1 | /**
|
---|
2 | * Advanced Encryption Standard (AES) implementation.
|
---|
3 | *
|
---|
4 | * This implementation is based on the public domain library 'jscrypto' which
|
---|
5 | * was written by:
|
---|
6 | *
|
---|
7 | * Emily Stark (estark@stanford.edu)
|
---|
8 | * Mike Hamburg (mhamburg@stanford.edu)
|
---|
9 | * Dan Boneh (dabo@cs.stanford.edu)
|
---|
10 | *
|
---|
11 | * Parts of this code are based on the OpenSSL implementation of AES:
|
---|
12 | * http://www.openssl.org
|
---|
13 | *
|
---|
14 | * @author Dave Longley
|
---|
15 | *
|
---|
16 | * Copyright (c) 2010-2014 Digital Bazaar, Inc.
|
---|
17 | */
|
---|
18 | var forge = require('./forge');
|
---|
19 | require('./cipher');
|
---|
20 | require('./cipherModes');
|
---|
21 | require('./util');
|
---|
22 |
|
---|
23 | /* AES API */
|
---|
24 | module.exports = forge.aes = forge.aes || {};
|
---|
25 |
|
---|
26 | /**
|
---|
27 | * Deprecated. Instead, use:
|
---|
28 | *
|
---|
29 | * var cipher = forge.cipher.createCipher('AES-<mode>', key);
|
---|
30 | * cipher.start({iv: iv});
|
---|
31 | *
|
---|
32 | * Creates an AES cipher object to encrypt data using the given symmetric key.
|
---|
33 | * The output will be stored in the 'output' member of the returned cipher.
|
---|
34 | *
|
---|
35 | * The key and iv may be given as a string of bytes, an array of bytes,
|
---|
36 | * a byte buffer, or an array of 32-bit words.
|
---|
37 | *
|
---|
38 | * @param key the symmetric key to use.
|
---|
39 | * @param iv the initialization vector to use.
|
---|
40 | * @param output the buffer to write to, null to create one.
|
---|
41 | * @param mode the cipher mode to use (default: 'CBC').
|
---|
42 | *
|
---|
43 | * @return the cipher.
|
---|
44 | */
|
---|
45 | forge.aes.startEncrypting = function(key, iv, output, mode) {
|
---|
46 | var cipher = _createCipher({
|
---|
47 | key: key,
|
---|
48 | output: output,
|
---|
49 | decrypt: false,
|
---|
50 | mode: mode
|
---|
51 | });
|
---|
52 | cipher.start(iv);
|
---|
53 | return cipher;
|
---|
54 | };
|
---|
55 |
|
---|
56 | /**
|
---|
57 | * Deprecated. Instead, use:
|
---|
58 | *
|
---|
59 | * var cipher = forge.cipher.createCipher('AES-<mode>', key);
|
---|
60 | *
|
---|
61 | * Creates an AES cipher object to encrypt data using the given symmetric key.
|
---|
62 | *
|
---|
63 | * The key may be given as a string of bytes, an array of bytes, a
|
---|
64 | * byte buffer, or an array of 32-bit words.
|
---|
65 | *
|
---|
66 | * @param key the symmetric key to use.
|
---|
67 | * @param mode the cipher mode to use (default: 'CBC').
|
---|
68 | *
|
---|
69 | * @return the cipher.
|
---|
70 | */
|
---|
71 | forge.aes.createEncryptionCipher = function(key, mode) {
|
---|
72 | return _createCipher({
|
---|
73 | key: key,
|
---|
74 | output: null,
|
---|
75 | decrypt: false,
|
---|
76 | mode: mode
|
---|
77 | });
|
---|
78 | };
|
---|
79 |
|
---|
80 | /**
|
---|
81 | * Deprecated. Instead, use:
|
---|
82 | *
|
---|
83 | * var decipher = forge.cipher.createDecipher('AES-<mode>', key);
|
---|
84 | * decipher.start({iv: iv});
|
---|
85 | *
|
---|
86 | * Creates an AES cipher object to decrypt data using the given symmetric key.
|
---|
87 | * The output will be stored in the 'output' member of the returned cipher.
|
---|
88 | *
|
---|
89 | * The key and iv may be given as a string of bytes, an array of bytes,
|
---|
90 | * a byte buffer, or an array of 32-bit words.
|
---|
91 | *
|
---|
92 | * @param key the symmetric key to use.
|
---|
93 | * @param iv the initialization vector to use.
|
---|
94 | * @param output the buffer to write to, null to create one.
|
---|
95 | * @param mode the cipher mode to use (default: 'CBC').
|
---|
96 | *
|
---|
97 | * @return the cipher.
|
---|
98 | */
|
---|
99 | forge.aes.startDecrypting = function(key, iv, output, mode) {
|
---|
100 | var cipher = _createCipher({
|
---|
101 | key: key,
|
---|
102 | output: output,
|
---|
103 | decrypt: true,
|
---|
104 | mode: mode
|
---|
105 | });
|
---|
106 | cipher.start(iv);
|
---|
107 | return cipher;
|
---|
108 | };
|
---|
109 |
|
---|
110 | /**
|
---|
111 | * Deprecated. Instead, use:
|
---|
112 | *
|
---|
113 | * var decipher = forge.cipher.createDecipher('AES-<mode>', key);
|
---|
114 | *
|
---|
115 | * Creates an AES cipher object to decrypt data using the given symmetric key.
|
---|
116 | *
|
---|
117 | * The key may be given as a string of bytes, an array of bytes, a
|
---|
118 | * byte buffer, or an array of 32-bit words.
|
---|
119 | *
|
---|
120 | * @param key the symmetric key to use.
|
---|
121 | * @param mode the cipher mode to use (default: 'CBC').
|
---|
122 | *
|
---|
123 | * @return the cipher.
|
---|
124 | */
|
---|
125 | forge.aes.createDecryptionCipher = function(key, mode) {
|
---|
126 | return _createCipher({
|
---|
127 | key: key,
|
---|
128 | output: null,
|
---|
129 | decrypt: true,
|
---|
130 | mode: mode
|
---|
131 | });
|
---|
132 | };
|
---|
133 |
|
---|
134 | /**
|
---|
135 | * Creates a new AES cipher algorithm object.
|
---|
136 | *
|
---|
137 | * @param name the name of the algorithm.
|
---|
138 | * @param mode the mode factory function.
|
---|
139 | *
|
---|
140 | * @return the AES algorithm object.
|
---|
141 | */
|
---|
142 | forge.aes.Algorithm = function(name, mode) {
|
---|
143 | if(!init) {
|
---|
144 | initialize();
|
---|
145 | }
|
---|
146 | var self = this;
|
---|
147 | self.name = name;
|
---|
148 | self.mode = new mode({
|
---|
149 | blockSize: 16,
|
---|
150 | cipher: {
|
---|
151 | encrypt: function(inBlock, outBlock) {
|
---|
152 | return _updateBlock(self._w, inBlock, outBlock, false);
|
---|
153 | },
|
---|
154 | decrypt: function(inBlock, outBlock) {
|
---|
155 | return _updateBlock(self._w, inBlock, outBlock, true);
|
---|
156 | }
|
---|
157 | }
|
---|
158 | });
|
---|
159 | self._init = false;
|
---|
160 | };
|
---|
161 |
|
---|
162 | /**
|
---|
163 | * Initializes this AES algorithm by expanding its key.
|
---|
164 | *
|
---|
165 | * @param options the options to use.
|
---|
166 | * key the key to use with this algorithm.
|
---|
167 | * decrypt true if the algorithm should be initialized for decryption,
|
---|
168 | * false for encryption.
