source: trip-planner-front/node_modules/jsbn/index.js@ b738035

Last change on this file since b738035 was 6a3a178, checked in by Ema <ema_spirova@…>, 3 years ago

initial commit

  • Property mode set to 100644
File size: 40.8 KB
Line 
1(function(){
2
3 // Copyright (c) 2005 Tom Wu
4 // All Rights Reserved.
5 // See "LICENSE" for details.
6
7 // Basic JavaScript BN library - subset useful for RSA encryption.
8
9 // Bits per digit
10 var dbits;
11
12 // JavaScript engine analysis
13 var canary = 0xdeadbeefcafe;
14 var j_lm = ((canary&0xffffff)==0xefcafe);
15
16 // (public) Constructor
17 function BigInteger(a,b,c) {
18 if(a != null)
19 if("number" == typeof a) this.fromNumber(a,b,c);
20 else if(b == null && "string" != typeof a) this.fromString(a,256);
21 else this.fromString(a,b);
22 }
23
24 // return new, unset BigInteger
25 function nbi() { return new BigInteger(null); }
26
27 // am: Compute w_j += (x*this_i), propagate carries,
28 // c is initial carry, returns final carry.
29 // c < 3*dvalue, x < 2*dvalue, this_i < dvalue
30 // We need to select the fastest one that works in this environment.
31
32 // am1: use a single mult and divide to get the high bits,
33 // max digit bits should be 26 because
34 // max internal value = 2*dvalue^2-2*dvalue (< 2^53)
35 function am1(i,x,w,j,c,n) {
36 while(--n >= 0) {
37 var v = x*this[i++]+w[j]+c;
38 c = Math.floor(v/0x4000000);
39 w[j++] = v&0x3ffffff;
40 }
41 return c;
42 }
43 // am2 avoids a big mult-and-extract completely.
44 // Max digit bits should be <= 30 because we do bitwise ops
45 // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
46 function am2(i,x,w,j,c,n) {
47 var xl = x&0x7fff, xh = x>>15;
48 while(--n >= 0) {
49 var l = this[i]&0x7fff;
50 var h = this[i++]>>15;
51 var m = xh*l+h*xl;
52 l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);
53 c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
54 w[j++] = l&0x3fffffff;
55 }
56 return c;
57 }
58 // Alternately, set max digit bits to 28 since some
59 // browsers slow down when dealing with 32-bit numbers.
60 function am3(i,x,w,j,c,n) {
61 var xl = x&0x3fff, xh = x>>14;
62 while(--n >= 0) {
63 var l = this[i]&0x3fff;
64 var h = this[i++]>>14;
65 var m = xh*l+h*xl;
66 l = xl*l+((m&0x3fff)<<14)+w[j]+c;
67 c = (l>>28)+(m>>14)+xh*h;
68 w[j++] = l&0xfffffff;
69 }
70 return c;
71 }
72 var inBrowser = typeof navigator !== "undefined";
73 if(inBrowser && j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
74 BigInteger.prototype.am = am2;
75 dbits = 30;
76 }
77 else if(inBrowser && j_lm && (navigator.appName != "Netscape")) {
78 BigInteger.prototype.am = am1;
79 dbits = 26;
80 }
81 else { // Mozilla/Netscape seems to prefer am3
82 BigInteger.prototype.am = am3;
83 dbits = 28;
84 }
85
86 BigInteger.prototype.DB = dbits;
87 BigInteger.prototype.DM = ((1<<dbits)-1);
88 BigInteger.prototype.DV = (1<<dbits);
89
90 var BI_FP = 52;
91 BigInteger.prototype.FV = Math.pow(2,BI_FP);
92 BigInteger.prototype.F1 = BI_FP-dbits;
93 BigInteger.prototype.F2 = 2*dbits-BI_FP;
94
95 // Digit conversions
96 var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
97 var BI_RC = new Array();
98 var rr,vv;
99 rr = "0".charCodeAt(0);
100 for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
101 rr = "a".charCodeAt(0);
102 for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
103 rr = "A".charCodeAt(0);
104 for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
105
106 function int2char(n) { return BI_RM.charAt(n); }
107 function intAt(s,i) {
108 var c = BI_RC[s.charCodeAt(i)];
109 return (c==null)?-1:c;
110 }
111
112 // (protected) copy this to r
113 function bnpCopyTo(r) {
114 for(var i = this.t-1; i >= 0; --i) r[i] = this[i];
115 r.t = this.t;
116 r.s = this.s;
117 }
118
119 // (protected) set from integer value x, -DV <= x < DV
120 function bnpFromInt(x) {
121 this.t = 1;
122 this.s = (x<0)?-1:0;
123 if(x > 0) this[0] = x;
124 else if(x < -1) this[0] = x+this.DV;
125 else this.t = 0;
126 }
127
128 // return bigint initialized to value
129 function nbv(i) { var r = nbi(); r.fromInt(i); return r; }
130
131 // (protected) set from string and radix
132 function bnpFromString(s,b) {
133 var k;
134 if(b == 16) k = 4;
135 else if(b == 8) k = 3;
136 else if(b == 256) k = 8; // byte array
137 else if(b == 2) k = 1;
138 else if(b == 32) k = 5;
139 else if(b == 4) k = 2;
140 else { this.fromRadix(s,b); return; }
141 this.t = 0;
142 this.s = 0;
143 var i = s.length, mi = false, sh = 0;
144 while(--i >= 0) {
145 var x = (k==8)?s[i]&0xff:intAt(s,i);
146 if(x < 0) {
147 if(s.charAt(i) == "-") mi = true;
148 continue;
149 }
150 mi = false;
151 if(sh == 0)
152 this[this.t++] = x;
153 else if(sh+k > this.DB) {
154 this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;
155 this[this.t++] = (x>>(this.DB-sh));
156 }
157 else
158 this[this.t-1] |= x<<sh;
159 sh += k;
160 if(sh >= this.DB) sh -= this.DB;
161 }
162 if(k == 8 && (s[0]&0x80) != 0) {
163 this.s = -1;
