1 | (function(){
|
---|
2 |
|
---|
3 | // Copyright (c) 2005 Tom Wu
|
---|
4 | // All Rights Reserved.
|
---|
5 | // See "LICENSE" for details.
|
---|
6 |
|
---|
7 | // Basic JavaScript BN library - subset useful for RSA encryption.
|
---|
8 |
|
---|
9 | // Bits per digit
|
---|
10 | var dbits;
|
---|
11 |
|
---|
12 | // JavaScript engine analysis
|
---|
13 | var canary = 0xdeadbeefcafe;
|
---|
14 | var j_lm = ((canary&0xffffff)==0xefcafe);
|
---|
15 |
|
---|
16 | // (public) Constructor
|
---|
17 | function BigInteger(a,b,c) {
|
---|
18 | if(a != null)
|
---|
19 | if("number" == typeof a) this.fromNumber(a,b,c);
|
---|
20 | else if(b == null && "string" != typeof a) this.fromString(a,256);
|
---|
21 | else this.fromString(a,b);
|
---|
22 | }
|
---|
23 |
|
---|
24 | // return new, unset BigInteger
|
---|
25 | function nbi() { return new BigInteger(null); }
|
---|
26 |
|
---|
27 | // am: Compute w_j += (x*this_i), propagate carries,
|
---|
28 | // c is initial carry, returns final carry.
|
---|
29 | // c < 3*dvalue, x < 2*dvalue, this_i < dvalue
|
---|
30 | // We need to select the fastest one that works in this environment.
|
---|
31 |
|
---|
32 | // am1: use a single mult and divide to get the high bits,
|
---|
33 | // max digit bits should be 26 because
|
---|
34 | // max internal value = 2*dvalue^2-2*dvalue (< 2^53)
|
---|
35 | function am1(i,x,w,j,c,n) {
|
---|
36 | while(--n >= 0) {
|
---|
37 | var v = x*this[i++]+w[j]+c;
|
---|
38 | c = Math.floor(v/0x4000000);
|
---|
39 | w[j++] = v&0x3ffffff;
|
---|
40 | }
|
---|
41 | return c;
|
---|
42 | }
|
---|
43 | // am2 avoids a big mult-and-extract completely.
|
---|
44 | // Max digit bits should be <= 30 because we do bitwise ops
|
---|
45 | // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
|
---|
46 | function am2(i,x,w,j,c,n) {
|
---|
47 | var xl = x&0x7fff, xh = x>>15;
|
---|
48 | while(--n >= 0) {
|
---|
49 | var l = this[i]&0x7fff;
|
---|
50 | var h = this[i++]>>15;
|
---|
51 | var m = xh*l+h*xl;
|
---|
52 | l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);
|
---|
53 | c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
|
---|
54 | w[j++] = l&0x3fffffff;
|
---|
55 | }
|
---|
56 | return c;
|
---|
57 | }
|
---|
58 | // Alternately, set max digit bits to 28 since some
|
---|
59 | // browsers slow down when dealing with 32-bit numbers.
|
---|
60 | function am3(i,x,w,j,c,n) {
|
---|
61 | var xl = x&0x3fff, xh = x>>14;
|
---|
62 | while(--n >= 0) {
|
---|
63 | var l = this[i]&0x3fff;
|
---|
64 | var h = this[i++]>>14;
|
---|
65 | var m = xh*l+h*xl;
|
---|
66 | l = xl*l+((m&0x3fff)<<14)+w[j]+c;
|
---|
67 | c = (l>>28)+(m>>14)+xh*h;
|
---|
68 | w[j++] = l&0xfffffff;
|
---|
69 | }
|
---|
70 | return c;
|
---|
71 | }
|
---|
72 | var inBrowser = typeof navigator !== "undefined";
|
---|
73 | if(inBrowser && j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
|
---|
74 | BigInteger.prototype.am = am2;
|
---|
75 | dbits = 30;
|
---|
76 | }
|
---|
77 | else if(inBrowser && j_lm && (navigator.appName != "Netscape")) {
|
---|
78 | BigInteger.prototype.am = am1;
|
---|
79 | dbits = 26;
|
---|
80 | }
|
---|
81 | else { // Mozilla/Netscape seems to prefer am3
|
---|
82 | BigInteger.prototype.am = am3;
|
---|
83 | dbits = 28;
|
---|
84 | }
|
---|
85 |
|
---|
86 | BigInteger.prototype.DB = dbits;
|
---|
87 | BigInteger.prototype.DM = ((1<<dbits)-1);
|
---|
88 | BigInteger.prototype.DV = (1<<dbits);
|
---|
89 |
|
---|
90 | var BI_FP = 52;
|
---|
91 | BigInteger.prototype.FV = Math.pow(2,BI_FP);
|
---|
92 | BigInteger.prototype.F1 = BI_FP-dbits;
|
---|
93 | BigInteger.prototype.F2 = 2*dbits-BI_FP;
|
---|
94 |
|
---|
95 | // Digit conversions
|
---|
96 | var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
|
---|
97 | var BI_RC = new Array();
|
---|
98 | var rr,vv;
|
---|
99 | rr = "0".charCodeAt(0);
|
---|
100 | for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
|
---|
101 | rr = "a".charCodeAt(0);
|
---|
102 | for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
|
---|
103 | rr = "A".charCodeAt(0);
|
---|
104 | for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
|
---|
105 |
|
---|
106 | function int2char(n) { return BI_RM.charAt(n); }
|
---|
107 | function intAt(s,i) {
|
---|
108 | var c = BI_RC[s.charCodeAt(i)];
|
---|
109 | return (c==null)?-1:c;
|
---|
110 | }
|
---|
111 |
|
---|
112 | // (protected) copy this to r
|
---|
113 | function bnpCopyTo(r) {
|
---|
114 | for(var i = this.t-1; i >= 0; --i) r[i] = this[i];
|
---|
115 | r.t = this.t;
|
---|
116 | r.s = this.s;
|
---|
117 | }
|
---|
118 |
|
---|
119 | // (protected) set from integer value x, -DV <= x < DV
|
---|
120 | function bnpFromInt(x) {
|
---|
121 | this.t = 1;
|
---|
122 | this.s = (x<0)?-1:0;
|
---|
123 | if(x > 0) this[0] = x;
|
---|
124 | else if(x < -1) this[0] = x+this.DV;
|
---|
125 | else this.t = 0;
|
---|
126 | }
|
---|
127 |
|
---|
128 | // return bigint initialized to value
|
---|
129 | function nbv(i) { var r = nbi(); r.fromInt(i); return r; }
|
---|
130 |
|
---|
131 | // (protected) set from string and radix
|
---|
132 | function bnpFromString(s,b) {
|
---|
133 | var k;
|
---|
134 | if(b == 16) k = 4;
|
---|
135 | else if(b == 8) k = 3;
|
---|
136 | else if(b == 256) k = 8; // byte array
|
---|
137 | else if(b == 2) k = 1;
|
---|
138 | else if(b == 32) k = 5;
|
---|
139 | else if(b == 4) k = 2;
|
---|
140 | else { this.fromRadix(s,b); return; }
|
---|
141 | this.t = 0;
|
---|
142 | this.s = 0;
|
---|
143 | var i = s.length, mi = false, sh = 0;
|
---|
144 | while(--i >= 0) {
|
---|
145 | var x = (k==8)?s[i]&0xff:intAt(s,i);
|
---|
146 | if(x < 0) {
|
---|
147 | if(s.charAt(i) == "-") mi = true;
|
---|
148 | continue;
|
---|
149 | }
|
---|
150 | mi = false;
|
---|
151 | if(sh == 0)
|
---|
152 | this[this.t++] = x;
|
---|
153 | else if(sh+k > this.DB) {
|
---|
154 | this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;
|
---|
155 | this[this.t++] = (x>>(this.DB-sh));
|
---|
156 | }
|
---|
157 | else
|
---|
158 | this[this.t-1] |= x<<sh;
|
---|
159 | sh += k;
|
---|
160 | if(sh >= this.DB) sh -= this.DB;
|
---|
161 | }
|
---|
162 | if(k == 8 && (s[0]&0x80) != 0) {
|
---|
163 | this.s = -1;
|
---|
164 | if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;
|
---|
165 | }
|
---|
166 | this.clamp();
|
---|
167 | if(mi) BigInteger.ZERO.subTo(this,this);
|
---|
168 | }
|
---|
169 |
|
---|
170 | // (protected) clamp off excess high words
|
---|
171 | function bnpClamp() {