|
---|
169 | */
|
---|
170 | forge.aes.Algorithm.prototype.initialize = function(options) {
|
---|
171 | if(this._init) {
|
---|
172 | return;
|
---|
173 | }
|
---|
174 |
|
---|
175 | var key = options.key;
|
---|
176 | var tmp;
|
---|
177 |
|
---|
178 | /* Note: The key may be a string of bytes, an array of bytes, a byte
|
---|
179 | buffer, or an array of 32-bit integers. If the key is in bytes, then
|
---|
180 | it must be 16, 24, or 32 bytes in length. If it is in 32-bit
|
---|
181 | integers, it must be 4, 6, or 8 integers long. */
|
---|
182 |
|
---|
183 | if(typeof key === 'string' &&
|
---|
184 | (key.length === 16 || key.length === 24 || key.length === 32)) {
|
---|
185 | // convert key string into byte buffer
|
---|
186 | key = forge.util.createBuffer(key);
|
---|
187 | } else if(forge.util.isArray(key) &&
|
---|
188 | (key.length === 16 || key.length === 24 || key.length === 32)) {
|
---|
189 | // convert key integer array into byte buffer
|
---|
190 | tmp = key;
|
---|
191 | key = forge.util.createBuffer();
|
---|
192 | for(var i = 0; i < tmp.length; ++i) {
|
---|
193 | key.putByte(tmp[i]);
|
---|
194 | }
|
---|
195 | }
|
---|
196 |
|
---|
197 | // convert key byte buffer into 32-bit integer array
|
---|
198 | if(!forge.util.isArray(key)) {
|
---|
199 | tmp = key;
|
---|
200 | key = [];
|
---|
201 |
|
---|
202 | // key lengths of 16, 24, 32 bytes allowed
|
---|
203 | var len = tmp.length();
|
---|
204 | if(len === 16 || len === 24 || len === 32) {
|
---|
205 | len = len >>> 2;
|
---|
206 | for(var i = 0; i < len; ++i) {
|
---|
207 | key.push(tmp.getInt32());
|
---|
208 | }
|
---|
209 | }
|
---|
210 | }
|
---|
211 |
|
---|
212 | // key must be an array of 32-bit integers by now
|
---|
213 | if(!forge.util.isArray(key) ||
|
---|
214 | !(key.length === 4 || key.length === 6 || key.length === 8)) {
|
---|
215 | throw new Error('Invalid key parameter.');
|
---|
216 | }
|
---|
217 |
|
---|
218 | // encryption operation is always used for these modes
|
---|
219 | var mode = this.mode.name;
|
---|
220 | var encryptOp = (['CFB', 'OFB', 'CTR', 'GCM'].indexOf(mode) !== -1);
|
---|
221 |
|
---|
222 | // do key expansion
|
---|
223 | this._w = _expandKey(key, options.decrypt && !encryptOp);
|
---|
224 | this._init = true;
|
---|
225 | };
|
---|
226 |
|
---|
227 | /**
|
---|
228 | * Expands a key. Typically only used for testing.
|
---|
229 | *
|
---|
230 | * @param key the symmetric key to expand, as an array of 32-bit words.
|
---|
231 | * @param decrypt true to expand for decryption, false for encryption.
|
---|
232 | *
|
---|
233 | * @return the expanded key.
|
---|
234 | */
|
---|
235 | forge.aes._expandKey = function(key, decrypt) {
|
---|
236 | if(!init) {
|
---|
237 | initialize();
|
---|
238 | }
|
---|
239 | return _expandKey(key, decrypt);
|
---|
240 | };
|
---|
241 |
|
---|
242 | /**
|
---|
243 | * Updates a single block. Typically only used for testing.
|
---|
244 | *
|
---|
245 | * @param w the expanded key to use.
|
---|
246 | * @param input an array of block-size 32-bit words.
|
---|
247 | * @param output an array of block-size 32-bit words.
|
---|
248 | * @param decrypt true to decrypt, false to encrypt.
|
---|
249 | */
|
---|
250 | forge.aes._updateBlock = _updateBlock;
|
---|
251 |
|
---|
252 | /** Register AES algorithms **/
|
---|
253 |
|
---|
254 | registerAlgorithm('AES-ECB', forge.cipher.modes.ecb);
|
---|
255 | registerAlgorithm('AES-CBC', forge.cipher.modes.cbc);
|
---|
256 | registerAlgorithm('AES-CFB', forge.cipher.modes.cfb);
|
---|
257 | registerAlgorithm('AES-OFB', forge.cipher.modes.ofb);
|
---|
258 | registerAlgorithm('AES-CTR', forge.cipher.modes.ctr);
|
---|
259 | registerAlgorithm('AES-GCM', forge.cipher.modes.gcm);
|
---|
260 |
|
---|
261 | function registerAlgorithm(name, mode) {
|
---|
262 | var factory = function() {
|
---|
263 | return new forge.aes.Algorithm(name, mode);
|
---|
264 | };
|
---|
265 | forge.cipher.registerAlgorithm(name, factory);
|
---|
266 | }
|
---|
267 |
|
---|
268 | /** AES implementation **/
|
---|
269 |
|
---|
270 | var init = false; // not yet initialized
|
---|
271 | var Nb = 4; // number of words comprising the state (AES = 4)
|
---|
272 | var sbox; // non-linear substitution table used in key expansion
|
---|
273 | var isbox; // inversion of sbox
|
---|
274 | var rcon; // round constant word array
|
---|
275 | var mix; // mix-columns table
|
---|
276 | var imix; // inverse mix-columns table
|
---|
277 |
|
---|
278 | /**
|
---|
279 | * Performs initialization, ie: precomputes tables to optimize for speed.
|
---|
280 | *
|
---|
281 | * One way to understand how AES works is to imagine that 'addition' and
|
---|
282 | * 'multiplication' are interfaces that require certain mathematical
|
---|
283 | * properties to hold true (ie: they are associative) but they might have
|
---|
284 | * different implementations and produce different kinds of results ...
|
---|
285 | * provided that their mathematical properties remain true. AES defines
|
---|
286 | * its own methods of addition and multiplication but keeps some important
|
---|
287 | * properties the same, ie: associativity and distributivity. The
|
---|
288 | * explanation below tries to shed some light on how AES defines addition
|
---|
289 | * and multiplication of bytes and 32-bit words in order to perform its
|
---|
290 | * encryption and decryption algorithms.
|
---|
291 | *
|
---|
292 | * The basics:
|
---|
293 | *
|
---|
294 | * The AES algorithm views bytes as binary representations of polynomials
|
---|
295 | * that have either 1 or 0 as the coefficients. It defines the addition
|
---|
296 | * or subtraction of two bytes as the XOR operation. It also defines the
|
---|
297 | * multiplication of two bytes as a finite field referred to as GF(2^8)
|
---|
298 | * (Note: 'GF' means "Galois Field" which is a field that contains a finite
|
---|
299 | * number of elements so GF(2^8) has 256 elements).
|
---|
300 | *
|
---|
301 | * This means that any two bytes can be represented as binary polynomials;
|
---|
302 | * when they multiplied together and modularly reduced by an irreducible
|
---|
303 | * polynomial of the 8th degree, the results are the field GF(2^8). The
|
---|
304 | * specific irreducible polynomial that AES uses in hexadecimal is 0x11b.
|
---|
305 | * This multiplication is associative with 0x01 as the identity:
|
---|
306 | *
|
---|
307 | * (b * 0x01 = GF(b, 0x01) = b).
|
---|
308 | *
|
---|
309 | * The operation GF(b, 0x02) can be performed at the byte level by left
|
---|
310 | * shifting b once and then XOR'ing it (to perform the modular reduction)
|
---|
311 | * with 0x11b if b is >= 128. Repeated application of the multiplication
|
---|
312 | * of 0x02 can be used to implement the multiplication of any two bytes.
