead of starting at 2
|
---|
| 1145 | a.fromInt(lowprimes[Math.floor(Math.random()*lowprimes.length)]);
|
---|
| 1146 | var y = a.modPow(r,this);
|
---|
| 1147 | if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
|
---|
| 1148 | var j = 1;
|
---|
| 1149 | while(j++ < k && y.compareTo(n1) != 0) {
|
---|
| 1150 | y = y.modPowInt(2,this);
|
---|
| 1151 | if(y.compareTo(BigInteger.ONE) == 0) return false;
|
---|
| 1152 | }
|
---|
| 1153 | if(y.compareTo(n1) != 0) return false;
|
---|
| 1154 | }
|
---|
| 1155 | }
|
---|
| 1156 | return true;
|
---|
| 1157 | }
|
---|
| 1158 |
|
---|
| 1159 | // protected
|
---|
| 1160 | BigInteger.prototype.chunkSize = bnpChunkSize;
|
---|
| 1161 | BigInteger.prototype.toRadix = bnpToRadix;
|
---|
| 1162 | BigInteger.prototype.fromRadix = bnpFromRadix;
|
---|
| 1163 | BigInteger.prototype.fromNumber = bnpFromNumber;
|
---|
| 1164 | BigInteger.prototype.bitwiseTo = bnpBitwiseTo;
|
---|
| 1165 | BigInteger.prototype.changeBit = bnpChangeBit;
|
---|
| 1166 | BigInteger.prototype.addTo = bnpAddTo;
|
---|
| 1167 | BigInteger.prototype.dMultiply = bnpDMultiply;
|
---|
| 1168 | BigInteger.prototype.dAddOffset = bnpDAddOffset;
|
---|
| 1169 | BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;
|
---|
| 1170 | BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;
|
---|
| 1171 | BigInteger.prototype.modInt = bnpModInt;
|
---|
| 1172 | BigInteger.prototype.millerRabin = bnpMillerRabin;
|
---|
| 1173 |
|
---|
| 1174 | // public
|
---|
| 1175 | BigInteger.prototype.clone = bnClone;
|
---|
| 1176 | BigInteger.prototype.intValue = bnIntValue;
|
---|
| 1177 | BigInteger.prototype.byteValue = bnByteValue;
|
---|
| 1178 | BigInteger.prototype.shortValue = bnShortValue;
|
---|
| 1179 | BigInteger.prototype.signum = bnSigNum;
|
---|
| 1180 | BigInteger.prototype.toByteArray = bnToByteArray;
|
---|
| 1181 | BigInteger.prototype.equals = bnEquals;
|
---|
| 1182 | BigInteger.prototype.min = bnMin;
|
---|
| 1183 | BigInteger.prototype.max = bnMax;
|
---|
| 1184 | BigInteger.prototype.and = bnAnd;
|
---|
| 1185 | BigInteger.prototype.or = bnOr;
|
---|
| 1186 | BigInteger.prototype.xor = bnXor;
|
---|
| 1187 | BigInteger.prototype.andNot = bnAndNot;
|
---|
| 1188 | BigInteger.prototype.not = bnNot;
|
---|
| 1189 | BigInteger.prototype.shiftLeft = bnShiftLeft;
|
---|
| 1190 | BigInteger.prototype.shiftRight = bnShiftRight;
|
---|
| 1191 | BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;
|
---|
| 1192 | BigInteger.prototype.bitCount = bnBitCount;
|
---|
| 1193 | BigInteger.prototype.testBit = bnTestBit;
|
---|
| 1194 | BigInteger.prototype.setBit = bnSetBit;
|
---|
| 1195 | BigInteger.prototype.clearBit = bnClearBit;
|
---|
| 1196 | BigInteger.prototype.flipBit = bnFlipBit;
|
---|
| 1197 | BigInteger.prototype.add = bnAdd;
|
---|
| 1198 | BigInteger.prototype.subtract = bnSubtract;
|
---|
| 1199 | BigInteger.prototype.multiply = bnMultiply;
|
---|
| 1200 | BigInteger.prototype.divide = bnDivide;
|
---|
| 1201 | BigInteger.prototype.remainder = bnRemainder;
|
---|
| 1202 | BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;
|
---|