|
---|
172 | var c = this.s&this.DM;
|
---|
173 | while(this.t > 0 && this[this.t-1] == c) --this.t;
|
---|
174 | }
|
---|
175 |
|
---|
176 | // (public) return string representation in given radix
|
---|
177 | function bnToString(b) {
|
---|
178 | if(this.s < 0) return "-"+this.negate().toString(b);
|
---|
179 | var k;
|
---|
180 | if(b == 16) k = 4;
|
---|
181 | else if(b == 8) k = 3;
|
---|
182 | else if(b == 2) k = 1;
|
---|
183 | else if(b == 32) k = 5;
|
---|
184 | else if(b == 4) k = 2;
|
---|
185 | else return this.toRadix(b);
|
---|
186 | var km = (1<<k)-1, d, m = false, r = "", i = this.t;
|
---|
187 | var p = this.DB-(i*this.DB)%k;
|
---|
188 | if(i-- > 0) {
|
---|
189 | if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); }
|
---|
190 | while(i >= 0) {
|
---|
191 | if(p < k) {
|
---|
192 | d = (this[i]&((1<<p)-1))<<(k-p);
|
---|
193 | d |= this[--i]>>(p+=this.DB-k);
|
---|
194 | }
|
---|
195 | else {
|
---|
196 | d = (this[i]>>(p-=k))&km;
|
---|
197 | if(p <= 0) { p += this.DB; --i; }
|
---|
198 | }
|
---|
199 | if(d > 0) m = true;
|
---|
200 | if(m) r += int2char(d);
|
---|
201 | }
|
---|
202 | }
|
---|
203 | return m?r:"0";
|
---|
204 | }
|
---|
205 |
|
---|
206 | // (public) -this
|
---|
207 | function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }
|
---|
208 |
|
---|
209 | // (public) |this|
|
---|
210 | function bnAbs() { return (this.s<0)?this.negate():this; }
|
---|
211 |
|
---|
212 | // (public) return + if this > a, - if this < a, 0 if equal
|
---|
213 | function bnCompareTo(a) {
|
---|
214 | var r = this.s-a.s;
|
---|
215 | if(r != 0) return r;
|
---|
216 | var i = this.t;
|
---|
217 | r = i-a.t;
|
---|
218 | if(r != 0) return (this.s<0)?-r:r;
|
---|
219 | while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;
|
---|
220 | return 0;
|
---|
221 | }
|
---|
222 |
|
---|
223 | // returns bit length of the integer x
|
---|
224 | function nbits(x) {
|
---|
225 | var r = 1, t;
|
---|
226 | if((t=x>>>16) != 0) { x = t; r += 16; }
|
---|
227 | if((t=x>>8) != 0) { x = t; r += 8; }
|
---|
228 | if((t=x>>4) != 0) { x = t; r += 4; }
|
---|
229 | if((t=x>>2) != 0) { x = t; r += 2; }
|
---|
230 | if((t=x>>1) != 0) { x = t; r += 1; }
|
---|
231 | return r;
|
---|
232 | }
|
---|
233 |
|
---|
234 | // (public) return the number of bits in "this"
|
---|
235 | function bnBitLength() {
|
---|
236 | if(this.t <= 0) return 0;
|
---|
237 | return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));
|
---|
238 | }
|
---|
239 |
|
---|
240 | // (protected) r = this << n*DB
|
---|
241 | function bnpDLShiftTo(n,r) {
|
---|
242 | var i;
|
---|
243 | for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
|
---|
244 | for(i = n-1; i >= 0; --i) r[i] = 0;
|
---|
245 | r.t = this.t+n;
|
---|
246 | r.s = this.s;
|
---|
247 | }
|
---|
248 |
|
---|
249 | // (protected) r = this >> n*DB
|
---|
250 | function bnpDRShiftTo(n,r) {
|
---|
251 | for(var i = n; i < this.t; ++i) r[i-n] = this[i];
|
---|
252 | r.t = Math.max(this.t-n,0);
|
---|
253 | r.s = this.s;
|
---|
254 | }
|
---|
255 |
|
---|
256 | // (protected) r = this << n
|
---|
257 | function bnpLShiftTo(n,r) {
|
---|
258 | var bs = n%this.DB;
|
---|
259 | var cbs = this.DB-bs;
|
---|
260 | var bm = (1<<cbs)-1;
|
---|
261 | var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;
|
---|
262 | for(i = this.t-1; i >= 0; --i) {
|
---|
263 | r[i+ds+1] = (this[i]>>cbs)|c;
|
---|
264 | c = (this[i]&bm)<<bs;
|
---|
265 | }
|
---|
266 | for(i = ds-1; i >= 0; --i) r[i] = 0;
|
---|
267 | r[ds] = c;
|
---|
268 | r.t = this.t+ds+1;
|
---|
269 | r.s = this.s;
|
---|
270 | r.clamp();
|
---|
271 | }
|
---|
272 |
|
---|
273 | // (protected) r = this >> n
|
---|
274 | function bnpRShiftTo(n,r) {
|
---|
275 | r.s = this.s;
|
---|
276 | var ds = Math.floor(n/this.DB);
|
---|
277 | if(ds >= this.t) { r.t = 0; return; }
|
---|
278 | var bs = n%this.DB;
|
---|
279 | var cbs = this.DB-bs;
|
---|
280 | var bm = (1<<bs)-1;
|
---|
281 | r[0] = this[ds]>>bs;
|
---|
282 | for(var i = ds+1; i < this.t; ++i) {
|
---|
283 | r[i-ds-1] |= (this[i]&bm)<<cbs;
|
---|
284 | r[i-ds] = this[i]>>bs;
|
---|
285 | }
|
---|
286 | if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;
|
---|
287 | r.t = this.t-ds;
|
---|
288 | r.clamp();
|
---|
289 | }
|
---|
290 |
|
---|
291 | // (protected) r = this - a
|
---|
292 | function bnpSubTo(a,r) {
|
---|
293 | var i = 0, c = 0, m = Math.min(a.t,this.t);
|
---|
294 | while(i < m) {
|
---|
295 | c += this[i]-a[i];
|
---|
296 | r[i++] = c&this.DM;
|
---|
297 | c >>= this.DB;
|
---|
298 | }
|
---|
299 | if(a.t < this.t) {
|
---|
300 | c -= a.s;
|
---|
301 | while(i < this.t) {
|
---|
302 | c += this[i];
|
---|
303 | r[i++] = c&this.DM;
|
---|
304 | c >>= this.DB;
|
---|
305 | }
|
---|
306 | c += this.s;
|
---|
307 | }
|
---|
308 | else {
|
---|
309 | c += this.s;
|
---|
310 | while(i < a.t) {
|
---|
311 | c -= a[i];
|
---|
312 | r[i++] = c&this.DM;
|
---|
313 | c >>= this.DB;
|
---|
314 | }
|
---|
315 | c -= a.s;
|
---|
316 | }
|
---|
317 | r.s = (c<0)?-1:0;
|
---|
318 | if(c < -1) r[i++] = this.DV+c;
|
---|
319 | else if(c > 0) r[i++] = c;
|
---|
320 | r.t = i;
|
---|
321 | r.clamp();
|
---|
322 | }
|
---|
323 |
|
---|
324 | // (protected) r = this * a, r != this,a (HAC 14.12)
|
---|
325 | // "this" should be the larger one if appropriate.
|
---|
326 | function bnpMultiplyTo(a,r) {
|
---|
327 | var x = this.abs(), y = a.abs();
|
---|
328 | var i = x.t;
|
---|
329 | r.t = i+y.t;
|
---|
330 | while(--i >= 0) r[i] = 0;
|
---|
331 | for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);
|
---|
332 | r.s = 0;
|
---|
333 | r.clamp();
|
---|
334 | if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
|
---|
335 | }
|
---|
336 |
|
---|
337 | // (protected) r = this^2, r != this (HAC 14.16)
|
---|
338 | function bnpSquareTo(r) {
|
---|
339 | var x = this.abs();
|
---|
340 | var i = r.t = 2*x.t;
|
---|
341 | while(--i >= 0) r[i] = 0;
|
---|
342 | for(i = 0; i < x.t-1; ++i) {
|
---|
343 | var c = x.am(i,x[i],r,2*i,0,1);
|
---|
344 | if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {
|
---|
345 | r[i+x.t] -= x.DV;
|
---|
346 | r[i+x.t+1] = 1;
|
---|
347 | }
|
---|
348 | }
|
---|
349 | if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);
|
---|
350 | r.s = 0;
|
---|
351 | r.clamp();
|
---|
352 | }
|
---|
353 |
|
---|
354 | // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
|
---|
355 | // r != q, this != m. q or r may be null.