164 if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;
165 }
166 this.clamp();
167 if(mi) BigInteger.ZERO.subTo(this,this);
168 }
169
170 // (protected) clamp off excess high words
171 function bnpClamp() {
172 var c = this.s&this.DM;
173 while(this.t > 0 && this[this.t-1] == c) --this.t;
174 }
175
176 // (public) return string representation in given radix
177 function bnToString(b) {
178 if(this.s < 0) return "-"+this.negate().toString(b);
179 var k;
180 if(b == 16) k = 4;
181 else if(b == 8) k = 3;
182 else if(b == 2) k = 1;
183 else if(b == 32) k = 5;
184 else if(b == 4) k = 2;
185 else return this.toRadix(b);
186 var km = (1<<k)-1, d, m = false, r = "", i = this.t;
187 var p = this.DB-(i*this.DB)%k;
188 if(i-- > 0) {
189 if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); }
190 while(i >= 0) {
191 if(p < k) {
192 d = (this[i]&((1<<p)-1))<<(k-p);
193 d |= this[--i]>>(p+=this.DB-k);
194 }
195 else {
196 d = (this[i]>>(p-=k))&km;
197 if(p <= 0) { p += this.DB; --i; }
198 }
199 if(d > 0) m = true;
200 if(m) r += int2char(d);
201 }
202 }
203 return m?r:"0";
204 }
205
206 // (public) -this
207 function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }
208
209 // (public) |this|
210 function bnAbs() { return (this.s<0)?this.negate():this; }
211
212 // (public) return + if this > a, - if this < a, 0 if equal
213 function bnCompareTo(a) {
214 var r = this.s-a.s;
215 if(r != 0) return r;
216 var i = this.t;
217 r = i-a.t;
218 if(r != 0) return (this.s<0)?-r:r;
219 while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;
220 return 0;
221 }
222
223 // returns bit length of the integer x
224 function nbits(x) {
225 var r = 1, t;
226 if((t=x>>>16) != 0) { x = t; r += 16; }
227 if((t=x>>8) != 0) { x = t; r += 8; }
228 if((t=x>>4) != 0) { x = t; r += 4; }
229 if((t=x>>2) != 0) { x = t; r += 2; }
230 if((t=x>>1) != 0) { x = t; r += 1; }
231 return r;
232 }
233
234 // (public) return the number of bits in "this"
235 function bnBitLength() {
236 if(this.t <= 0) return 0;
237 return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));
238 }
239
240 // (protected) r = this << n*DB
241 function bnpDLShiftTo(n,r) {
242 var i;
243 for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
244 for(i = n-1; i >= 0; --i) r[i] = 0;
245 r.t = this.t+n;
246 r.s = this.s;
247 }
248
249 // (protected) r = this >> n*DB
250 function bnpDRShiftTo(n,r) {
251 for(var i = n; i < this.t; ++i) r[i-n] = this[i];
252 r.t = Math.max(this.t-n,0);
253 r.s = this.s;
254 }
255
256 // (protected) r = this << n
257 function bnpLShiftTo(n,r) {
258 var bs = n%this.DB;
259 var cbs = this.DB-bs;
260 var bm = (1<<cbs)-1;
261 var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;
262 for(i = this.t-1; i >= 0; --i) {
263 r[i+ds+1] = (this[i]>>cbs)|c;
264 c = (this[i]&bm)<<bs;
265 }
266 for(i = ds-1; i >= 0; --i) r[i] = 0;
267 r[ds] = c;
268 r.t = this.t+ds+1;
269 r.s = this.s;
270 r.clamp();
271 }
272
273 // (protected) r = this >> n
274 function bnpRShiftTo(n,r) {
275 r.s = this.s;
276 var ds = Math.floor(n/this.DB);
277 if(ds >= this.t) { r.t = 0; return; }
278 var bs = n%this.DB;
279 var cbs = this.DB-bs;
280 var bm = (1<<bs)-1;
281 r[0] = this[ds]>>bs;
282 for(var i = ds+1; i < this.t; ++i) {
283 r[i-ds-1] |= (this[i]&bm)<<cbs;
284 r[i-ds] = this[i]>>bs;
285 }
286 if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;
287 r.t = this.t-ds;
288 r.clamp();
289 }
290
291 // (protected) r = this - a
292 function bnpSubTo(a,r) {
293 var i = 0, c = 0, m = Math.min(a.t,this.t);
294 while(i < m) {
295 c += this[i]-a[i];
296 r[i++] = c&this.DM;
297 c >>= this.DB;
298 }
299 if(a.t < this.t) {
300 c -= a.s;
301 while(i < this.t) {
302 c += this[i];
303 r[i++] = c&this.DM;
304 c >>= this.DB;
305 }
306 c += this.s;
307 }
308 else {
309 c += this.s;
310 while(i < a.t) {
311 c -= a[i];
312 r[i++] = c&this.DM;
313 c >>= this.DB;
314 }
315 c -= a.s;
316 }
317 r.s = (c<0)?-1:0;
318 if(c < -1) r[i++] = this.DV+c;
319 else if(c > 0) r[i++] = c;
320 r.t = i;
321 r.clamp();
322 }
323
324 // (protected) r = this * a, r != this,a (HAC 14.12)
325 // "this" should be the larger one if appropriate.
326 function bnpMultiplyTo(a,r) {
327 var x = this.abs(), y = a.abs();
328 var i = x.t;
329 r.t = i+y.t;
330 while(--i >= 0) r[i] = 0;
331 for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);
332 r.s = 0;
333 r.clamp();
334 if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
335 }
336
337 // (protected) r = this^2, r != this (HAC 14.16)
338 function bnpSquareTo(r) {
339 var x = this.abs();
340 var i = r.t = 2*x.t;
341 while(--i >= 0) r[i] = 0;
342 for(i = 0; i < x.t-1; ++i) {
343 var c = x.am(i,x[i],r,2*i,0,1);
344 if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {
345 r[i+x.t] -= x.DV;
346 r[i+x.t+1] = 1;
347 }
348 }
349 if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);
350 r.s = 0;
351 r.clamp();
352 }
353
354 // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
355 // r != q, this != m. q or r may be null.