| 1203 | BigInteger.prototype.modPow = bnModPow;
|
---|
| 1204 | BigInteger.prototype.modInverse = bnModInverse;
|
---|
| 1205 | BigInteger.prototype.pow = bnPow;
|
---|
| 1206 | BigInteger.prototype.gcd = bnGCD;
|
---|
| 1207 | BigInteger.prototype.isProbablePrime = bnIsProbablePrime;
|
---|
| 1208 |
|
---|
| 1209 | // JSBN-specific extension
|
---|
| 1210 | BigInteger.prototype.square = bnSquare;
|
---|
| 1211 |
|
---|
| 1212 | // Expose the Barrett function
|
---|
| 1213 | BigInteger.prototype.Barrett = Barrett
|
---|
| 1214 |
|
---|
| 1215 | // BigInteger interfaces not implemented in jsbn:
|
---|
| 1216 |
|
---|
| 1217 | // BigInteger(int signum, byte[] magnitude)
|
---|
| 1218 | // double doubleValue()
|
---|
| 1219 | // float floatValue()
|
---|
| 1220 | // int hashCode()
|
---|
| 1221 | // long longValue()
|
---|
| 1222 | // static BigInteger valueOf(long val)
|
---|
| 1223 |
|
---|
| 1224 | // Random number generator - requires a PRNG backend, e.g. prng4.js
|
---|
| 1225 |
|
---|
| 1226 | // For best results, put code like
|
---|
| 1227 | // <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'>
|
---|
| 1228 | // in your main HTML document.
|
---|
| 1229 |
|
---|
| 1230 | var rng_state;
|
---|
| 1231 | var rng_pool;
|
---|
| 1232 | var rng_pptr;
|
---|
| 1233 |
|
---|
| 1234 | // Mix in a 32-bit integer into the pool
|
---|
| 1235 | function rng_seed_int(x) {
|
---|
| 1236 | rng_pool[rng_pptr++] ^= x & 255;
|
---|
| 1237 | rng_pool[rng_pptr++] ^= (x >> 8) & 255;
|
---|
| 1238 | rng_pool[rng_pptr++] ^= (x >> 16) & 255;
|
---|
| 1239 | rng_pool[rng_pptr++] ^= (x >> 24) & 255;
|
---|
| 1240 | if(rng_pptr >= rng_psize) rng_pptr -= rng_psize;
|
---|
| 1241 | }
|
---|
| 1242 |
|
---|
| 1243 | // Mix in the current time (w/milliseconds) into the pool
|
---|
| 1244 | function rng_seed_time() {
|
---|
| 1245 | rng_seed_int(new Date().getTime());
|
---|
| 1246 | }
|
---|
| 1247 |
|
---|
| 1248 | // Initialize the pool with junk if needed.
|
---|
| 1249 | if(rng_pool == null) {
|
---|
| 1250 | rng_pool = new Array();
|
---|
| 1251 | rng_pptr = 0;
|
---|
| 1252 | var t;
|
---|
| 1253 | if(typeof window !== "undefined" && window.crypto) {
|
---|
| 1254 | if (window.crypto.getRandomValues) {
|
---|
| 1255 | // Use webcrypto if available
|
---|
| 1256 | var ua = new Uint8Array(32);
|
---|
| 1257 | window.crypto.getRandomValues(ua);
|
---|
| 1258 | for(t = 0; t < 32; ++t)
|
---|
| 1259 | rng_pool[rng_pptr++] = ua[t];
|
---|
| 1260 | }
|
---|
| 1261 | else if(navigator.appName == "Netscape" && navigator.appVersion < "5") {
|
---|
| 1262 | // Extract entropy (256 bits) from NS4 RNG if available
|
---|
| 1263 | var z = window.crypto.random(32);
|
---|
| 1264 | for(t = 0; t < z.length; ++t)
|
---|
| 1265 | rng_pool[rng_pptr++] = z.charCodeAt(t) & 255;
|
---|
| 1266 | }
|
---|
| 1267 | }
|
---|
| 1268 | while(rng_pptr < rng_psize) { // extract some randomness from Math.random()
|
---|
| 1269 | t = Math.floor(65536 * Math.random());
|
---|
| 1270 | rng_pool[rng_pptr++] = t >>> 8;
|
---|
| 1271 | rng_pool[rng_pptr++] = t & 255;
|
---|
| 1272 | }
|
---|
| 1273 | rng_pptr = 0;