|
---|
356 | function bnpDivRemTo(m,q,r) {
|
---|
357 | var pm = m.abs();
|
---|
358 | if(pm.t <= 0) return;
|
---|
359 | var pt = this.abs();
|
---|
360 | if(pt.t < pm.t) {
|
---|
361 | if(q != null) q.fromInt(0);
|
---|
362 | if(r != null) this.copyTo(r);
|
---|
363 | return;
|
---|
364 | }
|
---|
365 | if(r == null) r = nbi();
|
---|
366 | var y = nbi(), ts = this.s, ms = m.s;
|
---|
367 | var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus
|
---|
368 | if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
|
---|
369 | else { pm.copyTo(y); pt.copyTo(r); }
|
---|
370 | var ys = y.t;
|
---|
371 | var y0 = y[ys-1];
|
---|
372 | if(y0 == 0) return;
|
---|
373 | var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0);
|
---|
374 | var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2;
|
---|
375 | var i = r.t, j = i-ys, t = (q==null)?nbi():q;
|
---|
376 | y.dlShiftTo(j,t);
|
---|
377 | if(r.compareTo(t) >= 0) {
|
---|
378 | r[r.t++] = 1;
|
---|
379 | r.subTo(t,r);
|
---|
380 | }
|
---|
381 | BigInteger.ONE.dlShiftTo(ys,t);
|
---|
382 | t.subTo(y,y); // "negative" y so we can replace sub with am later
|
---|
383 | while(y.t < ys) y[y.t++] = 0;
|
---|
384 | while(--j >= 0) {
|
---|
385 | // Estimate quotient digit
|
---|
386 | var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);
|
---|
387 | if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out
|
---|
388 | y.dlShiftTo(j,t);
|
---|
389 | r.subTo(t,r);
|
---|
390 | while(r[i] < --qd) r.subTo(t,r);
|
---|
391 | }
|
---|
392 | }
|
---|
393 | if(q != null) {
|
---|
394 | r.drShiftTo(ys,q);
|
---|
395 | if(ts != ms) BigInteger.ZERO.subTo(q,q);
|
---|
396 | }
|
---|
397 | r.t = ys;
|
---|
398 | r.clamp();
|
---|
399 | if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder
|
---|
400 | if(ts < 0) BigInteger.ZERO.subTo(r,r);
|
---|
401 | }
|
---|
402 |
|
---|
403 | // (public) this mod a
|
---|
404 | function bnMod(a) {
|
---|
405 | var r = nbi();
|
---|
406 | this.abs().divRemTo(a,null,r);
|
---|
407 | if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
|
---|
408 | return r;
|
---|
409 | }
|
---|
410 |
|
---|
411 | // Modular reduction using "classic" algorithm
|
---|
412 | function Classic(m) { this.m = m; }
|
---|
413 | function cConvert(x) {
|
---|
414 | if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
|
---|
415 | else return x;
|
---|
416 | }
|
---|
417 | function cRevert(x) { return x; }
|
---|
418 | function cReduce(x) { x.divRemTo(this.m,null,x); }
|
---|
419 | function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
|
---|
420 | function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
|
---|
421 |
|
---|
422 | Classic.prototype.convert = cConvert;
|
---|
423 | Classic.prototype.revert = cRevert;
|
---|
424 | Classic.prototype.reduce = cReduce;
|
---|
425 | Classic.prototype.mulTo = cMulTo;
|
---|
426 | Classic.prototype.sqrTo = cSqrTo;
|
---|
427 |
|
---|
428 | // (protected) return "-1/this % 2^DB"; useful for Mont. reduction
|
---|
429 | // justification:
|
---|
430 | // xy == 1 (mod m)
|
---|
431 | // xy = 1+km
|
---|
432 | // xy(2-xy) = (1+km)(1-km)
|
---|
433 | // x[y(2-xy)] = 1-k^2m^2
|
---|
434 | // x[y(2-xy)] == 1 (mod m^2)
|
---|
435 | // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
|
---|
436 | // should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
|
---|
437 | // JS multiply "overflows" differently from C/C++, so care is needed here.
|
---|
438 | function bnpInvDigit() {
|
---|
439 | if(this.t < 1) return 0;
|
---|
440 | var x = this[0];
|
---|
441 | if((x&1) == 0) return 0;
|
---|
442 | var y = x&3; // y == 1/x mod 2^2
|
---|
443 | y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
|
---|
444 | y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8
|
---|
445 | y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16
|
---|
446 | // last step - calculate inverse mod DV directly;
|
---|
447 | // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
|
---|
448 | y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits
|
---|
449 | // we really want the negative inverse, and -DV < y < DV
|
---|
450 | return (y>0)?this.DV-y:-y;
|
---|
451 | }
|
---|
452 |
|
---|
453 | // Montgomery reduction
|
---|
454 | function Montgomery(m) {
|
---|
455 | this.m = m;
|
---|
456 | this.mp = m.invDigit();
|
---|
457 | this.mpl = this.mp&0x7fff;
|
---|
458 | this.mph = this.mp>>15;
|
---|
459 | this.um = (1<<(m.DB-15))-1;
|
---|
460 | this.mt2 = 2*m.t;
|
---|
461 | }
|
---|
462 |
|
---|
463 | // xR mod m
|
---|
464 | function montConvert(x) {
|
---|
465 | var r = nbi();
|
---|
466 | x.abs().dlShiftTo(this.m.t,r);
|
---|
467 | r.divRemTo(this.m,null,r);
|
---|
468 | if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
|
---|
469 | return r;
|
---|
470 | }
|
---|
471 |
|
---|
472 | // x/R mod m
|
---|
473 | function montRevert(x) {
|
---|
474 | var r = nbi();
|
---|
475 | x.copyTo(r);
|
---|
476 | this.reduce(r);
|
---|
477 | return r;
|
---|
478 | }
|
---|
479 |
|
---|
480 | // x = x/R mod m (HAC 14.32)
|
---|
481 | function montReduce(x) {
|
---|
482 | while(x.t <= this.mt2) // pad x so am has enough room later
|
---|
483 | x[x.t++] = 0;
|
---|
484 | for(var i = 0; i < this.m.t; ++i) {
|
---|
485 | // faster way of calculating u0 = x[i]*mp mod DV
|
---|
486 | var j = x[i]&0x7fff;
|
---|
487 | var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM;
|
---|
488 | // use am to combine the multiply-shift-add into one call
|
---|
489 | j = i+this.m.t;
|
---|
490 | x[j] += this.m.am(0,u0,x,i,0,this.m.t);
|
---|
491 | // propagate carry
|
---|
492 | while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }
|
---|
493 | }
|
---|
494 | x.clamp();
|
---|
495 | x.drShiftTo(this.m.t,x);
|
---|
496 | if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
|
---|
497 | }
|
---|
498 |
|
---|
499 | // r = "x^2/R mod m"; x != r
|
---|
500 | function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
|
---|
501 |
|
---|
502 | // r = "xy/R mod m"; x,y != r
|
---|
503 | function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
|
---|
504 |
|
---|
505 | Montgomery.prototype.convert = montConvert;
|
---|
506 | Montgomery.prototype.revert = montRevert;
|
---|
507 | Montgomery.prototype.reduce = montReduce;
|
---|
508 | Montgomery.prototype.mulTo = montMulTo;
|
---|
509 | Montgomery.prototype.sqrTo = montSqrTo;
|
---|
510 |
|
---|
511 | // (protected) true iff this is even
|
---|
512 | function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }
|
---|
513 |
|
---|
514 | // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
|
---|
515 | function bnpExp(e,z) {
|
---|
516 | if(e > 0xffffffff || e < 1) return BigInteger.ONE;
|
---|
517 | var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
|
---|
518 | g.copyTo(r);
|
---|
519 | while(--i >= 0) {
|
---|
520 | z.sqrTo(r,r2);
|
---|
521 | if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
|
---|
522 | else { var t = r; r = r2; r2 = t; }
|
---|
523 | }
|
---|
524 | return z.revert(r);
|
---|
525 | }
|
---|
526 |
|
---|
527 | // (public) this^e % m, 0 <= e < 2^32
|
---|
528 | function bnModPowInt(e,m) {
|
---|
529 | var z;
|
---|
530 | if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
|
---|
531 | return this.exp(e,z);
|
---|
532 | }
|
---|
533 |
|
---|
534 | // protected
|
---|
535 | BigInteger.prototype.copyTo = bnpCopyTo;
|
---|
536 | BigInteger.prototype.fromInt = bnpFromInt;
|
---|
537 | BigInteger.prototype.fromString = bnpFromString;
|
---|
538 | BigInteger.prototype.clamp = bnpClamp;
|
---|
539 | BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
|
---|
540 | BigInteger.prototype.drShiftTo = bnpDRShiftTo;
|
---|
541 | BigInteger.prototype.lShiftTo = bnpLShiftTo;
|
---|
542 | BigInteger.prototype.rShiftTo = bnpRShiftTo;
|
---|
543 | BigInteger.prototype.subTo = bnpSubTo;
|
---|
544 | BigInteger.prototype.multiplyTo = bnpMultiplyTo;
|
---|
545 | BigInteger.prototype.squareTo = bnpSquareTo;
|
---|
546 | BigInteger.prototype.divRemTo = bnpDivRemTo;
|
---|
547 | BigInteger.prototype.invDigit = bnpInvDigit;
|
---|
548 | BigInteger.prototype.isEven = bnpIsEven;
|
---|
549 | BigInteger.prototype.exp = bnpExp;
|
---|
550 |
|
---|
551 | // public
|
---|
552 | BigInteger.prototype.toString = bnToString;
|
---|
553 | BigInteger.prototype.negate = bnNegate;
|
---|
554 | BigInteger.prototype.abs = bnAbs;
|
---|
555 | BigInteger.prototype.compareTo = bnCompareTo;
|
---|
556 | BigInteger.prototype.bitLength = bnBitLength;
|
---|
557 | BigInteger.prototype.mod = bnMod;
|
---|
558 | BigInteger.prototype.modPowInt = bnModPowInt;
|
---|
559 |
|
---|
560 | // "constants"
|
---|
561 | BigInteger.ZERO = nbv(0);
|
---|
562 | BigInteger.ONE = nbv(1);
|
---|
563 |
|
---|
564 | // Copyright (c) 2005-2009 Tom Wu
|
---|
565 | // All Rights Reserved.