356 function bnpDivRemTo(m,q,r) {
357 var pm = m.abs();
358 if(pm.t <= 0) return;
359 var pt = this.abs();
360 if(pt.t < pm.t) {
361 if(q != null) q.fromInt(0);
362 if(r != null) this.copyTo(r);
363 return;
364 }
365 if(r == null) r = nbi();
366 var y = nbi(), ts = this.s, ms = m.s;
367 var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus
368 if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
369 else { pm.copyTo(y); pt.copyTo(r); }
370 var ys = y.t;
371 var y0 = y[ys-1];
372 if(y0 == 0) return;
373 var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0);
374 var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2;
375 var i = r.t, j = i-ys, t = (q==null)?nbi():q;
376 y.dlShiftTo(j,t);
377 if(r.compareTo(t) >= 0) {
378 r[r.t++] = 1;
379 r.subTo(t,r);
380 }
381 BigInteger.ONE.dlShiftTo(ys,t);
382 t.subTo(y,y); // "negative" y so we can replace sub with am later
383 while(y.t < ys) y[y.t++] = 0;
384 while(--j >= 0) {
385 // Estimate quotient digit
386 var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);
387 if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out
388 y.dlShiftTo(j,t);
389 r.subTo(t,r);
390 while(r[i] < --qd) r.subTo(t,r);
391 }
392 }
393 if(q != null) {
394 r.drShiftTo(ys,q);
395 if(ts != ms) BigInteger.ZERO.subTo(q,q);
396 }
397 r.t = ys;
398 r.clamp();
399 if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder
400 if(ts < 0) BigInteger.ZERO.subTo(r,r);
401 }
402
403 // (public) this mod a
404 function bnMod(a) {
405 var r = nbi();
406 this.abs().divRemTo(a,null,r);
407 if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
408 return r;
409 }
410
411 // Modular reduction using "classic" algorithm
412 function Classic(m) { this.m = m; }
413 function cConvert(x) {
414 if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
415 else return x;
416 }
417 function cRevert(x) { return x; }
418 function cReduce(x) { x.divRemTo(this.m,null,x); }
419 function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
420 function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
421
422 Classic.prototype.convert = cConvert;
423 Classic.prototype.revert = cRevert;
424 Classic.prototype.reduce = cReduce;
425 Classic.prototype.mulTo = cMulTo;
426 Classic.prototype.sqrTo = cSqrTo;
427
428 // (protected) return "-1/this % 2^DB"; useful for Mont. reduction
429 // justification:
430 // xy == 1 (mod m)
431 // xy = 1+km
432 // xy(2-xy) = (1+km)(1-km)
433 // x[y(2-xy)] = 1-k^2m^2
434 // x[y(2-xy)] == 1 (mod m^2)
435 // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
436 // should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
437 // JS multiply "overflows" differently from C/C++, so care is needed here.
438 function bnpInvDigit() {
439 if(this.t < 1) return 0;
440 var x = this[0];
441 if((x&1) == 0) return 0;
442 var y = x&3; // y == 1/x mod 2^2
443 y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
444 y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8
445 y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16
446 // last step - calculate inverse mod DV directly;
447 // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
448 y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits
449 // we really want the negative inverse, and -DV < y < DV
450 return (y>0)?this.DV-y:-y;
451 }
452
453 // Montgomery reduction
454 function Montgomery(m) {
455 this.m = m;
456 this.mp = m.invDigit();
457 this.mpl = this.mp&0x7fff;
458 this.mph = this.mp>>15;
459 this.um = (1<<(m.DB-15))-1;
460 this.mt2 = 2*m.t;
461 }
462
463 // xR mod m
464 function montConvert(x) {
465 var r = nbi();
466 x.abs().dlShiftTo(this.m.t,r);
467 r.divRemTo(this.m,null,r);
468 if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
469 return r;
470 }
471
472 // x/R mod m
473 function montRevert(x) {
474 var r = nbi();
475 x.copyTo(r);
476 this.reduce(r);
477 return r;
478 }
479
480 // x = x/R mod m (HAC 14.32)
481 function montReduce(x) {
482 while(x.t <= this.mt2) // pad x so am has enough room later
483 x[x.t++] = 0;
484 for(var i = 0; i < this.m.t; ++i) {
485 // faster way of calculating u0 = x[i]*mp mod DV
486 var j = x[i]&0x7fff;
487 var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM;
488 // use am to combine the multiply-shift-add into one call
489 j = i+this.m.t;
490 x[j] += this.m.am(0,u0,x,i,0,this.m.t);
491 // propagate carry
492 while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }
493 }
494 x.clamp();
495 x.drShiftTo(this.m.t,x);
496 if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
497 }
498
499 // r = "x^2/R mod m"; x != r
500 function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
501
502 // r = "xy/R mod m"; x,y != r
503 function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
504
505 Montgomery.prototype.convert = montConvert;
506 Montgomery.prototype.revert = montRevert;
507 Montgomery.prototype.reduce = montReduce;
508 Montgomery.prototype.mulTo = montMulTo;
509 Montgomery.prototype.sqrTo = montSqrTo;
510
511 // (protected) true iff this is even
512 function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }
513
514 // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
515 function bnpExp(e,z) {
516 if(e > 0xffffffff || e < 1) return BigInteger.ONE;
517 var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
518 g.copyTo(r);
519 while(--i >= 0) {
520 z.sqrTo(r,r2);
521 if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
522 else { var t = r; r = r2; r2 = t; }
523 }
524 return z.revert(r);
525 }
526
527 // (public) this^e % m, 0 <= e < 2^32
528 function bnModPowInt(e,m) {
529 var z;
530 if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
531 return this.exp(e,z);
532 }
533
534 // protected
535 BigInteger.prototype.copyTo = bnpCopyTo;
536 BigInteger.prototype.fromInt = bnpFromInt;
537 BigInteger.prototype.fromString = bnpFromString;
538 BigInteger.prototype.clamp = bnpClamp;
539 BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
540 BigInteger.prototype.drShiftTo = bnpDRShiftTo;
541 BigInteger.prototype.lShiftTo = bnpLShiftTo;
542 BigInteger.prototype.rShiftTo = bnpRShiftTo;
543 BigInteger.prototype.subTo = bnpSubTo;
544 BigInteger.prototype.multiplyTo = bnpMultiplyTo;
545 BigInteger.prototype.squareTo = bnpSquareTo;
546 BigInteger.prototype.divRemTo = bnpDivRemTo;
547 BigInteger.prototype.invDigit = bnpInvDigit;
548 BigInteger.prototype.isEven = bnpIsEven;
549 BigInteger.prototype.exp = bnpExp;
550
551 // public
552 BigInteger.prototype.toString = bnToString;
553 BigInteger.prototype.negate = bnNegate;
554 BigInteger.prototype.abs = bnAbs;
555 BigInteger.prototype.compareTo = bnCompareTo;
556 BigInteger.prototype.bitLength = bnBitLength;
557 BigInteger.prototype.mod = bnMod;
558 BigInteger.prototype.modPowInt = bnModPowInt;
559
560 // "constants"
561 BigInteger.ZERO = nbv(0);
562 BigInteger.ONE = nbv(1);
563
564 // Copyright (c) 2005-2009 Tom Wu
565 // All Rights Reserved.