|
---|
313 | *
|
---|
314 | * For instance, multiplying 0x57 and 0x13, denoted as GF(0x57, 0x13), can
|
---|
315 | * be performed by factoring 0x13 into 0x01, 0x02, and 0x10. Then these
|
---|
316 | * factors can each be multiplied by 0x57 and then added together. To do
|
---|
317 | * the multiplication, values for 0x57 multiplied by each of these 3 factors
|
---|
318 | * can be precomputed and stored in a table. To add them, the values from
|
---|
319 | * the table are XOR'd together.
|
---|
320 | *
|
---|
321 | * AES also defines addition and multiplication of words, that is 4-byte
|
---|
322 | * numbers represented as polynomials of 3 degrees where the coefficients
|
---|
323 | * are the values of the bytes.
|
---|
324 | *
|
---|
325 | * The word [a0, a1, a2, a3] is a polynomial a3x^3 + a2x^2 + a1x + a0.
|
---|
326 | *
|
---|
327 | * Addition is performed by XOR'ing like powers of x. Multiplication
|
---|
328 | * is performed in two steps, the first is an algebriac expansion as
|
---|
329 | * you would do normally (where addition is XOR). But the result is
|
---|
330 | * a polynomial larger than 3 degrees and thus it cannot fit in a word. So
|
---|
331 | * next the result is modularly reduced by an AES-specific polynomial of
|
---|
332 | * degree 4 which will always produce a polynomial of less than 4 degrees
|
---|
333 | * such that it will fit in a word. In AES, this polynomial is x^4 + 1.
|
---|
334 | *
|
---|
335 | * The modular product of two polynomials 'a' and 'b' is thus:
|
---|
336 | *
|
---|
337 | * d(x) = d3x^3 + d2x^2 + d1x + d0
|
---|
338 | * with
|
---|
339 | * d0 = GF(a0, b0) ^ GF(a3, b1) ^ GF(a2, b2) ^ GF(a1, b3)
|
---|
340 | * d1 = GF(a1, b0) ^ GF(a0, b1) ^ GF(a3, b2) ^ GF(a2, b3)
|
---|
341 | * d2 = GF(a2, b0) ^ GF(a1, b1) ^ GF(a0, b2) ^ GF(a3, b3)
|
---|
342 | * d3 = GF(a3, b0) ^ GF(a2, b1) ^ GF(a1, b2) ^ GF(a0, b3)
|
---|
343 | *
|
---|
344 | * As a matrix:
|
---|
345 | *
|
---|
346 | * [d0] = [a0 a3 a2 a1][b0]
|
---|
347 | * [d1] [a1 a0 a3 a2][b1]
|
---|
348 | * [d2] [a2 a1 a0 a3][b2]
|
---|
349 | * [d3] [a3 a2 a1 a0][b3]
|
---|
350 | *
|
---|
351 | * Special polynomials defined by AES (0x02 == {02}):
|
---|
352 | * a(x) = {03}x^3 + {01}x^2 + {01}x + {02}
|
---|
353 | * a^-1(x) = {0b}x^3 + {0d}x^2 + {09}x + {0e}.
|
---|
354 | *
|
---|
355 | * These polynomials are used in the MixColumns() and InverseMixColumns()
|
---|
356 | * operations, respectively, to cause each element in the state to affect
|
---|
357 | * the output (referred to as diffusing).
|
---|
358 | *
|
---|
359 | * RotWord() uses: a0 = a1 = a2 = {00} and a3 = {01}, which is the
|
---|
360 | * polynomial x3.
|
---|
361 | *
|
---|
362 | * The ShiftRows() method modifies the last 3 rows in the state (where
|
---|
363 | * the state is 4 words with 4 bytes per word) by shifting bytes cyclically.
|
---|
364 | * The 1st byte in the second row is moved to the end of the row. The 1st
|
---|
365 | * and 2nd bytes in the third row are moved to the end of the row. The 1st,
|
---|
366 | * 2nd, and 3rd bytes are moved in the fourth row.
|
---|
367 | *
|
---|
368 | * More details on how AES arithmetic works:
|
---|
369 | *
|
---|
370 | * In the polynomial representation of binary numbers, XOR performs addition
|
---|
371 | * and subtraction and multiplication in GF(2^8) denoted as GF(a, b)
|
---|
372 | * corresponds with the multiplication of polynomials modulo an irreducible
|
---|
373 | * polynomial of degree 8. In other words, for AES, GF(a, b) will multiply
|
---|
374 | * polynomial 'a' with polynomial 'b' and then do a modular reduction by
|
---|
375 | * an AES-specific irreducible polynomial of degree 8.
|
---|
376 | *
|
---|
377 | * A polynomial is irreducible if its only divisors are one and itself. For
|
---|
378 | * the AES algorithm, this irreducible polynomial is:
|
---|
379 | *
|
---|
380 | * m(x) = x^8 + x^4 + x^3 + x + 1,
|
---|
381 | *
|
---|
382 | * or {01}{1b} in hexadecimal notation, where each coefficient is a bit:
|
---|
383 | * 100011011 = 283 = 0x11b.
|
---|
384 | *
|
---|
385 | * For example, GF(0x57, 0x83) = 0xc1 because
|
---|
386 | *
|
---|
387 | * 0x57 = 87 = 01010111 = x^6 + x^4 + x^2 + x + 1
|
---|
388 | * 0x85 = 131 = 10000101 = x^7 + x + 1
|
---|
389 | *
|
---|
390 | * (x^6 + x^4 + x^2 + x + 1) * (x^7 + x + 1)
|
---|
391 | * = x^13 + x^11 + x^9 + x^8 + x^7 +
|
---|
392 | * x^7 + x^5 + x^3 + x^2 + x +
|
---|
393 | * x^6 + x^4 + x^2 + x + 1
|
---|
394 | * = x^13 + x^11 + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1 = y
|
---|
395 | * y modulo (x^8 + x^4 + x^3 + x + 1)
|
---|
396 | * = x^7 + x^6 + 1.
|
---|
397 | *
|
---|
398 | * The modular reduction by m(x) guarantees the result will be a binary
|
---|
399 | * polynomial of less than degree 8, so that it can fit in a byte.
|
---|
400 | *
|
---|
401 | * The operation to multiply a binary polynomial b with x (the polynomial
|
---|
402 | * x in binary representation is 00000010) is:
|
---|
403 | *
|
---|
404 | * b_7x^8 + b_6x^7 + b_5x^6 + b_4x^5 + b_3x^4 + b_2x^3 + b_1x^2 + b_0x^1
|
---|
405 | *
|
---|
406 | * To get GF(b, x) we must reduce that by m(x). If b_7 is 0 (that is the
|
---|
407 | * most significant bit is 0 in b) then the result is already reduced. If
|
---|
408 | * it is 1, then we can reduce it by subtracting m(x) via an XOR.
|
---|
409 | *
|
---|
410 | * It follows that multiplication by x (00000010 or 0x02) can be implemented
|
---|
411 | * by performing a left shift followed by a conditional bitwise XOR with
|
---|
412 | * 0x1b. This operation on bytes is denoted by xtime(). Multiplication by
|
---|
413 | * higher powers of x can be implemented by repeated application of xtime().
|
---|
414 | *
|
---|
415 | * By adding intermediate results, multiplication by any constant can be
|
---|
416 | * implemented. For instance:
|
---|
417 | *
|
---|
418 | * GF(0x57, 0x13) = 0xfe because:
|
---|
419 | *
|
---|
420 | * xtime(b) = (b & 128) ? (b << 1 ^ 0x11b) : (b << 1)
|
---|
421 | *
|
---|
422 | * Note: We XOR with 0x11b instead of 0x1b because in javascript our
|
---|
423 | * datatype for b can be larger than 1 byte, so a left shift will not
|
---|
424 | * automatically eliminate bits that overflow a byte ... by XOR'ing the
|
---|
425 | * overflow bit with 1 (the extra one from 0x11b) we zero it out.