|
---|
566 | // See "LICENSE" for details.
|
---|
567 |
|
---|
568 | // Extended JavaScript BN functions, required for RSA private ops.
|
---|
569 |
|
---|
570 | // Version 1.1: new BigInteger("0", 10) returns "proper" zero
|
---|
571 | // Version 1.2: square() API, isProbablePrime fix
|
---|
572 |
|
---|
573 | // (public)
|
---|
574 | function bnClone() { var r = nbi(); this.copyTo(r); return r; }
|
---|
575 |
|
---|
576 | // (public) return value as integer
|
---|
577 | function bnIntValue() {
|
---|
578 | if(this.s < 0) {
|
---|
579 | if(this.t == 1) return this[0]-this.DV;
|
---|
580 | else if(this.t == 0) return -1;
|
---|
581 | }
|
---|
582 | else if(this.t == 1) return this[0];
|
---|
583 | else if(this.t == 0) return 0;
|
---|
584 | // assumes 16 < DB < 32
|
---|
585 | return ((this[1]&((1<<(32-this.DB))-1))<<this.DB)|this[0];
|
---|
586 | }
|
---|
587 |
|
---|
588 | // (public) return value as byte
|
---|
589 | function bnByteValue() { return (this.t==0)?this.s:(this[0]<<24)>>24; }
|
---|
590 |
|
---|
591 | // (public) return value as short (assumes DB>=16)
|
---|
592 | function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; }
|
---|
593 |
|
---|
594 | // (protected) return x s.t. r^x < DV
|
---|
595 | function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); }
|
---|
596 |
|
---|
597 | // (public) 0 if this == 0, 1 if this > 0
|
---|
598 | function bnSigNum() {
|
---|
599 | if(this.s < 0) return -1;
|
---|
600 | else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
|
---|
601 | else return 1;
|
---|
602 | }
|
---|
603 |
|
---|
604 | // (protected) convert to radix string
|
---|
605 | function bnpToRadix(b) {
|
---|
606 | if(b == null) b = 10;
|
---|
607 | if(this.signum() == 0 || b < 2 || b > 36) return "0";
|
---|
608 | var cs = this.chunkSize(b);
|
---|
609 | var a = Math.pow(b,cs);
|
---|
610 | var d = nbv(a), y = nbi(), z = nbi(), r = "";
|
---|
611 | this.divRemTo(d,y,z);
|
---|
612 | while(y.signum() > 0) {
|
---|
613 | r = (a+z.intValue()).toString(b).substr(1) + r;
|
---|
614 | y.divRemTo(d,y,z);
|
---|
615 | }
|
---|
616 | return z.intValue().toString(b) + r;
|
---|
617 | }
|
---|
618 |
|
---|
619 | // (protected) convert from radix string
|
---|
620 | function bnpFromRadix(s,b) {
|
---|
621 | this.fromInt(0);
|
---|
622 | if(b == null) b = 10;
|
---|
623 | var cs = this.chunkSize(b);
|
---|
624 | var d = Math.pow(b,cs), mi = false, j = 0, w = 0;
|
---|
625 | for(var i = 0; i < s.length; ++i) {
|
---|
626 | var x = intAt(s,i);
|
---|
627 | if(x < 0) {
|
---|
628 | if(s.charAt(i) == "-" && this.signum() == 0) mi = true;
|
---|
629 | continue;
|
---|
630 | }
|
---|
631 | w = b*w+x;
|
---|
632 | if(++j >= cs) {
|
---|
633 | this.dMultiply(d);
|
---|
634 | this.dAddOffset(w,0);
|
---|
635 | j = 0;
|
---|
636 | w = 0;
|
---|
637 | }
|
---|
638 | }
|
---|
639 | if(j > 0) {
|
---|
640 | this.dMultiply(Math.pow(b,j));
|
---|
641 | this.dAddOffset(w,0);
|
---|
642 | }
|
---|
643 | if(mi) BigInteger.ZERO.subTo(this,this);
|
---|
644 | }
|
---|
645 |
|
---|
646 | // (protected) alternate constructor
|
---|
647 | function bnpFromNumber(a,b,c) {
|
---|
648 | if("number" == typeof b) {
|
---|
649 | // new BigInteger(int,int,RNG)
|
---|
650 | if(a < 2) this.fromInt(1);
|
---|
651 | else {
|
---|
652 | this.fromNumber(a,c);
|
---|
653 | if(!this.testBit(a-1)) // force MSB set
|
---|
654 | this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this);
|
---|
655 | if(this.isEven()) this.dAddOffset(1,0); // force odd
|
---|
656 | while(!this.isProbablePrime(b)) {
|
---|
657 | this.dAddOffset(2,0);
|
---|
658 | if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this);
|
---|
659 | }
|
---|
660 | }
|
---|
661 | }
|
---|
662 | else {
|
---|
663 | // new BigInteger(int,RNG)
|
---|
664 | var x = new Array(), t = a&7;
|
---|
665 | x.length = (a>>3)+1;
|
---|
666 | b.nextBytes(x);
|
---|
667 | if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0;
|
---|
668 | this.fromString(x,256);
|
---|
669 | }
|
---|
670 | }
|
---|
671 |
|
---|
672 | // (public) convert to bigendian byte array
|
---|
673 | function bnToByteArray() {
|
---|
674 | var i = this.t, r = new Array();
|
---|
675 | r[0] = this.s;
|
---|
676 | var p = this.DB-(i*this.DB)%8, d, k = 0;
|
---|
677 | if(i-- > 0) {
|
---|
678 | if(p < this.DB && (d = this[i]>>p) != (this.s&this.DM)>>p)
|
---|
679 | r[k++] = d|(this.s<<(this.DB-p));
|
---|
680 | while(i >= 0) {
|
---|
681 | if(p < 8) {
|
---|
682 | d = (this[i]&((1<<p)-1))<<(8-p);
|
---|
683 | d |= this[--i]>>(p+=this.DB-8);
|
---|
684 | }
|
---|
685 | else {
|
---|
686 | d = (this[i]>>(p-=8))&0xff;
|
---|
687 | if(p <= 0) { p += this.DB; --i; }
|
---|
688 | }
|
---|
689 | if((d&0x80) != 0) d |= -256;
|
---|
690 | if(k == 0 && (this.s&0x80) != (d&0x80)) ++k;
|
---|
691 | if(k > 0 || d != this.s) r[k++] = d;
|
---|
692 | }
|
---|
693 | }
|
---|
694 | return r;
|
---|
695 | }
|
---|
696 |
|
---|
697 | function bnEquals(a) { return(this.compareTo(a)==0); }
|
---|
698 | function bnMin(a) { return(this.compareTo(a)<0)?this:a; }
|
---|
699 | function bnMax(a) { return(this.compareTo(a)>0)?this:a; }
|
---|
700 |
|
---|
701 | // (protected) r = this op a (bitwise)
|
---|
702 | function bnpBitwiseTo(a,op,r) {
|
---|
703 | var i, f, m = Math.min(a.t,this.t);
|
---|
704 | for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]);
|
---|
705 | if(a.t < this.t) {
|
---|
706 | f = a.s&this.DM;
|
---|
707 | for(i = m; i < this.t; ++i) r[i] = op(this[i],f);
|
---|
708 | r.t = this.t;
|
---|
709 | }
|
---|
710 | else {
|
---|
711 | f = this.s&this.DM;
|
---|
712 | for(i = m; i < a.t; ++i) r[i] = op(f,a[i]);
|
---|
713 | r.t = a.t;
|
---|
714 | }
|
---|
715 | r.s = op(this.s,a.s);
|
---|
716 | r.clamp();
|
---|
717 | }
|
---|
718 |
|
---|
719 | // (public) this & a
|
---|
720 | function op_and(x,y) { return x&y; }
|
---|
721 | function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; }
|
---|
722 |
|
---|
723 | // (public) this | a
|
---|
724 | function op_or(x,y) { return x|y; }
|
---|
725 | function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; }
|
---|
726 |
|
---|
727 | // (public) this ^ a
|
---|
728 | function op_xor(x,y) { return x^y; }
|
---|
729 | function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; }