566 // See "LICENSE" for details.
567
568 // Extended JavaScript BN functions, required for RSA private ops.
569
570 // Version 1.1: new BigInteger("0", 10) returns "proper" zero
571 // Version 1.2: square() API, isProbablePrime fix
572
573 // (public)
574 function bnClone() { var r = nbi(); this.copyTo(r); return r; }
575
576 // (public) return value as integer
577 function bnIntValue() {
578 if(this.s < 0) {
579 if(this.t == 1) return this[0]-this.DV;
580 else if(this.t == 0) return -1;
581 }
582 else if(this.t == 1) return this[0];
583 else if(this.t == 0) return 0;
584 // assumes 16 < DB < 32
585 return ((this[1]&((1<<(32-this.DB))-1))<<this.DB)|this[0];
586 }
587
588 // (public) return value as byte
589 function bnByteValue() { return (this.t==0)?this.s:(this[0]<<24)>>24; }
590
591 // (public) return value as short (assumes DB>=16)
592 function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; }
593
594 // (protected) return x s.t. r^x < DV
595 function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); }
596
597 // (public) 0 if this == 0, 1 if this > 0
598 function bnSigNum() {
599 if(this.s < 0) return -1;
600 else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
601 else return 1;
602 }
603
604 // (protected) convert to radix string
605 function bnpToRadix(b) {
606 if(b == null) b = 10;
607 if(this.signum() == 0 || b < 2 || b > 36) return "0";
608 var cs = this.chunkSize(b);
609 var a = Math.pow(b,cs);
610 var d = nbv(a), y = nbi(), z = nbi(), r = "";
611 this.divRemTo(d,y,z);
612 while(y.signum() > 0) {
613 r = (a+z.intValue()).toString(b).substr(1) + r;
614 y.divRemTo(d,y,z);
615 }
616 return z.intValue().toString(b) + r;
617 }
618
619 // (protected) convert from radix string
620 function bnpFromRadix(s,b) {
621 this.fromInt(0);
622 if(b == null) b = 10;
623 var cs = this.chunkSize(b);
624 var d = Math.pow(b,cs), mi = false, j = 0, w = 0;
625 for(var i = 0; i < s.length; ++i) {
626 var x = intAt(s,i);
627 if(x < 0) {
628 if(s.charAt(i) == "-" && this.signum() == 0) mi = true;
629 continue;
630 }
631 w = b*w+x;
632 if(++j >= cs) {
633 this.dMultiply(d);
634 this.dAddOffset(w,0);
635 j = 0;
636 w = 0;
637 }
638 }
639 if(j > 0) {
640 this.dMultiply(Math.pow(b,j));
641 this.dAddOffset(w,0);
642 }
643 if(mi) BigInteger.ZERO.subTo(this,this);
644 }
645
646 // (protected) alternate constructor
647 function bnpFromNumber(a,b,c) {
648 if("number" == typeof b) {
649 // new BigInteger(int,int,RNG)
650 if(a < 2) this.fromInt(1);
651 else {
652 this.fromNumber(a,c);
653 if(!this.testBit(a-1)) // force MSB set
654 this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this);
655 if(this.isEven()) this.dAddOffset(1,0); // force odd
656 while(!this.isProbablePrime(b)) {
657 this.dAddOffset(2,0);
658 if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this);
659 }
660 }
661 }
662 else {
663 // new BigInteger(int,RNG)
664 var x = new Array(), t = a&7;
665 x.length = (a>>3)+1;
666 b.nextBytes(x);
667 if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0;
668 this.fromString(x,256);
669 }
670 }
671
672 // (public) convert to bigendian byte array
673 function bnToByteArray() {
674 var i = this.t, r = new Array();
675 r[0] = this.s;
676 var p = this.DB-(i*this.DB)%8, d, k = 0;
677 if(i-- > 0) {
678 if(p < this.DB && (d = this[i]>>p) != (this.s&this.DM)>>p)
679 r[k++] = d|(this.s<<(this.DB-p));
680 while(i >= 0) {
681 if(p < 8) {
682 d = (this[i]&((1<<p)-1))<<(8-p);
683 d |= this[--i]>>(p+=this.DB-8);
684 }
685 else {
686 d = (this[i]>>(p-=8))&0xff;
687 if(p <= 0) { p += this.DB; --i; }
688 }
689 if((d&0x80) != 0) d |= -256;
690 if(k == 0 && (this.s&0x80) != (d&0x80)) ++k;
691 if(k > 0 || d != this.s) r[k++] = d;
692 }
693 }
694 return r;
695 }
696
697 function bnEquals(a) { return(this.compareTo(a)==0); }
698 function bnMin(a) { return(this.compareTo(a)<0)?this:a; }
699 function bnMax(a) { return(this.compareTo(a)>0)?this:a; }
700
701 // (protected) r = this op a (bitwise)
702 function bnpBitwiseTo(a,op,r) {
703 var i, f, m = Math.min(a.t,this.t);
704 for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]);
705 if(a.t < this.t) {
706 f = a.s&this.DM;
707 for(i = m; i < this.t; ++i) r[i] = op(this[i],f);
708 r.t = this.t;
709 }
710 else {
711 f = this.s&this.DM;
712 for(i = m; i < a.t; ++i) r[i] = op(f,a[i]);
713 r.t = a.t;
714 }
715 r.s = op(this.s,a.s);
716 r.clamp();
717 }
718
719 // (public) this & a
720 function op_and(x,y) { return x&y; }
721 function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; }
722
723 // (public) this | a
724 function op_or(x,y) { return x|y; }
725 function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; }
726
727 // (public) this ^ a