|
---|
426 | *
|
---|
427 | * GF(0x57, 0x02) = xtime(0x57) = 0xae
|
---|
428 | * GF(0x57, 0x04) = xtime(0xae) = 0x47
|
---|
429 | * GF(0x57, 0x08) = xtime(0x47) = 0x8e
|
---|
430 | * GF(0x57, 0x10) = xtime(0x8e) = 0x07
|
---|
431 | *
|
---|
432 | * GF(0x57, 0x13) = GF(0x57, (0x01 ^ 0x02 ^ 0x10))
|
---|
433 | *
|
---|
434 | * And by the distributive property (since XOR is addition and GF() is
|
---|
435 | * multiplication):
|
---|
436 | *
|
---|
437 | * = GF(0x57, 0x01) ^ GF(0x57, 0x02) ^ GF(0x57, 0x10)
|
---|
438 | * = 0x57 ^ 0xae ^ 0x07
|
---|
439 | * = 0xfe.
|
---|
440 | */
|
---|
441 | function initialize() {
|
---|
442 | init = true;
|
---|
443 |
|
---|
444 | /* Populate the Rcon table. These are the values given by
|
---|
445 | [x^(i-1),{00},{00},{00}] where x^(i-1) are powers of x (and x = 0x02)
|
---|
446 | in the field of GF(2^8), where i starts at 1.
|
---|
447 |
|
---|
448 | rcon[0] = [0x00, 0x00, 0x00, 0x00]
|
---|
449 | rcon[1] = [0x01, 0x00, 0x00, 0x00] 2^(1-1) = 2^0 = 1
|
---|
450 | rcon[2] = [0x02, 0x00, 0x00, 0x00] 2^(2-1) = 2^1 = 2
|
---|
451 | ...
|
---|
452 | rcon[9] = [0x1B, 0x00, 0x00, 0x00] 2^(9-1) = 2^8 = 0x1B
|
---|
453 | rcon[10] = [0x36, 0x00, 0x00, 0x00] 2^(10-1) = 2^9 = 0x36
|
---|
454 |
|
---|
455 | We only store the first byte because it is the only one used.
|
---|
456 | */
|
---|
457 | rcon = [0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36];
|
---|
458 |
|
---|
459 | // compute xtime table which maps i onto GF(i, 0x02)
|
---|
460 | var xtime = new Array(256);
|
---|
461 | for(var i = 0; i < 128; ++i) {
|
---|
462 | xtime[i] = i << 1;
|
---|
463 | xtime[i + 128] = (i + 128) << 1 ^ 0x11B;
|
---|
464 | }
|
---|
465 |
|
---|
466 | // compute all other tables
|
---|
467 | sbox = new Array(256);
|
---|
468 | isbox = new Array(256);
|
---|
469 | mix = new Array(4);
|
---|
470 | imix = new Array(4);
|
---|
471 | for(var i = 0; i < 4; ++i) {
|
---|
472 | mix[i] = new Array(256);
|
---|
473 | imix[i] = new Array(256);
|
---|
474 | }
|
---|
475 | var e = 0, ei = 0, e2, e4, e8, sx, sx2, me, ime;
|
---|
476 | for(var i = 0; i < 256; ++i) {
|
---|
477 | /* We need to generate the SubBytes() sbox and isbox tables so that
|
---|
478 | we can perform byte substitutions. This requires us to traverse
|
---|
479 | all of the elements in GF, find their multiplicative inverses,
|
---|
480 | and apply to each the following affine transformation:
|
---|
481 |
|
---|
482 | bi' = bi ^ b(i + 4) mod 8 ^ b(i + 5) mod 8 ^ b(i + 6) mod 8 ^
|
---|
483 | b(i + 7) mod 8 ^ ci
|
---|
484 | for 0 <= i < 8, where bi is the ith bit of the byte, and ci is the
|
---|
485 | ith bit of a byte c with the value {63} or {01100011}.
|
---|
486 |
|
---|
487 | It is possible to traverse every possible value in a Galois field
|
---|
488 | using what is referred to as a 'generator'. There are many
|
---|
489 | generators (128 out of 256): 3,5,6,9,11,82 to name a few. To fully
|
---|
490 | traverse GF we iterate 255 times, multiplying by our generator
|
---|
491 | each time.
|
---|
492 |
|
---|
493 | On each iteration we can determine the multiplicative inverse for
|
---|
494 | the current element.
|
---|
495 |
|
---|
496 | Suppose there is an element in GF 'e'. For a given generator 'g',
|
---|
497 | e = g^x. The multiplicative inverse of e is g^(255 - x). It turns
|
---|
498 | out that if use the inverse of a generator as another generator
|
---|
499 | it will produce all of the corresponding multiplicative inverses
|
---|
500 | at the same time. For this reason, we choose 5 as our inverse
|
---|
501 | generator because it only requires 2 multiplies and 1 add and its
|
---|
502 | inverse, 82, requires relatively few operations as well.
|
---|
503 |
|
---|
504 | In order to apply the affine transformation, the multiplicative
|
---|
505 | inverse 'ei' of 'e' can be repeatedly XOR'd (4 times) with a
|
---|
506 | bit-cycling of 'ei'. To do this 'ei' is first stored in 's' and
|
---|
507 | 'x'. Then 's' is left shifted and the high bit of 's' is made the
|
---|
508 | low bit. The resulting value is stored in 's'. Then 'x' is XOR'd
|
---|
509 | with 's' and stored in 'x'. On each subsequent iteration the same
|
---|
510 | operation is performed. When 4 iterations are complete, 'x' is
|
---|
511 | XOR'd with 'c' (0x63) and the transformed value is stored in 'x'.
|
---|
512 | For example:
|
---|
513 |
|
---|
514 | s = 01000001
|
---|
515 | x = 01000001
|
---|
516 |
|
---|
517 | iteration 1: s = 10000010, x ^= s
|
---|
518 | iteration 2: s = 00000101, x ^= s
|
---|
519 | iteration 3: s = 00001010, x ^= s
|
---|
520 | iteration 4: s = 00010100, x ^= s
|
---|
521 | x ^= 0x63
|
---|
522 |
|
---|
523 | This can be done with a loop where s = (s << 1) | (s >> 7). However,
|
---|
524 | it can also be done by using a single 16-bit (in this case 32-bit)
|
---|
525 | number 'sx'. Since XOR is an associative operation, we can set 'sx'
|
---|
526 | to 'ei' and then XOR it with 'sx' left-shifted 1,2,3, and 4 times.
|
---|
527 | The most significant bits will flow into the high 8 bit positions
|
---|
528 | and be correctly XOR'd with one another. All that remains will be
|
---|
529 | to cycle the high 8 bits by XOR'ing them all with the lower 8 bits
|
---|
530 | afterwards.
|
---|
531 |
|
---|
532 | At the same time we're populating sbox and isbox we can precompute
|
---|
533 | the multiplication we'll need to do to do MixColumns() later.
|
---|
534 | */
|
---|
535 |
|
---|
536 | // apply affine transformation
|
---|
537 | sx = ei ^ (ei << 1) ^ (ei << 2) ^ (ei << 3) ^ (ei << 4);
|
---|
538 | sx = (sx >> 8) ^ (sx & 255) ^ 0x63;
|
---|
539 |
|
---|
540 | // update tables
|
---|
541 | sbox[e] = sx;
|
---|
542 | isbox[sx] = e;
|
---|
543 |
|
---|
544 | /* Mixing columns is done using matrix multiplication. The columns
|
---|
545 | that are to be mixed are each a single word in the current state.