|
---|
730 |
|
---|
731 | // (public) this & ~a
|
---|
732 | function op_andnot(x,y) { return x&~y; }
|
---|
733 | function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; }
|
---|
734 |
|
---|
735 | // (public) ~this
|
---|
736 | function bnNot() {
|
---|
737 | var r = nbi();
|
---|
738 | for(var i = 0; i < this.t; ++i) r[i] = this.DM&~this[i];
|
---|
739 | r.t = this.t;
|
---|
740 | r.s = ~this.s;
|
---|
741 | return r;
|
---|
742 | }
|
---|
743 |
|
---|
744 | // (public) this << n
|
---|
745 | function bnShiftLeft(n) {
|
---|
746 | var r = nbi();
|
---|
747 | if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r);
|
---|
748 | return r;
|
---|
749 | }
|
---|
750 |
|
---|
751 | // (public) this >> n
|
---|
752 | function bnShiftRight(n) {
|
---|
753 | var r = nbi();
|
---|
754 | if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r);
|
---|
755 | return r;
|
---|
756 | }
|
---|
757 |
|
---|
758 | // return index of lowest 1-bit in x, x < 2^31
|
---|
759 | function lbit(x) {
|
---|
760 | if(x == 0) return -1;
|
---|
761 | var r = 0;
|
---|
762 | if((x&0xffff) == 0) { x >>= 16; r += 16; }
|
---|
763 | if((x&0xff) == 0) { x >>= 8; r += 8; }
|
---|
764 | if((x&0xf) == 0) { x >>= 4; r += 4; }
|
---|
765 | if((x&3) == 0) { x >>= 2; r += 2; }
|
---|
766 | if((x&1) == 0) ++r;
|
---|
767 | return r;
|
---|
768 | }
|
---|
769 |
|
---|
770 | // (public) returns index of lowest 1-bit (or -1 if none)
|
---|
771 | function bnGetLowestSetBit() {
|
---|
772 | for(var i = 0; i < this.t; ++i)
|
---|
773 | if(this[i] != 0) return i*this.DB+lbit(this[i]);
|
---|
774 | if(this.s < 0) return this.t*this.DB;
|
---|
775 | return -1;
|
---|
776 | }
|
---|
777 |
|
---|
778 | // return number of 1 bits in x
|
---|
779 | function cbit(x) {
|
---|
780 | var r = 0;
|
---|
781 | while(x != 0) { x &= x-1; ++r; }
|
---|
782 | return r;
|
---|
783 | }
|
---|
784 |
|
---|
785 | // (public) return number of set bits
|
---|
786 | function bnBitCount() {
|
---|
787 | var r = 0, x = this.s&this.DM;
|
---|
788 | for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x);
|
---|
789 | return r;
|
---|
790 | }
|
---|
791 |
|
---|
792 | // (public) true iff nth bit is set
|
---|
793 | function bnTestBit(n) {
|
---|
794 | var j = Math.floor(n/this.DB);
|
---|
795 | if(j >= this.t) return(this.s!=0);
|
---|
796 | return((this[j]&(1<<(n%this.DB)))!=0);
|
---|
797 | }
|
---|
798 |
|
---|
799 | // (protected) this op (1<<n)
|
---|
800 | function bnpChangeBit(n,op) {
|
---|
801 | var r = BigInteger.ONE.shiftLeft(n);
|
---|
802 | this.bitwiseTo(r,op,r);
|
---|
803 | return r;
|
---|
804 | }
|
---|
805 |
|
---|
806 | // (public) this | (1<<n)
|
---|
807 | function bnSetBit(n) { return this.changeBit(n,op_or); }
|
---|
808 |
|
---|
809 | // (public) this & ~(1<<n)
|
---|
810 | function bnClearBit(n) { return this.changeBit(n,op_andnot); }
|
---|
811 |
|
---|
812 | // (public) this ^ (1<<n)
|
---|
813 | function bnFlipBit(n) { return this.changeBit(n,op_xor); }
|
---|
814 |
|
---|
815 | // (protected) r = this + a
|
---|
816 | function bnpAddTo(a,r) {
|
---|
817 | var i = 0, c = 0, m = Math.min(a.t,this.t);
|
---|
818 | while(i < m) {
|
---|
819 | c += this[i]+a[i];
|
---|
820 | r[i++] = c&this.DM;
|
---|
821 | c >>= this.DB;
|
---|
822 | }
|
---|
823 | if(a.t < this.t) {
|
---|
824 | c += a.s;
|
---|
825 | while(i < this.t) {
|
---|
826 | c += this[i];
|
---|
827 | r[i++] = c&this.DM;
|
---|
828 | c >>= this.DB;
|
---|
829 | }
|
---|
830 | c += this.s;
|
---|
831 | }
|
---|
832 | else {
|
---|
833 | c += this.s;
|
---|
834 | while(i < a.t) {
|
---|
835 | c += a[i];
|
---|
836 | r[i++] = c&this.DM;
|
---|
837 | c >>= this.DB;
|
---|
838 | }
|
---|
839 | c += a.s;
|
---|
840 | }
|
---|
841 | r.s = (c<0)?-1:0;
|
---|
842 | if(c > 0) r[i++] = c;
|
---|
843 | else if(c < -1) r[i++] = this.DV+c;
|
---|
844 | r.t = i;
|
---|
845 | r.clamp();
|
---|
846 | }
|
---|
847 |
|
---|
848 | // (public) this + a
|
---|
849 | function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; }
|
---|
850 |
|
---|
851 | // (public) this - a
|
---|
852 | function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; }
|
---|
853 |
|
---|
854 | // (public) this * a
|
---|
855 | function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; }
|
---|
856 |
|
---|
857 | // (public) this^2
|
---|
858 | function bnSquare() { var r = nbi(); this.squareTo(r); return r; }
|
---|
859 |
|
---|
860 | // (public) this / a
|
---|
861 | function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; }
|
---|
862 |
|
---|
863 | // (public) this % a
|
---|
864 | function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; }
|
---|
865 |
|
---|
866 | // (public) [this/a,this%a]
|
---|
867 | function bnDivideAndRemainder(a) {
|
---|
868 | var q = nbi(), r = nbi();
|
---|
869 | this.divRemTo(a,q,r);
|
---|
870 | return new Array(q,r);
|
---|
871 | }
|
---|
872 |
|
---|
873 | // (protected) this *= n, this >= 0, 1 < n < DV
|
---|
874 | function bnpDMultiply(n) {
|
---|
875 | this[this.t] = this.am(0,n-1,this,0,0,this.t);
|
---|
876 | ++this.t;
|
---|
877 | this.clamp();
|
---|
878 | }
|
---|
879 |
|
---|
880 | // (protected) this += n << w words, this >= 0
|
---|
881 | function bnpDAddOffset(n,w) {
|
---|
882 | if(n == 0) return;
|
---|
883 | while(this.t <= w) this[this.t++] = 0;
|
---|
884 | this[w] += n;
|
---|
885 | while(this[w] >= this.DV) {
|
---|
886 | this[w] -= this.DV;
|
---|
887 | if(++w >= this.t) this[this.t++] = 0;
|
---|
888 | ++this[w];
|
---|
889 | }
|
---|
890 | }
|
---|
891 |
|
---|
892 | // A "null" reducer
|
---|
893 | function NullExp() {}
|
---|
894 | function nNop(x) { return x; }
|
---|
895 | function nMulTo(x,y,r) { x.multiplyTo(y,r); }
|
---|
896 | function nSqrTo(x,r) { x.squareTo(r); }
|
---|
897 |
|
---|
898 | NullExp.prototype.convert = nNop;
|
---|
899 | NullExp.prototype.revert = nNop;
|
---|
900 | NullExp.prototype.mulTo = nMulTo;
|
---|
901 | NullExp.prototype.sqrTo = nSqrTo;
|
---|
902 |
|
---|
903 | // (public) this^e
|
---|
904 | function bnPow(e) { return this.exp(e,new NullExp()); }
|
---|
905 |
|
---|
906 | // (protected) r = lower n words of "this * a", a.t <= n
|
---|
907 | // "this" should be the larger one if appropriate.