728 function op_xor(x,y) { return x^y; }
729 function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; }
730
731 // (public) this & ~a
732 function op_andnot(x,y) { return x&~y; }
733 function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; }
734
735 // (public) ~this
736 function bnNot() {
737 var r = nbi();
738 for(var i = 0; i < this.t; ++i) r[i] = this.DM&~this[i];
739 r.t = this.t;
740 r.s = ~this.s;
741 return r;
742 }
743
744 // (public) this << n
745 function bnShiftLeft(n) {
746 var r = nbi();
747 if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r);
748 return r;
749 }
750
751 // (public) this >> n
752 function bnShiftRight(n) {
753 var r = nbi();
754 if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r);
755 return r;
756 }
757
758 // return index of lowest 1-bit in x, x < 2^31
759 function lbit(x) {
760 if(x == 0) return -1;
761 var r = 0;
762 if((x&0xffff) == 0) { x >>= 16; r += 16; }
763 if((x&0xff) == 0) { x >>= 8; r += 8; }
764 if((x&0xf) == 0) { x >>= 4; r += 4; }
765 if((x&3) == 0) { x >>= 2; r += 2; }
766 if((x&1) == 0) ++r;
767 return r;
768 }
769
770 // (public) returns index of lowest 1-bit (or -1 if none)
771 function bnGetLowestSetBit() {
772 for(var i = 0; i < this.t; ++i)
773 if(this[i] != 0) return i*this.DB+lbit(this[i]);
774 if(this.s < 0) return this.t*this.DB;
775 return -1;
776 }
777
778 // return number of 1 bits in x
779 function cbit(x) {
780 var r = 0;
781 while(x != 0) { x &= x-1; ++r; }
782 return r;
783 }
784
785 // (public) return number of set bits
786 function bnBitCount() {
787 var r = 0, x = this.s&this.DM;
788 for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x);
789 return r;
790 }
791
792 // (public) true iff nth bit is set
793 function bnTestBit(n) {
794 var j = Math.floor(n/this.DB);
795 if(j >= this.t) return(this.s!=0);
796 return((this[j]&(1<<(n%this.DB)))!=0);
797 }
798
799 // (protected) this op (1<<n)
800 function bnpChangeBit(n,op) {
801 var r = BigInteger.ONE.shiftLeft(n);
802 this.bitwiseTo(r,op,r);
803 return r;
804 }
805
806 // (public) this | (1<<n)
807 function bnSetBit(n) { return this.changeBit(n,op_or); }
808
809 // (public) this & ~(1<<n)
810 function bnClearBit(n) { return this.changeBit(n,op_andnot); }
811
812 // (public) this ^ (1<<n)
813 function bnFlipBit(n) { return this.changeBit(n,op_xor); }
814
815 // (protected) r = this + a
816 function bnpAddTo(a,r) {
817 var i = 0, c = 0, m = Math.min(a.t,this.t);
818 while(i < m) {
819 c += this[i]+a[i];
820 r[i++] = c&this.DM;
821 c >>= this.DB;
822 }
823 if(a.t < this.t) {
824 c += a.s;
825 while(i < this.t) {
826 c += this[i];
827 r[i++] = c&this.DM;
828 c >>= this.DB;
829 }
830 c += this.s;
831 }
832 else {
833 c += this.s;
834 while(i < a.t) {
835 c += a[i];
836 r[i++] = c&this.DM;
837 c >>= this.DB;
838 }
839 c += a.s;
840 }
841 r.s = (c<0)?-1:0;
842 if(c > 0) r[i++] = c;
843 else if(c < -1) r[i++] = this.DV+c;
844 r.t = i;
845 r.clamp();
846 }
847
848 // (public) this + a
849 function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; }
850
851 // (public) this - a
852 function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; }
853
854 // (public) this * a
855 function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; }
856
857 // (public) this^2
858 function bnSquare() { var r = nbi(); this.squareTo(r); return r; }
859
860 // (public) this / a
861 function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; }
862
863 // (public) this % a
864 function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; }
865
866 // (public) [this/a,this%a]
867 function bnDivideAndRemainder(a) {
868 var q = nbi(), r = nbi();
869 this.divRemTo(a,q,r);
870 return new Array(q,r);
871 }
872
873 // (protected) this *= n, this >= 0, 1 < n < DV
874 function bnpDMultiply(n) {
875 this[this.t] = this.am(0,n-1,this,0,0,this.t);
876 ++this.t;
877 this.clamp();
878 }
879
880 // (protected) this += n << w words, this >= 0
881 function bnpDAddOffset(n,w) {
882 if(n == 0) return;
883 while(this.t <= w) this[this.t++] = 0;
884 this[w] += n;
885 while(this[w] >= this.DV) {
886 this[w] -= this.DV;
887 if(++w >= this.t) this[this.t++] = 0;
888 ++this[w];
889 }
890 }
891
892 // A "null" reducer
893 function NullExp() {}
894 function nNop(x) { return x; }
895 function nMulTo(x,y,r) { x.multiplyTo(y,r); }
896 function nSqrTo(x,r) { x.squareTo(r); }
897
898 NullExp.prototype.convert = nNop;
899 NullExp.prototype.revert = nNop;
900 NullExp.prototype.mulTo = nMulTo;
901 NullExp.prototype.sqrTo = nSqrTo;
902
903 // (public) this^e
904 function bnPow(e) { return this.exp(e,new NullExp()); }
905
906 // (protected) r = lower n words of "this * a", a.t <= n
907 // "this" should be the larger one if appropriate.