|
---|
546 | The state has Nb columns (4 columns). Therefore each column is a
|
---|
547 | 4 byte word. So to mix the columns in a single column 'c' where
|
---|
548 | its rows are r0, r1, r2, and r3, we use the following matrix
|
---|
549 | multiplication:
|
---|
550 |
|
---|
551 | [2 3 1 1]*[r0,c]=[r'0,c]
|
---|
552 | [1 2 3 1] [r1,c] [r'1,c]
|
---|
553 | [1 1 2 3] [r2,c] [r'2,c]
|
---|
554 | [3 1 1 2] [r3,c] [r'3,c]
|
---|
555 |
|
---|
556 | r0, r1, r2, and r3 are each 1 byte of one of the words in the
|
---|
557 | state (a column). To do matrix multiplication for each mixed
|
---|
558 | column c' we multiply the corresponding row from the left matrix
|
---|
559 | with the corresponding column from the right matrix. In total, we
|
---|
560 | get 4 equations:
|
---|
561 |
|
---|
562 | r0,c' = 2*r0,c + 3*r1,c + 1*r2,c + 1*r3,c
|
---|
563 | r1,c' = 1*r0,c + 2*r1,c + 3*r2,c + 1*r3,c
|
---|
564 | r2,c' = 1*r0,c + 1*r1,c + 2*r2,c + 3*r3,c
|
---|
565 | r3,c' = 3*r0,c + 1*r1,c + 1*r2,c + 2*r3,c
|
---|
566 |
|
---|
567 | As usual, the multiplication is as previously defined and the
|
---|
568 | addition is XOR. In order to optimize mixing columns we can store
|
---|
569 | the multiplication results in tables. If you think of the whole
|
---|
570 | column as a word (it might help to visualize by mentally rotating
|
---|
571 | the equations above by counterclockwise 90 degrees) then you can
|
---|
572 | see that it would be useful to map the multiplications performed on
|
---|
573 | each byte (r0, r1, r2, r3) onto a word as well. For instance, we
|
---|
574 | could map 2*r0,1*r0,1*r0,3*r0 onto a word by storing 2*r0 in the
|
---|
575 | highest 8 bits and 3*r0 in the lowest 8 bits (with the other two
|
---|
576 | respectively in the middle). This means that a table can be
|
---|
577 | constructed that uses r0 as an index to the word. We can do the
|
---|
578 | same with r1, r2, and r3, creating a total of 4 tables.
|
---|
579 |
|
---|
580 | To construct a full c', we can just look up each byte of c in
|
---|
581 | their respective tables and XOR the results together.
|
---|
582 |
|
---|
583 | Also, to build each table we only have to calculate the word
|
---|
584 | for 2,1,1,3 for every byte ... which we can do on each iteration
|
---|
585 | of this loop since we will iterate over every byte. After we have
|
---|
586 | calculated 2,1,1,3 we can get the results for the other tables
|
---|
587 | by cycling the byte at the end to the beginning. For instance
|
---|
588 | we can take the result of table 2,1,1,3 and produce table 3,2,1,1
|
---|
589 | by moving the right most byte to the left most position just like
|
---|
590 | how you can imagine the 3 moved out of 2,1,1,3 and to the front
|
---|
591 | to produce 3,2,1,1.
|
---|
592 |
|
---|
593 | There is another optimization in that the same multiples of
|
---|
594 | the current element we need in order to advance our generator
|
---|
595 | to the next iteration can be reused in performing the 2,1,1,3
|
---|
596 | calculation. We also calculate the inverse mix column tables,
|
---|
597 | with e,9,d,b being the inverse of 2,1,1,3.
|
---|
598 |
|
---|
599 | When we're done, and we need to actually mix columns, the first
|
---|
600 | byte of each state word should be put through mix[0] (2,1,1,3),
|
---|
601 | the second through mix[1] (3,2,1,1) and so forth. Then they should
|
---|
602 | be XOR'd together to produce the fully mixed column.
|
---|
603 | */
|
---|
604 |
|
---|
605 | // calculate mix and imix table values
|
---|
606 | sx2 = xtime[sx];
|
---|
607 | e2 = xtime[e];
|
---|
608 | e4 = xtime[e2];
|
---|
609 | e8 = xtime[e4];
|
---|
610 | me =
|
---|
611 | (sx2 << 24) ^ // 2
|
---|
612 | (sx << 16) ^ // 1
|
---|
613 | (sx << 8) ^ // 1
|
---|
614 | (sx ^ sx2); // 3
|
---|
615 | ime =
|
---|
616 | (e2 ^ e4 ^ e8) << 24 ^ // E (14)
|
---|
617 | (e ^ e8) << 16 ^ // 9
|
---|
618 | (e ^ e4 ^ e8) << 8 ^ // D (13)
|
---|
619 | (e ^ e2 ^ e8); // B (11)
|
---|
620 | // produce each of the mix tables by rotating the 2,1,1,3 value
|
---|
621 | for(var n = 0; n < 4; ++n) {
|
---|
622 | mix[n][e] = me;
|
---|
623 | imix[n][sx] = ime;
|
---|
624 | // cycle the right most byte to the left most position
|
---|
625 | // ie: 2,1,1,3 becomes 3,2,1,1
|
---|
626 | me = me << 24 | me >>> 8;
|
---|
627 | ime = ime << 24 | ime >>> 8;
|
---|
628 | }
|
---|
629 |
|
---|
630 | // get next element and inverse
|
---|
631 | if(e === 0) {
|
---|
632 | // 1 is the inverse of 1
|
---|
633 | e = ei = 1;
|
---|
634 | } else {
|
---|
635 | // e = 2e + 2*2*2*(10e)) = multiply e by 82 (chosen generator)
|
---|
636 | // ei = ei + 2*2*ei = multiply ei by 5 (inverse generator)
|
---|
637 | e = e2 ^ xtime[xtime[xtime[e2 ^ e8]]];
|
---|
638 | ei ^= xtime[xtime[ei]];
|
---|
639 | }
|
---|
640 | }
|
---|
641 | }
|
---|
642 |
|
---|
643 | /**
|
---|
644 | * Generates a key schedule using the AES key expansion algorithm.
|
---|
645 | *
|
---|
646 | * The AES algorithm takes the Cipher Key, K, and performs a Key Expansion
|
---|
647 | * routine to generate a key schedule. The Key Expansion generates a total
|
---|
648 | * of Nb*(Nr + 1) words: the algorithm requires an initial set of Nb words,
|
---|
649 | * and each of the Nr rounds requires Nb words of key data. The resulting
|
---|
650 | * key schedule consists of a linear array of 4-byte words, denoted [wi ],
|
---|
651 | * with i in the range 0 <= i < Nb(Nr + 1).
|
---|
652 | *
|
---|
653 | * KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)], Nk)
|
---|
654 | * AES-128 (Nb=4, Nk=4, Nr=10)
|
---|
655 | * AES-192 (Nb=4, Nk=6, Nr=12)
|
---|
656 | * AES-256 (Nb=4, Nk=8, Nr=14)
|
---|
657 | * Note: Nr=Nk+6.
|
---|
658 | *
|
---|
659 | * Nb is the number of columns (32-bit words) comprising the State (or
|
---|
660 | * number of bytes in a block). For AES, Nb=4.
|
---|
661 | *
|
---|
662 | * @param key the key to schedule (as an array of 32-bit words).
|
---|
663 | * @param decrypt true to modify the key schedule to decrypt, false not to.
|
---|
664 | *
|
---|
665 | * @return the generated key schedule.
|
---|
666 | */
|
---|
667 | function _expandKey(key, decrypt) {
|
---|
668 | // copy the key's words to initialize the key schedule
|
---|
669 | var w = key.slice(0);
|
---|
670 |
|
---|
671 | /* RotWord() will rotate a word, moving the first byte to the last
|
---|
672 | byte's position (shifting the other bytes left).
|
---|
673 |
|
---|
674 | We will be getting the value of Rcon at i / Nk. 'i' will iterate
|
---|
675 | from Nk to (Nb * Nr+1). Nk = 4 (4 byte key), Nb = 4 (4 words in
|
---|
676 | a block), Nr = Nk + 6 (10). Therefore 'i' will iterate from
|
---|
677 | 4 to 44 (exclusive). Each time we iterate 4 times, i / Nk will
|
---|
678 | increase by 1. We use a counter iNk to keep track of this.