|
---|
| 1274 | rng_seed_time();
|
---|
| 1275 | //rng_seed_int(window.screenX);
|
---|
| 1276 | //rng_seed_int(window.screenY);
|
---|
| 1277 | }
|
---|
| 1278 |
|
---|
| 1279 | function rng_get_byte() {
|
---|
| 1280 | if(rng_state == null) {
|
---|
| 1281 | rng_seed_time();
|
---|
| 1282 | rng_state = prng_newstate();
|
---|
| 1283 | rng_state.init(rng_pool);
|
---|
| 1284 | for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr)
|
---|
| 1285 | rng_pool[rng_pptr] = 0;
|
---|
| 1286 | rng_pptr = 0;
|
---|
| 1287 | //rng_pool = null;
|
---|
| 1288 | }
|
---|
| 1289 | // TODO: allow reseeding after first request
|
---|
| 1290 | return rng_state.next();
|
---|
| 1291 | }
|
---|
| 1292 |
|
---|
| 1293 | function rng_get_bytes(ba) {
|
---|
| 1294 | var i;
|
---|
| 1295 | for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte();
|
---|
| 1296 | }
|
---|
| 1297 |
|
---|
| 1298 | function SecureRandom() {}
|
---|
| 1299 |
|
---|
| 1300 | SecureRandom.prototype.nextBytes = rng_get_bytes;
|
---|
| 1301 |
|
---|
| 1302 | // prng4.js - uses Arcfour as a PRNG
|
---|
| 1303 |
|
---|
| 1304 | function Arcfour() {
|
---|
| 1305 | this.i = 0;
|
---|
| 1306 | this.j = 0;
|
---|
| 1307 | this.S = new Array();
|
---|
| 1308 | }
|
---|
| 1309 |
|
---|
| 1310 | // Initialize arcfour context from key, an array of ints, each from [0..255]
|
---|
| 1311 | function ARC4init(key) {
|
---|
| 1312 | var i, j, t;
|
---|
| 1313 | for(i = 0; i < 256; ++i)
|
---|
| 1314 | this.S[i] = i;
|
---|
| 1315 | j = 0;
|
---|
| 1316 | for(i = 0; i < 256; ++i) {
|
---|
| 1317 | j = (j + this.S[i] + key[i % key.length]) & 255;
|
---|
| 1318 | t = this.S[i];
|
---|
| 1319 | this.S[i] = this.S[j];
|
---|
| 1320 | this.S[j] = t;
|
---|
| 1321 | }
|
---|
| 1322 | this.i = 0;
|
---|
| 1323 | this.j = 0;
|
---|
| 1324 | }
|
---|
| 1325 |
|
---|
| 1326 | function ARC4next() {
|
---|
| 1327 | var t;
|
---|
| 1328 | this.i = (this.i + 1) & 255;
|
---|
| 1329 | this.j = (this.j + this.S[this.i]) & 255;
|
---|
| 1330 | t = this.S[this.i];
|
---|
| 1331 | this.S[this.i] = this.S[this.j];
|
---|
| 1332 | this.S[this.j] = t;
|
---|
| 1333 | return this.S[(t + this.S[this.i]) & 255];
|
---|
| 1334 | }
|
---|
| 1335 |
|
---|
| 1336 | Arcfour.prototype.init = ARC4init;
|
---|
| 1337 | Arcfour.prototype.next = ARC4next;
|
---|
| 1338 |
|
---|
| 1339 | // Plug in your RNG constructor here
|
---|
| 1340 | function prng_newstate() {
|
---|
| 1341 | return new Arcfour();
|
---|
| 1342 | }
|
---|
| 1343 |
|
---|
| 1344 | // Pool size must be a multiple of 4 and greater than 32.
|
---|
| 1345 | // An array of bytes the size of the pool will be passed to init()
|
---|
| 1346 | var rng_psize = 256;
|
---|
| 1347 |
|
---|
| 1348 | BigInteger.SecureRandom = SecureRandom;
|
---|
| 1349 | BigInteger.BigInteger = BigInteger;
|
---|
| 1350 | if (typeof exports !== 'undefined') {
|
---|
| 1351 | exports = module.exports = BigInteger;
|
---|
| 1352 | } else {
|
---|
| 1353 | this.BigInteger = BigInteger;
|
---|
| 1354 | this.SecureRandom = SecureRandom;
|
---|
| 1355 | }
|
---|
| 1356 |
|
---|
| 1357 | }).call(this);
|
---|