908 function bnpMultiplyLowerTo(a,n,r) {
909 var i = Math.min(this.t+a.t,n);
910 r.s = 0; // assumes a,this >= 0
911 r.t = i;
912 while(i > 0) r[--i] = 0;
913 var j;
914 for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t);
915 for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i);
916 r.clamp();
917 }
918
919 // (protected) r = "this * a" without lower n words, n > 0
920 // "this" should be the larger one if appropriate.
921 function bnpMultiplyUpperTo(a,n,r) {
922 --n;
923 var i = r.t = this.t+a.t-n;
924 r.s = 0; // assumes a,this >= 0
925 while(--i >= 0) r[i] = 0;
926 for(i = Math.max(n-this.t,0); i < a.t; ++i)
927 r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n);
928 r.clamp();
929 r.drShiftTo(1,r);
930 }
931
932 // Barrett modular reduction
933 function Barrett(m) {
934 // setup Barrett
935 this.r2 = nbi();
936 this.q3 = nbi();
937 BigInteger.ONE.dlShiftTo(2*m.t,this.r2);
938 this.mu = this.r2.divide(m);
939 this.m = m;
940 }
941
942 function barrettConvert(x) {
943 if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m);
944 else if(x.compareTo(this.m) < 0) return x;
945 else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; }
946 }
947
948 function barrettRevert(x) { return x; }
949
950 // x = x mod m (HAC 14.42)
951 function barrettReduce(x) {
952 x.drShiftTo(this.m.t-1,this.r2);
953 if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); }
954 this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3);
955 this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2);
956 while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1);
957 x.subTo(this.r2,x);
958 while(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
959 }
960
961 // r = x^2 mod m; x != r
962 function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
963
964 // r = x*y mod m; x,y != r
965 function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
966
967 Barrett.prototype.convert = barrettConvert;
968 Barrett.prototype.revert = barrettRevert;
969 Barrett.prototype.reduce = barrettReduce;
970 Barrett.prototype.mulTo = barrettMulTo;
971 Barrett.prototype.sqrTo = barrettSqrTo;
972
973 // (public) this^e % m (HAC 14.85)
974 function bnModPow(e,m) {
975 var i = e.bitLength(), k, r = nbv(1), z;
976 if(i <= 0) return r;
977 else if(i < 18) k = 1;
978 else if(i < 48) k = 3;
979 else if(i < 144) k = 4;
980 else if(i < 768) k = 5;
981 else k = 6;
982 if(i < 8)
983 z = new Classic(m);
984 else if(m.isEven())
985 z = new Barrett(m);
986 else
987 z = new Montgomery(m);
988
989 // precomputation
990 var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1;
991 g[1] = z.convert(this);
992 if(k > 1) {
993 var g2 = nbi();
994 z.sqrTo(g[1],g2);
995 while(n <= km) {
996 g[n] = nbi();
997 z.mulTo(g2,g[n-2],g[n]);
998 n += 2;
999 }
1000 }
1001
1002 var j = e.t-1, w, is1 = true, r2 = nbi(), t;
1003 i = nbits(e[j])-1;
1004 while(j >= 0) {
1005 if(i >= k1) w = (e[j]>>(i-k1))&km;
1006 else {
1007 w = (e[j]&((1<<(i+1))-1))<<(k1-i);
1008 if(j > 0) w |= e[j-1]>>(this.DB+i-k1);
1009 }
1010
1011 n = k;
1012 while((w&1) == 0) { w >>= 1; --n; }
1013 if((i -= n) < 0) { i += this.DB; --j; }
1014 if(is1) { // ret == 1, don't bother squaring or multiplying it
1015 g[w].copyTo(r);
1016 is1 = false;
1017 }
1018 else {
1019 while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; }
1020 if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; }
1021 z.mulTo(r2,g[w],r);
1022 }
1023
1024 while(j >= 0 && (e[j]&(1<<i)) == 0) {
1025 z.sqrTo(r,r2); t = r; r = r2; r2 = t;
1026 if(--i < 0) { i = this.DB-1; --j; }
1027 }
1028 }
1029 return z.revert(r);
1030 }
1031
1032 // (public) gcd(this,a) (HAC 14.54)
1033 function bnGCD(a) {
1034 var x = (this.s<0)?this.negate():this.clone();
1035 var y = (a.s<0)?a.negate():a.clone();
1036 if(x.compareTo(y) < 0) { var t = x; x = y; y = t; }
1037 var i = x.getLowestSetBit(), g = y.getLowestSetBit();
1038 if(g < 0) return x;
1039 if(i < g) g = i;
1040 if(g > 0) {
1041 x.rShiftTo(g,x);
1042 y.rShiftTo(g,y);
1043 }
1044 while(x.signum() > 0) {
1045 if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x);
1046 if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y);
1047 if(x.compareTo(y) >= 0) {
1048 x.subTo(y,x);
1049 x.rShiftTo(1,x);
1050 }
1051 else {
1052 y.subTo(x,y);
1053 y.rShiftTo(1,y);
1054 }
1055 }
1056 if(g > 0) y.lShiftTo(g,y);
1057 return y;
1058 }
1059
1060 // (protected) this % n, n < 2^26
1061 function bnpModInt(n) {
1062 if(n <= 0) return 0;
1063 var d = this.DV%n, r = (this.s<0)?n-1:0;
1064 if(this.t > 0)
1065 if(d == 0) r = this[0]%n;
1066 else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n;
1067 return r;
1068 }
1069
1070 // (public) 1/this % m (HAC 14.61)
1071 function bnModInverse(m) {
1072 var ac = m.isEven();
1073 if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;
1074 var u = m.clone(), v = this.clone();
1075 var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1);
1076 while(u.signum() != 0) {
1077 while(u.isEven()) {
1078 u.rShiftTo(1,u);
1079 if(ac) {
1080 if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); }
1081 a.rShiftTo(1,a);
1082 }
1083 else if(!b.isEven()) b.subTo(m,b);
1084 b.rShiftTo(1,b);