|
---|
679 | */
|
---|
680 |
|
---|
681 | // go through the rounds expanding the key
|
---|
682 | var temp, iNk = 1;
|
---|
683 | var Nk = w.length;
|
---|
684 | var Nr1 = Nk + 6 + 1;
|
---|
685 | var end = Nb * Nr1;
|
---|
686 | for(var i = Nk; i < end; ++i) {
|
---|
687 | temp = w[i - 1];
|
---|
688 | if(i % Nk === 0) {
|
---|
689 | // temp = SubWord(RotWord(temp)) ^ Rcon[i / Nk]
|
---|
690 | temp =
|
---|
691 | sbox[temp >>> 16 & 255] << 24 ^
|
---|
692 | sbox[temp >>> 8 & 255] << 16 ^
|
---|
693 | sbox[temp & 255] << 8 ^
|
---|
694 | sbox[temp >>> 24] ^ (rcon[iNk] << 24);
|
---|
695 | iNk++;
|
---|
696 | } else if(Nk > 6 && (i % Nk === 4)) {
|
---|
697 | // temp = SubWord(temp)
|
---|
698 | temp =
|
---|
699 | sbox[temp >>> 24] << 24 ^
|
---|
700 | sbox[temp >>> 16 & 255] << 16 ^
|
---|
701 | sbox[temp >>> 8 & 255] << 8 ^
|
---|
702 | sbox[temp & 255];
|
---|
703 | }
|
---|
704 | w[i] = w[i - Nk] ^ temp;
|
---|
705 | }
|
---|
706 |
|
---|
707 | /* When we are updating a cipher block we always use the code path for
|
---|
708 | encryption whether we are decrypting or not (to shorten code and
|
---|
709 | simplify the generation of look up tables). However, because there
|
---|
710 | are differences in the decryption algorithm, other than just swapping
|
---|
711 | in different look up tables, we must transform our key schedule to
|
---|
712 | account for these changes:
|
---|
713 |
|
---|
714 | 1. The decryption algorithm gets its key rounds in reverse order.
|
---|
715 | 2. The decryption algorithm adds the round key before mixing columns
|
---|
716 | instead of afterwards.
|
---|
717 |
|
---|
718 | We don't need to modify our key schedule to handle the first case,
|
---|
719 | we can just traverse the key schedule in reverse order when decrypting.
|
---|
720 |
|
---|
721 | The second case requires a little work.
|
---|
722 |
|
---|
723 | The tables we built for performing rounds will take an input and then
|
---|
724 | perform SubBytes() and MixColumns() or, for the decrypt version,
|
---|
725 | InvSubBytes() and InvMixColumns(). But the decrypt algorithm requires
|
---|
726 | us to AddRoundKey() before InvMixColumns(). This means we'll need to
|
---|
727 | apply some transformations to the round key to inverse-mix its columns
|
---|
728 | so they'll be correct for moving AddRoundKey() to after the state has
|
---|
729 | had its columns inverse-mixed.
|
---|
730 |
|
---|
731 | To inverse-mix the columns of the state when we're decrypting we use a
|
---|
732 | lookup table that will apply InvSubBytes() and InvMixColumns() at the
|
---|
733 | same time. However, the round key's bytes are not inverse-substituted
|
---|
734 | in the decryption algorithm. To get around this problem, we can first
|
---|
735 | substitute the bytes in the round key so that when we apply the
|
---|
736 | transformation via the InvSubBytes()+InvMixColumns() table, it will
|
---|
737 | undo our substitution leaving us with the original value that we
|
---|
738 | want -- and then inverse-mix that value.
|
---|
739 |
|
---|
740 | This change will correctly alter our key schedule so that we can XOR
|
---|
741 | each round key with our already transformed decryption state. This
|
---|
742 | allows us to use the same code path as the encryption algorithm.
|
---|
743 |
|
---|
744 | We make one more change to the decryption key. Since the decryption
|
---|
745 | algorithm runs in reverse from the encryption algorithm, we reverse
|
---|
746 | the order of the round keys to avoid having to iterate over the key
|
---|
747 | schedule backwards when running the encryption algorithm later in
|
---|
748 | decryption mode. In addition to reversing the order of the round keys,
|
---|
749 | we also swap each round key's 2nd and 4th rows. See the comments
|
---|
750 | section where rounds are performed for more details about why this is
|
---|
751 | done. These changes are done inline with the other substitution
|
---|
752 | described above.
|
---|
753 | */
|
---|
754 | if(decrypt) {
|
---|
755 | var tmp;
|
---|
756 | var m0 = imix[0];
|
---|
757 | var m1 = imix[1];
|
---|
758 | var m2 = imix[2];
|
---|
759 | var m3 = imix[3];
|
---|
760 | var wnew = w.slice(0);
|
---|
761 | end = w.length;
|
---|
762 | for(var i = 0, wi = end - Nb; i < end; i += Nb, wi -= Nb) {
|
---|
763 | // do not sub the first or last round key (round keys are Nb
|
---|
764 | // words) as no column mixing is performed before they are added,
|
---|
765 | // but do change the key order
|
---|
766 | if(i === 0 || i === (end - Nb)) {
|
---|
767 | wnew[i] = w[wi];
|
---|
768 | wnew[i + 1] = w[wi + 3];
|
---|
769 | wnew[i + 2] = w[wi + 2];
|
---|
770 | wnew[i + 3] = w[wi + 1];
|
---|
771 | } else {
|
---|
772 | // substitute each round key byte because the inverse-mix
|
---|
773 | // table will inverse-substitute it (effectively cancel the
|
---|
774 | // substitution because round key bytes aren't sub'd in
|
---|
775 | // decryption mode) and swap indexes 3 and 1
|
---|
776 | for(var n = 0; n < Nb; ++n) {
|
---|
777 | tmp = w[wi + n];
|
---|
778 | wnew[i + (3&-n)] =
|
---|
779 | m0[sbox[tmp >>> 24]] ^
|
---|
780 | m1[sbox[tmp >>> 16 & 255]] ^
|
---|
781 | m2[sbox[tmp >>> 8 & 255]] ^
|
---|
782 | m3[sbox[tmp & 255]];
|
---|
783 | }
|
---|
784 | }
|
---|
785 | }
|
---|
786 | w = wnew;
|
---|
787 | }
|
---|
788 |
|
---|
789 | return w;
|
---|
790 | }
|
---|
791 |
|
---|
792 | /**
|
---|
793 | * Updates a single block (16 bytes) using AES. The update will either
|
---|
794 | * encrypt or decrypt the block.
|
---|
795 | *
|
---|
796 | * @param w the key schedule.
|
---|
797 | * @param input the input block (an array of 32-bit words).
|
---|
798 | * @param output the updated output block.
|
---|
799 | * @param decrypt true to decrypt the block, false to encrypt it.