|
---|
908 | function bnpMultiplyLowerTo(a,n,r) {
|
---|
909 | var i = Math.min(this.t+a.t,n);
|
---|
910 | r.s = 0; // assumes a,this >= 0
|
---|
911 | r.t = i;
|
---|
912 | while(i > 0) r[--i] = 0;
|
---|
913 | var j;
|
---|
914 | for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t);
|
---|
915 | for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i);
|
---|
916 | r.clamp();
|
---|
917 | }
|
---|
918 |
|
---|
919 | // (protected) r = "this * a" without lower n words, n > 0
|
---|
920 | // "this" should be the larger one if appropriate.
|
---|
921 | function bnpMultiplyUpperTo(a,n,r) {
|
---|
922 | --n;
|
---|
923 | var i = r.t = this.t+a.t-n;
|
---|
924 | r.s = 0; // assumes a,this >= 0
|
---|
925 | while(--i >= 0) r[i] = 0;
|
---|
926 | for(i = Math.max(n-this.t,0); i < a.t; ++i)
|
---|
927 | r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n);
|
---|
928 | r.clamp();
|
---|
929 | r.drShiftTo(1,r);
|
---|
930 | }
|
---|
931 |
|
---|
932 | // Barrett modular reduction
|
---|
933 | function Barrett(m) {
|
---|
934 | // setup Barrett
|
---|
935 | this.r2 = nbi();
|
---|
936 | this.q3 = nbi();
|
---|
937 | BigInteger.ONE.dlShiftTo(2*m.t,this.r2);
|
---|
938 | this.mu = this.r2.divide(m);
|
---|
939 | this.m = m;
|
---|
940 | }
|
---|
941 |
|
---|
942 | function barrettConvert(x) {
|
---|
943 | if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m);
|
---|
944 | else if(x.compareTo(this.m) < 0) return x;
|
---|
945 | else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; }
|
---|
946 | }
|
---|
947 |
|
---|
948 | function barrettRevert(x) { return x; }
|
---|
949 |
|
---|
950 | // x = x mod m (HAC 14.42)
|
---|
951 | function barrettReduce(x) {
|
---|
952 | x.drShiftTo(this.m.t-1,this.r2);
|
---|
953 | if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); }
|
---|
954 | this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3);
|
---|
955 | this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2);
|
---|
956 | while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1);
|
---|
957 | x.subTo(this.r2,x);
|
---|
958 | while(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
|
---|
959 | }
|
---|
960 |
|
---|
961 | // r = x^2 mod m; x != r
|
---|
962 | function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
|
---|
963 |
|
---|
964 | // r = x*y mod m; x,y != r
|
---|
965 | function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
|
---|
966 |
|
---|
967 | Barrett.prototype.convert = barrettConvert;
|
---|
968 | Barrett.prototype.revert = barrettRevert;
|
---|
969 | Barrett.prototype.reduce = barrettReduce;
|
---|
970 | Barrett.prototype.mulTo = barrettMulTo;
|
---|
971 | Barrett.prototype.sqrTo = barrettSqrTo;
|
---|
972 |
|
---|
973 | // (public) this^e % m (HAC 14.85)
|
---|
974 | function bnModPow(e,m) {
|
---|
975 | var i = e.bitLength(), k, r = nbv(1), z;
|
---|
976 | if(i <= 0) return r;
|
---|
977 | else if(i < 18) k = 1;
|
---|
978 | else if(i < 48) k = 3;
|
---|
979 | else if(i < 144) k = 4;
|
---|
980 | else if(i < 768) k = 5;
|
---|
981 | else k = 6;
|
---|
982 | if(i < 8)
|
---|
983 | z = new Classic(m);
|
---|
984 | else if(m.isEven())
|
---|
985 | z = new Barrett(m);
|
---|
986 | else
|
---|
987 | z = new Montgomery(m);
|
---|
988 |
|
---|
989 | // precomputation
|
---|
990 | var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1;
|
---|
991 | g[1] = z.convert(this);
|
---|
992 | if(k > 1) {
|
---|
993 | var g2 = nbi();
|
---|
994 | z.sqrTo(g[1],g2);
|
---|
995 | while(n <= km) {
|
---|
996 | g[n] = nbi();
|
---|
997 | z.mulTo(g2,g[n-2],g[n]);
|
---|
998 | n += 2;
|
---|
999 | }
|
---|
1000 | }
|
---|
1001 |
|
---|
1002 | var j = e.t-1, w, is1 = true, r2 = nbi(), t;
|
---|
1003 | i = nbits(e[j])-1;
|
---|
1004 | while(j >= 0) {
|
---|
1005 | if(i >= k1) w = (e[j]>>(i-k1))&km;
|
---|
1006 | else {
|
---|
1007 | w = (e[j]&((1<<(i+1))-1))<<(k1-i);
|
---|
1008 | if(j > 0) w |= e[j-1]>>(this.DB+i-k1);
|
---|
1009 | }
|
---|
1010 |
|
---|
1011 | n = k;
|
---|
1012 | while((w&1) == 0) { w >>= 1; --n; }
|
---|
1013 | if((i -= n) < 0) { i += this.DB; --j; }
|
---|
1014 | if(is1) { // ret == 1, don't bother squaring or multiplying it
|
---|
1015 | g[w].copyTo(r);
|
---|
1016 | is1 = false;
|
---|
1017 | }
|
---|
1018 | else {
|
---|
1019 | while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; }
|
---|
1020 | if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; }
|
---|
1021 | z.mulTo(r2,g[w],r);
|
---|
1022 | }
|
---|
1023 |
|
---|
1024 | while(j >= 0 && (e[j]&(1<<i)) == 0) {
|
---|
1025 | z.sqrTo(r,r2); t = r; r = r2; r2 = t;
|
---|
1026 | if(--i < 0) { i = this.DB-1; --j; }
|
---|
1027 | }
|
---|
1028 | }
|
---|
1029 | return z.revert(r);
|
---|
1030 | }
|
---|
1031 |
|
---|
1032 | // (public) gcd(this,a) (HAC 14.54)
|
---|
1033 | function bnGCD(a) {
|
---|
1034 | var x = (this.s<0)?this.negate():this.clone();
|
---|
1035 | var y = (a.s<0)?a.negate():a.clone();
|
---|
1036 | if(x.compareTo(y) < 0) { var t = x; x = y; y = t; }
|
---|
1037 | var i = x.getLowestSetBit(), g = y.getLowestSetBit();
|
---|
1038 | if(g < 0) return x;
|
---|
1039 | if(i < g) g = i;
|
---|
1040 | if(g > 0) {
|
---|
1041 | x.rShiftTo(g,x);
|
---|
1042 | y.rShiftTo(g,y);
|
---|
1043 | }
|
---|
1044 | while(x.signum() > 0) {
|
---|
1045 | if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x);
|
---|
1046 | if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y);
|
---|
1047 | if(x.compareTo(y) >= 0) {
|
---|
1048 | x.subTo(y,x);
|
---|
1049 | x.rShiftTo(1,x);
|
---|
1050 | }
|
---|
1051 | else {
|
---|
1052 | y.subTo(x,y);
|
---|
1053 | y.rShiftTo(1,y);
|
---|
1054 | }
|
---|
1055 | }
|
---|
1056 | if(g > 0) y.lShiftTo(g,y);
|
---|
1057 | return y;
|
---|
1058 | }
|
---|
1059 |
|
---|
1060 | // (protected) this % n, n < 2^26
|
---|
1061 | function bnpModInt(n) {
|
---|
1062 | if(n <= 0) return 0;
|
---|
1063 | var d = this.DV%n, r = (this.s<0)?n-1:0;
|
---|
1064 | if(this.t > 0)
|
---|
1065 | if(d == 0) r = this[0]%n;
|
---|
1066 | else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n;
|
---|
1067 | return r;
|
---|
1068 | }
|
---|
1069 |
|
---|
1070 | // (public) 1/this % m (HAC 14.61)
|
---|
1071 | function bnModInverse(m) {
|
---|
1072 | var ac = m.isEven();
|
---|
1073 | if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;
|
---|
1074 | var u = m.clone(), v = this.clone();
|
---|
1075 | var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1);
|
---|
1076 | while(u.signum() != 0) {
|
---|
1077 | while(u.isEven()) {
|
---|
1078 | u.rShiftTo(1,u);
|
---|
1079 | if(ac) {
|
---|
1080 | if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); }