1085 }
1086 while(v.isEven()) {
1087 v.rShiftTo(1,v);
1088 if(ac) {
1089 if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); }
1090 c.rShiftTo(1,c);
1091 }
1092 else if(!d.isEven()) d.subTo(m,d);
1093 d.rShiftTo(1,d);
1094 }
1095 if(u.compareTo(v) >= 0) {
1096 u.subTo(v,u);
1097 if(ac) a.subTo(c,a);
1098 b.subTo(d,b);
1099 }
1100 else {
1101 v.subTo(u,v);
1102 if(ac) c.subTo(a,c);
1103 d.subTo(b,d);
1104 }
1105 }
1106 if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
1107 if(d.compareTo(m) >= 0) return d.subtract(m);
1108 if(d.signum() < 0) d.addTo(m,d); else return d;
1109 if(d.signum() < 0) return d.add(m); else return d;
1110 }
1111
1112 var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997];
1113 var lplim = (1<<26)/lowprimes[lowprimes.length-1];
1114
1115 // (public) test primality with certainty >= 1-.5^t
1116 function bnIsProbablePrime(t) {
1117 var i, x = this.abs();
1118 if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) {
1119 for(i = 0; i < lowprimes.length; ++i)
1120 if(x[0] == lowprimes[i]) return true;
1121 return false;
1122 }
1123 if(x.isEven()) return false;
1124 i = 1;
1125 while(i < lowprimes.length) {
1126 var m = lowprimes[i], j = i+1;
1127 while(j < lowprimes.length && m < lplim) m *= lowprimes[j++];
1128 m = x.modInt(m);
1129 while(i < j) if(m%lowprimes[i++] == 0) return false;
1130 }
1131 return x.millerRabin(t);
1132 }
1133
1134 // (protected) true if probably prime (HAC 4.24, Miller-Rabin)
1135 function bnpMillerRabin(t) {
1136 var n1 = this.subtract(BigInteger.ONE);
1137 var k = n1.getLowestSetBit();
1138 if(k <= 0) return false;
1139 var r = n1.shiftRight(k);
1140 t = (t+1)>>1;
1141 if(t > lowprimes.length) t = lowprimes.length;
1142 var a = nbi();
1143 for(var i = 0; i < t; ++i) {
1144 //Pick bases at random, instead of starting at 2
1145 a.fromInt(lowprimes[Math.floor(Math.random()*lowprimes.length)]);
1146 var y = a.modPow(r,this);
1147 if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
1148 var j = 1;
1149 while(j++ < k && y.compareTo(n1) != 0) {
1150 y = y.modPowInt(2,this);
1151 if(y.compareTo(BigInteger.ONE) == 0) return false;
1152 }
1153 if(y.compareTo(n1) != 0) return false;
1154 }
1155 }
1156 return true;
1157 }
1158
1159 // protected
1160 BigInteger.prototype.chunkSize = bnpChunkSize;
1161 BigInteger.prototype.toRadix = bnpToRadix;
1162 BigInteger.prototype.fromRadix = bnpFromRadix;
1163 BigInteger.prototype.fromNumber = bnpFromNumber;
1164 BigInteger.prototype.bitwiseTo = bnpBitwiseTo;
1165 BigInteger.prototype.changeBit = bnpChangeBit;
1166 BigInteger.prototype.addTo = bnpAddTo;
1167 BigInteger.prototype.dMultiply = bnpDMultiply;
1168 BigInteger.prototype.dAddOffset = bnpDAddOffset;
1169 BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;
1170 BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;
1171 BigInteger.prototype.modInt = bnpModInt;
1172 BigInteger.prototype.millerRabin = bnpMillerRabin;
1173
1174 // public
1175 BigInteger.prototype.clone = bnClone;
1176 BigInteger.prototype.intValue = bnIntValue;
1177 BigInteger.prototype.byteValue = bnByteValue;
1178 BigInteger.prototype.shortValue = bnShortValue;
1179 BigInteger.prototype.signum = bnSigNum;
1180 BigInteger.prototype.toByteArray = bnToByteArray;
1181 BigInteger.prototype.equals = bnEquals;
1182 BigInteger.prototype.min = bnMin;
1183 BigInteger.prototype.max = bnMax;
1184 BigInteger.prototype.and = bnAnd;
1185 BigInteger.prototype.or = bnOr;
1186 BigInteger.prototype.xor = bnXor;
1187 BigInteger.prototype.andNot = bnAndNot;
1188 BigInteger.prototype.not = bnNot;
1189 BigInteger.prototype.shiftLeft = bnShiftLeft;
1190 BigInteger.prototype.shiftRight = bnShiftRight;
1191 BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;
1192 BigInteger.prototype.bitCount = bnBitCount;
1193 BigInteger.prototype.testBit = bnTestBit;
1194 BigInteger.prototype.setBit = bnSetBit;
1195 BigInteger.prototype.clearBit = bnClearBit;
1196 BigInteger.prototype.flipBit = bnFlipBit;
1197 BigInteger.prototype.add = bnAdd;
1198 BigInteger.prototype.subtract = bnSubtract;
1199 BigInteger.prototype.multiply = bnMultiply;
1200 BigInteger.prototype.divide = bnDivide;
1201 BigInteger.prototype.remainder = bnRemainder;
1202 BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;
1203 BigInteger.prototype.modPow = bnModPow;
1204 BigInteger.prototype.modInverse = bnModInverse;
1205 BigInteger.prototype.pow = bnPow;
1206 BigInteger.prototype.gcd = bnGCD;
1207 BigInteger.prototype.isProbablePrime = bnIsProbablePrime;
1208
1209 // JSBN-specific extension
1210 BigInteger.prototype.square = bnSquare;
1211
1212 // Expose the Barrett function
1213 BigInteger.prototype.Barrett = Barrett
1214
1215 // BigInteger interfaces not implemented in jsbn:
1216
1217 // BigInteger(int signum, byte[] magnitude)
1218 // double doubleValue()
1219 // float floatValue()
1220 // int hashCode()
1221 // long longValue()
1222 // static BigInteger valueOf(long val)
1223
1224 // Random number generator - requires a PRNG backend, e.g. prng4.js
1225
1226 // For best results, put code like
1227 // <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'>
1228 // in your main HTML document.