|
---|
800 | */
|
---|
801 | function _updateBlock(w, input, output, decrypt) {
|
---|
802 | /*
|
---|
803 | Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
|
---|
804 | begin
|
---|
805 | byte state[4,Nb]
|
---|
806 | state = in
|
---|
807 | AddRoundKey(state, w[0, Nb-1])
|
---|
808 | for round = 1 step 1 to Nr-1
|
---|
809 | SubBytes(state)
|
---|
810 | ShiftRows(state)
|
---|
811 | MixColumns(state)
|
---|
812 | AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])
|
---|
813 | end for
|
---|
814 | SubBytes(state)
|
---|
815 | ShiftRows(state)
|
---|
816 | AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
|
---|
817 | out = state
|
---|
818 | end
|
---|
819 |
|
---|
820 | InvCipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
|
---|
821 | begin
|
---|
822 | byte state[4,Nb]
|
---|
823 | state = in
|
---|
824 | AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
|
---|
825 | for round = Nr-1 step -1 downto 1
|
---|
826 | InvShiftRows(state)
|
---|
827 | InvSubBytes(state)
|
---|
828 | AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])
|
---|
829 | InvMixColumns(state)
|
---|
830 | end for
|
---|
831 | InvShiftRows(state)
|
---|
832 | InvSubBytes(state)
|
---|
833 | AddRoundKey(state, w[0, Nb-1])
|
---|
834 | out = state
|
---|
835 | end
|
---|
836 | */
|
---|
837 |
|
---|
838 | // Encrypt: AddRoundKey(state, w[0, Nb-1])
|
---|
839 | // Decrypt: AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
|
---|
840 | var Nr = w.length / 4 - 1;
|
---|
841 | var m0, m1, m2, m3, sub;
|
---|
842 | if(decrypt) {
|
---|
843 | m0 = imix[0];
|
---|
844 | m1 = imix[1];
|
---|
845 | m2 = imix[2];
|
---|
846 | m3 = imix[3];
|
---|
847 | sub = isbox;
|
---|
848 | } else {
|
---|
849 | m0 = mix[0];
|
---|
850 | m1 = mix[1];
|
---|
851 | m2 = mix[2];
|
---|
852 | m3 = mix[3];
|
---|
853 | sub = sbox;
|
---|
854 | }
|
---|
855 | var a, b, c, d, a2, b2, c2;
|
---|
856 | a = input[0] ^ w[0];
|
---|
857 | b = input[decrypt ? 3 : 1] ^ w[1];
|
---|
858 | c = input[2] ^ w[2];
|
---|
859 | d = input[decrypt ? 1 : 3] ^ w[3];
|
---|
860 | var i = 3;
|
---|
861 |
|
---|
862 | /* In order to share code we follow the encryption algorithm when both
|
---|
863 | encrypting and decrypting. To account for the changes required in the
|
---|
864 | decryption algorithm, we use different lookup tables when decrypting
|
---|
865 | and use a modified key schedule to account for the difference in the
|
---|
866 | order of transformations applied when performing rounds. We also get
|
---|
867 | key rounds in reverse order (relative to encryption). */
|
---|
868 | for(var round = 1; round < Nr; ++round) {
|
---|
869 | /* As described above, we'll be using table lookups to perform the
|
---|
870 | column mixing. Each column is stored as a word in the state (the
|
---|
871 | array 'input' has one column as a word at each index). In order to
|
---|
872 | mix a column, we perform these transformations on each row in c,
|
---|
873 | which is 1 byte in each word. The new column for c0 is c'0:
|
---|
874 |
|
---|
875 | m0 m1 m2 m3
|
---|
876 | r0,c'0 = 2*r0,c0 + 3*r1,c0 + 1*r2,c0 + 1*r3,c0
|
---|
877 | r1,c'0 = 1*r0,c0 + 2*r1,c0 + 3*r2,c0 + 1*r3,c0
|
---|
878 | r2,c'0 = 1*r0,c0 + 1*r1,c0 + 2*r2,c0 + 3*r3,c0
|
---|
879 | r3,c'0 = 3*r0,c0 + 1*r1,c0 + 1*r2,c0 + 2*r3,c0
|
---|
880 |
|
---|
881 | So using mix tables where c0 is a word with r0 being its upper
|
---|
882 | 8 bits and r3 being its lower 8 bits:
|
---|
883 |
|
---|
884 | m0[c0 >> 24] will yield this word: [2*r0,1*r0,1*r0,3*r0]
|
---|
885 | ...
|
---|
886 | m3[c0 & 255] will yield this word: [1*r3,1*r3,3*r3,2*r3]
|
---|
887 |
|
---|
888 | Therefore to mix the columns in each word in the state we
|
---|
889 | do the following (& 255 omitted for brevity):
|
---|
890 | c'0,r0 = m0[c0 >> 24] ^ m1[c1 >> 16] ^ m2[c2 >> 8] ^ m3[c3]
|
---|
891 | c'0,r1 = m0[c0 >> 24] ^ m1[c1 >> 16] ^ m2[c2 >> 8] ^ m3[c3]
|
---|
892 | c'0,r2 = m0[c0 >> 24] ^ m1[c1 >> 16] ^ m2[c2 >> 8] ^ m3[c3]
|
---|
893 | c'0,r3 = m0[c0 >> 24] ^ m1[c1 >> 16] ^ m2[c2 >> 8] ^ m3[c3]
|
---|
894 |
|
---|
895 | However, before mixing, the algorithm requires us to perform
|
---|
896 | ShiftRows(). The ShiftRows() transformation cyclically shifts the
|
---|
897 | last 3 rows of the state over different offsets. The first row
|
---|
898 | (r = 0) is not shifted.
|
---|
899 |
|
---|
900 | s'_r,c = s_r,(c + shift(r, Nb) mod Nb
|
---|
901 | for 0 < r < 4 and 0 <= c < Nb and
|
---|
902 | shift(1, 4) = 1
|
---|
903 | shift(2, 4) = 2
|
---|
904 | shift(3, 4) = 3.
|
---|
905 |
|
---|
906 | This causes the first byte in r = 1 to be moved to the end of
|
---|
907 | the row, the first 2 bytes in r = 2 to be moved to the end of
|
---|
908 | the row, the first 3 bytes in r = 3 to be moved to the end of
|
---|
909 | the row:
|
---|
910 |
|
---|
911 | r1: [c0 c1 c2 c3] => [c1 c2 c3 c0]
|
---|
912 | r2: [c0 c1 c2 c3] [c2 c3 c0 c1]
|
---|
913 | r3: [c0 c1 c2 c3] [c3 c0 c1 c2]
|
---|
914 |
|
---|
915 | We can make these substitutions inline with our column mixing to
|
---|
916 | generate an updated set of equations to produce each word in the
|
---|
917 | state (note the columns have changed positions):
|
---|
918 |
|
---|
919 | c0 c1 c2 c3 => c0 c1 c2 c3
|
---|
920 | c0 c1 c2 c3 c1 c2 c3 c0 (cycled 1 byte)
|
---|
921 | c0 c1 c2 c3 c2 c3 c0 c1 (cycled 2 bytes)
|
---|
922 | c0 c1 c2 c3 c3 c0 c1 c2 (cycled 3 bytes)
|
---|
923 |
|
---|
924 | Therefore:
|
---|
925 |
|
---|
926 | c'0 = 2*r0,c0 + 3*r1,c1 + 1*r2,c2 + 1*r3,c3
|
---|
927 | c'0 = 1*r0,c0 + 2*r1,c1 + 3*r2,c2 + 1*r3,c3
|
---|
928 | c'0 = 1*r0,c0 + 1*r1,c1 + 2*r2,c2 + 3*r3,c3
|
---|
929 | c'0 = 3*r0,c0 + 1*r1,c1 + 1*r2,c2 + 2*r3,c3
|
---|
930 |
|
---|
931 | c'1 = 2*r0,c1 + 3*r1,c2 + 1*r2,c3 + 1*r3,c0
|
---|
932 | c'1 = 1*r0,c1 + 2*r1,c2 + 3*r2,c3 + 1*r3,c0
|
---|
933 | c'1 = 1*r0,c1 + 1*r1,c2 + 2*r2,c3 + 3*r3,c0
|
---|
934 | c'1 = 3*r0,c1 + 1*r1,c2 + 1*r2,c3 + 2*r3,c0
|
---|
935 |
|
---|
936 | ... and so forth for c'2 and c'3. The important distinction is
|
---|
937 | that the columns are cycling, with c0 being used with the m0
|
---|
938 | map when calculating c0, but c1 being used with the m0 map when
|
---|
939 | calculating c1 ... and so forth.