|
---|
1081 | a.rShiftTo(1,a);
|
---|
1082 | }
|
---|
1083 | else if(!b.isEven()) b.subTo(m,b);
|
---|
1084 | b.rShiftTo(1,b);
|
---|
1085 | }
|
---|
1086 | while(v.isEven()) {
|
---|
1087 | v.rShiftTo(1,v);
|
---|
1088 | if(ac) {
|
---|
1089 | if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); }
|
---|
1090 | c.rShiftTo(1,c);
|
---|
1091 | }
|
---|
1092 | else if(!d.isEven()) d.subTo(m,d);
|
---|
1093 | d.rShiftTo(1,d);
|
---|
1094 | }
|
---|
1095 | if(u.compareTo(v) >= 0) {
|
---|
1096 | u.subTo(v,u);
|
---|
1097 | if(ac) a.subTo(c,a);
|
---|
1098 | b.subTo(d,b);
|
---|
1099 | }
|
---|
1100 | else {
|
---|
1101 | v.subTo(u,v);
|
---|
1102 | if(ac) c.subTo(a,c);
|
---|
1103 | d.subTo(b,d);
|
---|
1104 | }
|
---|
1105 | }
|
---|
1106 | if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
|
---|
1107 | if(d.compareTo(m) >= 0) return d.subtract(m);
|
---|
1108 | if(d.signum() < 0) d.addTo(m,d); else return d;
|
---|
1109 | if(d.signum() < 0) return d.add(m); else return d;
|
---|
1110 | }
|
---|
1111 |
|
---|
1112 | var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997];
|
---|
1113 | var lplim = (1<<26)/lowprimes[lowprimes.length-1];
|
---|
1114 |
|
---|
1115 | // (public) test primality with certainty >= 1-.5^t
|
---|
1116 | function bnIsProbablePrime(t) {
|
---|
1117 | var i, x = this.abs();
|
---|
1118 | if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) {
|
---|
1119 | for(i = 0; i < lowprimes.length; ++i)
|
---|
1120 | if(x[0] == lowprimes[i]) return true;
|
---|
1121 | return false;
|
---|
1122 | }
|
---|
1123 | if(x.isEven()) return false;
|
---|
1124 | i = 1;
|
---|
1125 | while(i < lowprimes.length) {
|
---|
1126 | var m = lowprimes[i], j = i+1;
|
---|
1127 | while(j < lowprimes.length && m < lplim) m *= lowprimes[j++];
|
---|
1128 | m = x.modInt(m);
|
---|
1129 | while(i < j) if(m%lowprimes[i++] == 0) return false;
|
---|
1130 | }
|
---|
1131 | return x.millerRabin(t);
|
---|
1132 | }
|
---|
1133 |
|
---|
1134 | // (protected) true if probably prime (HAC 4.24, Miller-Rabin)
|
---|
1135 | function bnpMillerRabin(t) {
|
---|
1136 | var n1 = this.subtract(BigInteger.ONE);
|
---|
1137 | var k = n1.getLowestSetBit();
|
---|
1138 | if(k <= 0) return false;
|
---|
1139 | var r = n1.shiftRight(k);
|
---|
1140 | t = (t+1)>>1;
|
---|
1141 | if(t > lowprimes.length) t = lowprimes.length;
|
---|
1142 | var a = nbi();
|
---|
1143 | for(var i = 0; i < t; ++i) {
|
---|
1144 | //Pick bases at random, instead of starting at 2
|
---|
1145 | a.fromInt(lowprimes[Math.floor(Math.random()*lowprimes.length)]);
|
---|
1146 | var y = a.modPow(r,this);
|
---|
1147 | if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
|
---|
1148 | var j = 1;
|
---|
1149 | while(j++ < k && y.compareTo(n1) != 0) {
|
---|
1150 | y = y.modPowInt(2,this);
|
---|
1151 | if(y.compareTo(BigInteger.ONE) == 0) return false;
|
---|
1152 | }
|
---|
1153 | if(y.compareTo(n1) != 0) return false;
|
---|
1154 | }
|
---|
1155 | }
|
---|
1156 | return true;
|
---|
1157 | }
|
---|
1158 |
|
---|
1159 | // protected
|
---|
1160 | BigInteger.prototype.chunkSize = bnpChunkSize;
|
---|
1161 | BigInteger.prototype.toRadix = bnpToRadix;
|
---|
1162 | BigInteger.prototype.fromRadix = bnpFromRadix;
|
---|
1163 | BigInteger.prototype.fromNumber = bnpFromNumber;
|
---|
1164 | BigInteger.prototype.bitwiseTo = bnpBitwiseTo;
|
---|
1165 | BigInteger.prototype.changeBit = bnpChangeBit;
|
---|
1166 | BigInteger.prototype.addTo = bnpAddTo;
|
---|
1167 | BigInteger.prototype.dMultiply = bnpDMultiply;
|
---|
1168 | BigInteger.prototype.dAddOffset = bnpDAddOffset;
|
---|
1169 | BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;
|
---|
1170 | BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;
|
---|
1171 | BigInteger.prototype.modInt = bnpModInt;
|
---|
1172 | BigInteger.prototype.millerRabin = bnpMillerRabin;
|
---|
1173 |
|
---|
1174 | // public
|
---|
1175 | BigInteger.prototype.clone = bnClone;
|
---|
1176 | BigInteger.prototype.intValue = bnIntValue;
|
---|
1177 | BigInteger.prototype.byteValue = bnByteValue;
|
---|
1178 | BigInteger.prototype.shortValue = bnShortValue;
|
---|
1179 | BigInteger.prototype.signum = bnSigNum;
|
---|
1180 | BigInteger.prototype.toByteArray = bnToByteArray;
|
---|
1181 | BigInteger.prototype.equals = bnEquals;
|
---|
1182 | BigInteger.prototype.min = bnMin;
|
---|
1183 | BigInteger.prototype.max = bnMax;
|
---|
1184 | BigInteger.prototype.and = bnAnd;
|
---|
1185 | BigInteger.prototype.or = bnOr;
|
---|
1186 | BigInteger.prototype.xor = bnXor;
|
---|
1187 | BigInteger.prototype.andNot = bnAndNot;
|
---|
1188 | BigInteger.prototype.not = bnNot;
|
---|
1189 | BigInteger.prototype.shiftLeft = bnShiftLeft;
|
---|
1190 | BigInteger.prototype.shiftRight = bnShiftRight;
|
---|
1191 | BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;
|
---|
1192 | BigInteger.prototype.bitCount = bnBitCount;
|
---|
1193 | BigInteger.prototype.testBit = bnTestBit;
|
---|
1194 | BigInteger.prototype.setBit = bnSetBit;
|
---|
1195 | BigInteger.prototype.clearBit = bnClearBit;
|
---|
1196 | BigInteger.prototype.flipBit = bnFlipBit;
|
---|
1197 | BigInteger.prototype.add = bnAdd;
|
---|
1198 | BigInteger.prototype.subtract = bnSubtract;
|
---|
1199 | BigInteger.prototype.multiply = bnMultiply;
|
---|
1200 | BigInteger.prototype.divide = bnDivide;
|
---|
1201 | BigInteger.prototype.remainder = bnRemainder;
|
---|
1202 | BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;
|
---|
1203 | BigInteger.prototype.modPow = bnModPow;
|
---|
1204 | BigInteger.prototype.modInverse = bnModInverse;
|
---|
1205 | BigInteger.prototype.pow = bnPow;
|
---|
1206 | BigInteger.prototype.gcd = bnGCD;
|
---|
1207 | BigInteger.prototype.isProbablePrime = bnIsProbablePrime;
|
---|
1208 |
|
---|
1209 | // JSBN-specific extension
|
---|
1210 | BigInteger.prototype.square = bnSquare;
|
---|
1211 |
|
---|
1212 | // Expose the Barrett function
|
---|
1213 | BigInteger.prototype.Barrett = Barrett
|
---|
1214 |
|
---|
1215 | // BigInteger interfaces not implemented in jsbn:
|
---|
1216 |
|
---|
1217 | // BigInteger(int signum, byte[] magnitude)
|
---|
1218 | // double doubleValue()
|
---|
1219 | // float floatValue()
|
---|
1220 | // int hashCode()
|
---|
1221 | // long longValue()
|
---|
1222 | // static BigInteger valueOf(long val)
|
---|
1223 |
|
---|
1224 | // Random number generator - requires a PRNG backend, e.g. prng4.js
|
---|
1225 |
|
---|
1226 | // For best results, put code like
|
---|
1227 | // <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'>
|
---|
1228 | // in your main HTML document.