1229
1230 var rng_state;
1231 var rng_pool;
1232 var rng_pptr;
1233
1234 // Mix in a 32-bit integer into the pool
1235 function rng_seed_int(x) {
1236 rng_pool[rng_pptr++] ^= x & 255;
1237 rng_pool[rng_pptr++] ^= (x >> 8) & 255;
1238 rng_pool[rng_pptr++] ^= (x >> 16) & 255;
1239 rng_pool[rng_pptr++] ^= (x >> 24) & 255;
1240 if(rng_pptr >= rng_psize) rng_pptr -= rng_psize;
1241 }
1242
1243 // Mix in the current time (w/milliseconds) into the pool
1244 function rng_seed_time() {
1245 rng_seed_int(new Date().getTime());
1246 }
1247
1248 // Initialize the pool with junk if needed.
1249 if(rng_pool == null) {
1250 rng_pool = new Array();
1251 rng_pptr = 0;
1252 var t;
1253 if(typeof window !== "undefined" && window.crypto) {
1254 if (window.crypto.getRandomValues) {
1255 // Use webcrypto if available
1256 var ua = new Uint8Array(32);
1257 window.crypto.getRandomValues(ua);
1258 for(t = 0; t < 32; ++t)
1259 rng_pool[rng_pptr++] = ua[t];
1260 }
1261 else if(navigator.appName == "Netscape" && navigator.appVersion < "5") {
1262 // Extract entropy (256 bits) from NS4 RNG if available
1263 var z = window.crypto.random(32);
1264 for(t = 0; t < z.length; ++t)
1265 rng_pool[rng_pptr++] = z.charCodeAt(t) & 255;
1266 }
1267 }
1268 while(rng_pptr < rng_psize) { // extract some randomness from Math.random()
1269 t = Math.floor(65536 * Math.random());
1270 rng_pool[rng_pptr++] = t >>> 8;
1271 rng_pool[rng_pptr++] = t & 255;
1272 }
1273 rng_pptr = 0;
1274 rng_seed_time();
1275 //rng_seed_int(window.screenX);
1276 //rng_seed_int(window.screenY);
1277 }
1278
1279 function rng_get_byte() {
1280 if(rng_state == null) {
1281 rng_seed_time();
1282 rng_state = prng_newstate();
1283 rng_state.init(rng_pool);
1284 for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr)
1285 rng_pool[rng_pptr] = 0;
1286 rng_pptr = 0;
1287 //rng_pool = null;
1288 }
1289 // TODO: allow reseeding after first request
1290 return rng_state.next();
1291 }
1292
1293 function rng_get_bytes(ba) {
1294 var i;
1295 for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte();
1296 }
1297
1298 function SecureRandom() {}
1299
1300 SecureRandom.prototype.nextBytes = rng_get_bytes;
1301
1302 // prng4.js - uses Arcfour as a PRNG
1303
1304 function Arcfour() {
1305 this.i = 0;
1306 this.j = 0;
1307 this.S = new Array();
1308 }
1309
1310 // Initialize arcfour context from key, an array of ints, each from [0..255]
1311 function ARC4init(key) {
1312 var i, j, t;
1313 for(i = 0; i < 256; ++i)
1314 this.S[i] = i;
1315 j = 0;
1316 for(i = 0; i < 256; ++i) {
1317 j = (j + this.S[i] + key[i % key.length]) & 255;
1318 t = this.S[i];
1319 this.S[i] = this.S[j];
1320 this.S[j] = t;
1321 }
1322 this.i = 0;
1323 this.j = 0;
1324 }
1325
1326 function ARC4next() {
1327 var t;
1328 this.i = (this.i + 1) & 255;
1329 this.j = (this.j + this.S[this.i]) & 255;
1330 t = this.S[this.i];
1331 this.S[this.i] = this.S[this.j];
1332 this.S[this.j] = t;
1333 return this.S[(t + this.S[this.i]) & 255];
1334 }
1335
1336 Arcfour.prototype.init = ARC4init;
1337 Arcfour.prototype.next = ARC4next;
1338
1339 // Plug in your RNG constructor here
1340 function prng_newstate() {
1341 return new Arcfour();
1342 }
1343
1344 // Pool size must be a multiple of 4 and greater than 32.
1345 // An array of bytes the size of the pool will be passed to init()
1346 var rng_psize = 256;
1347
1348 BigInteger.SecureRandom = SecureRandom;
1349 BigInteger.BigInteger = BigInteger;
1350 if (typeof exports !== 'undefined') {
1351 exports = module.exports = BigInteger;
1352 } else {
1353 this.BigInteger = BigInteger;
1354 this.SecureRandom = SecureRandom;
1355 }
1356
1357}).call(this);
Note: See TracBrowser for help on using the repository browser.