|
---|
940 |
|
---|
941 | When performing the inverse we transform the mirror image and
|
---|
942 | skip the bottom row, instead of the top one, and move upwards:
|
---|
943 |
|
---|
944 | c3 c2 c1 c0 => c0 c3 c2 c1 (cycled 3 bytes) *same as encryption
|
---|
945 | c3 c2 c1 c0 c1 c0 c3 c2 (cycled 2 bytes)
|
---|
946 | c3 c2 c1 c0 c2 c1 c0 c3 (cycled 1 byte) *same as encryption
|
---|
947 | c3 c2 c1 c0 c3 c2 c1 c0
|
---|
948 |
|
---|
949 | If you compare the resulting matrices for ShiftRows()+MixColumns()
|
---|
950 | and for InvShiftRows()+InvMixColumns() the 2nd and 4th columns are
|
---|
951 | different (in encrypt mode vs. decrypt mode). So in order to use
|
---|
952 | the same code to handle both encryption and decryption, we will
|
---|
953 | need to do some mapping.
|
---|
954 |
|
---|
955 | If in encryption mode we let a=c0, b=c1, c=c2, d=c3, and r<N> be
|
---|
956 | a row number in the state, then the resulting matrix in encryption
|
---|
957 | mode for applying the above transformations would be:
|
---|
958 |
|
---|
959 | r1: a b c d
|
---|
960 | r2: b c d a
|
---|
961 | r3: c d a b
|
---|
962 | r4: d a b c
|
---|
963 |
|
---|
964 | If we did the same in decryption mode we would get:
|
---|
965 |
|
---|
966 | r1: a d c b
|
---|
967 | r2: b a d c
|
---|
968 | r3: c b a d
|
---|
969 | r4: d c b a
|
---|
970 |
|
---|
971 | If instead we swap d and b (set b=c3 and d=c1), then we get:
|
---|
972 |
|
---|
973 | r1: a b c d
|
---|
974 | r2: d a b c
|
---|
975 | r3: c d a b
|
---|
976 | r4: b c d a
|
---|
977 |
|
---|
978 | Now the 1st and 3rd rows are the same as the encryption matrix. All
|
---|
979 | we need to do then to make the mapping exactly the same is to swap
|
---|
980 | the 2nd and 4th rows when in decryption mode. To do this without
|
---|
981 | having to do it on each iteration, we swapped the 2nd and 4th rows
|
---|
982 | in the decryption key schedule. We also have to do the swap above
|
---|
983 | when we first pull in the input and when we set the final output. */
|
---|
984 | a2 =
|
---|
985 | m0[a >>> 24] ^
|
---|
986 | m1[b >>> 16 & 255] ^
|
---|
987 | m2[c >>> 8 & 255] ^
|
---|
988 | m3[d & 255] ^ w[++i];
|
---|
989 | b2 =
|
---|
990 | m0[b >>> 24] ^
|
---|
991 | m1[c >>> 16 & 255] ^
|
---|
992 | m2[d >>> 8 & 255] ^
|
---|
993 | m3[a & 255] ^ w[++i];
|
---|
994 | c2 =
|
---|
995 | m0[c >>> 24] ^
|
---|
996 | m1[d >>> 16 & 255] ^
|
---|
997 | m2[a >>> 8 & 255] ^
|
---|
998 | m3[b & 255] ^ w[++i];
|
---|
999 | d =
|
---|
1000 | m0[d >>> 24] ^
|
---|
1001 | m1[a >>> 16 & 255] ^
|
---|
1002 | m2[b >>> 8 & 255] ^
|
---|
1003 | m3[c & 255] ^ w[++i];
|
---|
1004 | a = a2;
|
---|
1005 | b = b2;
|
---|
1006 | c = c2;
|
---|
1007 | }
|
---|
1008 |
|
---|
1009 | /*
|
---|
1010 | Encrypt:
|
---|
1011 | SubBytes(state)
|
---|
1012 | ShiftRows(state)
|
---|
1013 | AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
|
---|
1014 |
|
---|
1015 | Decrypt:
|
---|
1016 | InvShiftRows(state)
|
---|
1017 | InvSubBytes(state)
|
---|
1018 | AddRoundKey(state, w[0, Nb-1])
|
---|
1019 | */
|
---|
1020 | // Note: rows are shifted inline
|
---|
1021 | output[0] =
|
---|
1022 | (sub[a >>> 24] << 24) ^
|
---|
1023 | (sub[b >>> 16 & 255] << 16) ^
|
---|
1024 | (sub[c >>> 8 & 255] << 8) ^
|
---|
1025 | (sub[d & 255]) ^ w[++i];
|
---|
1026 | output[decrypt ? 3 : 1] =
|
---|
1027 | (sub[b >>> 24] << 24) ^
|
---|
1028 | (sub[c >>> 16 & 255] << 16) ^
|
---|
1029 | (sub[d >>> 8 & 255] << 8) ^
|
---|
1030 | (sub[a & 255]) ^ w[++i];
|
---|
1031 | output[2] =
|
---|
1032 | (sub[c >>> 24] << 24) ^
|
---|
1033 | (sub[d >>> 16 & 255] << 16) ^
|
---|
1034 | (sub[a >>> 8 & 255] << 8) ^
|
---|
1035 | (sub[b & 255]) ^ w[++i];
|
---|
1036 | output[decrypt ? 1 : 3] =
|
---|
1037 | (sub[d >>> 24] << 24) ^
|
---|
1038 | (sub[a >>> 16 & 255] << 16) ^
|
---|
1039 | (sub[b >>> 8 & 255] << 8) ^
|
---|
1040 | (sub[c & 255]) ^ w[++i];
|
---|
1041 | }
|
---|
1042 |
|
---|
1043 | /**
|
---|
1044 | * Deprecated. Instead, use:
|
---|
1045 | *
|
---|
1046 | * forge.cipher.createCipher('AES-<mode>', key);
|
---|
1047 | * forge.cipher.createDecipher('AES-<mode>', key);
|
---|
1048 | *
|
---|
1049 | * Creates a deprecated AES cipher object. This object's mode will default to
|
---|
1050 | * CBC (cipher-block-chaining).
|
---|
1051 | *
|
---|
1052 | * The key and iv may be given as a string of bytes, an array of bytes, a
|
---|
1053 | * byte buffer, or an array of 32-bit words.
|
---|
1054 | *
|
---|
1055 | * @param options the options to use.
|
---|
1056 | * key the symmetric key to use.
|
---|
1057 | * output the buffer to write to.
|
---|
1058 | * decrypt true for decryption, false for encryption.
|
---|
1059 | * mode the cipher mode to use (default: 'CBC').
|
---|
1060 | *
|
---|
1061 | * @return the cipher.
|
---|
1062 | */
|
---|
1063 | function _createCipher(options) {
|
---|
1064 | options = options || {};
|
---|
1065 | var mode = (options.mode || 'CBC').toUpperCase();
|
---|
1066 | var algorithm = 'AES-' + mode;
|
---|
1067 |
|
---|
1068 | var cipher;
|
---|
1069 | if(options.decrypt) {
|
---|
1070 | cipher = forge.cipher.createDecipher(algorithm, options.key);
|
---|
1071 | } else {
|
---|
1072 | cipher = forge.cipher.createCipher(algorithm, options.key);
|
---|
1073 | }
|
---|
1074 |
|
---|
1075 | // backwards compatible start API
|
---|
1076 | var start = cipher.start;
|
---|
1077 | cipher.start = function(iv, options) {
|
---|
1078 | // backwards compatibility: support second arg as output buffer
|
---|
1079 | var output = null;
|
---|
1080 | if(options instanceof forge.util.ByteBuffer) {
|
---|
1081 | output = options;
|
---|
1082 | options = {};
|
---|
1083 | }
|
---|
1084 | options = options || {};
|
---|
1085 | options.output = output;
|
---|
1086 | options.iv = iv;
|
---|
1087 | start.call(cipher, options);
|
---|
1088 | };
|
---|
1089 |
|
---|
1090 | return cipher;
|
---|
1091 | }
|
---|