|
---|
1229 |
|
---|
1230 | var rng_state;
|
---|
1231 | var rng_pool;
|
---|
1232 | var rng_pptr;
|
---|
1233 |
|
---|
1234 | // Mix in a 32-bit integer into the pool
|
---|
1235 | function rng_seed_int(x) {
|
---|
1236 | rng_pool[rng_pptr++] ^= x & 255;
|
---|
1237 | rng_pool[rng_pptr++] ^= (x >> 8) & 255;
|
---|
1238 | rng_pool[rng_pptr++] ^= (x >> 16) & 255;
|
---|
1239 | rng_pool[rng_pptr++] ^= (x >> 24) & 255;
|
---|
1240 | if(rng_pptr >= rng_psize) rng_pptr -= rng_psize;
|
---|
1241 | }
|
---|
1242 |
|
---|
1243 | // Mix in the current time (w/milliseconds) into the pool
|
---|
1244 | function rng_seed_time() {
|
---|
1245 | rng_seed_int(new Date().getTime());
|
---|
1246 | }
|
---|
1247 |
|
---|
1248 | // Initialize the pool with junk if needed.
|
---|
1249 | if(rng_pool == null) {
|
---|
1250 | rng_pool = new Array();
|
---|
1251 | rng_pptr = 0;
|
---|
1252 | var t;
|
---|
1253 | if(typeof window !== "undefined" && window.crypto) {
|
---|
1254 | if (window.crypto.getRandomValues) {
|
---|
1255 | // Use webcrypto if available
|
---|
1256 | var ua = new Uint8Array(32);
|
---|
1257 | window.crypto.getRandomValues(ua);
|
---|
1258 | for(t = 0; t < 32; ++t)
|
---|
1259 | rng_pool[rng_pptr++] = ua[t];
|
---|
1260 | }
|
---|
1261 | else if(navigator.appName == "Netscape" && navigator.appVersion < "5") {
|
---|
1262 | // Extract entropy (256 bits) from NS4 RNG if available
|
---|
1263 | var z = window.crypto.random(32);
|
---|
1264 | for(t = 0; t < z.length; ++t)
|
---|
1265 | rng_pool[rng_pptr++] = z.charCodeAt(t) & 255;
|
---|
1266 | }
|
---|
1267 | }
|
---|
1268 | while(rng_pptr < rng_psize) { // extract some randomness from Math.random()
|
---|
1269 | t = Math.floor(65536 * Math.random());
|
---|
1270 | rng_pool[rng_pptr++] = t >>> 8;
|
---|
1271 | rng_pool[rng_pptr++] = t & 255;
|
---|
1272 | }
|
---|
1273 | rng_pptr = 0;
|
---|
1274 | rng_seed_time();
|
---|
1275 | //rng_seed_int(window.screenX);
|
---|
1276 | //rng_seed_int(window.screenY);
|
---|
1277 | }
|
---|
1278 |
|
---|
1279 | function rng_get_byte() {
|
---|
1280 | if(rng_state == null) {
|
---|
1281 | rng_seed_time();
|
---|
1282 | rng_state = prng_newstate();
|
---|
1283 | rng_state.init(rng_pool);
|
---|
1284 | for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr)
|
---|
1285 | rng_pool[rng_pptr] = 0;
|
---|
1286 | rng_pptr = 0;
|
---|
1287 | //rng_pool = null;
|
---|
1288 | }
|
---|
1289 | // TODO: allow reseeding after first request
|
---|
1290 | return rng_state.next();
|
---|
1291 | }
|
---|
1292 |
|
---|
1293 | function rng_get_bytes(ba) {
|
---|
1294 | var i;
|
---|
1295 | for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte();
|
---|
1296 | }
|
---|
1297 |
|
---|
1298 | function SecureRandom() {}
|
---|
1299 |
|
---|
1300 | SecureRandom.prototype.nextBytes = rng_get_bytes;
|
---|
1301 |
|
---|
1302 | // prng4.js - uses Arcfour as a PRNG
|
---|
1303 |
|
---|
1304 | function Arcfour() {
|
---|
1305 | this.i = 0;
|
---|
1306 | this.j = 0;
|
---|
1307 | this.S = new Array();
|
---|
1308 | }
|
---|
1309 |
|
---|
1310 | // Initialize arcfour context from key, an array of ints, each from [0..255]
|
---|
1311 | function ARC4init(key) {
|
---|
1312 | var i, j, t;
|
---|
1313 | for(i = 0; i < 256; ++i)
|
---|
1314 | this.S[i] = i;
|
---|
1315 | j = 0;
|
---|
1316 | for(i = 0; i < 256; ++i) {
|
---|
1317 | j = (j + this.S[i] + key[i % key.length]) & 255;
|
---|
1318 | t = this.S[i];
|
---|
1319 | this.S[i] = this.S[j];
|
---|
1320 | this.S[j] = t;
|
---|
1321 | }
|
---|
1322 | this.i = 0;
|
---|
1323 | this.j = 0;
|
---|
1324 | }
|
---|
1325 |
|
---|
1326 | function ARC4next() {
|
---|
1327 | var t;
|
---|
1328 | this.i = (this.i + 1) & 255;
|
---|
1329 | this.j = (this.j + this.S[this.i]) & 255;
|
---|
1330 | t = this.S[this.i];
|
---|
1331 | this.S[this.i] = this.S[this.j];
|
---|
1332 | this.S[this.j] = t;
|
---|
1333 | return this.S[(t + this.S[this.i]) & 255];
|
---|
1334 | }
|
---|
1335 |
|
---|
1336 | Arcfour.prototype.init = ARC4init;
|
---|
1337 | Arcfour.prototype.next = ARC4next;
|
---|
1338 |
|
---|
1339 | // Plug in your RNG constructor here
|
---|
1340 | function prng_newstate() {
|
---|
1341 | return new Arcfour();
|
---|
1342 | }
|
---|
1343 |
|
---|
1344 | // Pool size must be a multiple of 4 and greater than 32.
|
---|
1345 | // An array of bytes the size of the pool will be passed to init()
|
---|
1346 | var rng_psize = 256;
|
---|
1347 |
|
---|
1348 | BigInteger.SecureRandom = SecureRandom;
|
---|
1349 | BigInteger.BigInteger = BigInteger;
|
---|
1350 | if (typeof exports !== 'undefined') {
|
---|
1351 | exports = module.exports = BigInteger;
|
---|
1352 | } else {
|
---|
1353 | this.BigInteger = BigInteger;
|
---|
1354 | this.SecureRandom = SecureRandom;
|
---|
1355 | }
|
---|
1356 |
|
---|
1357 | }).call(this);
|
---|