1 | /**
|
---|
2 | * Supported cipher modes.
|
---|
3 | *
|
---|
4 | * @author Dave Longley
|
---|
5 | *
|
---|
6 | * Copyright (c) 2010-2014 Digital Bazaar, Inc.
|
---|
7 | */
|
---|
8 | var forge = require('./forge');
|
---|
9 | require('./util');
|
---|
10 |
|
---|
11 | forge.cipher = forge.cipher || {};
|
---|
12 |
|
---|
13 | // supported cipher modes
|
---|
14 | var modes = module.exports = forge.cipher.modes = forge.cipher.modes || {};
|
---|
15 |
|
---|
16 | /** Electronic codebook (ECB) (Don't use this; it's not secure) **/
|
---|
17 |
|
---|
18 | modes.ecb = function(options) {
|
---|
19 | options = options || {};
|
---|
20 | this.name = 'ECB';
|
---|
21 | this.cipher = options.cipher;
|
---|
22 | this.blockSize = options.blockSize || 16;
|
---|
23 | this._ints = this.blockSize / 4;
|
---|
24 | this._inBlock = new Array(this._ints);
|
---|
25 | this._outBlock = new Array(this._ints);
|
---|
26 | };
|
---|
27 |
|
---|
28 | modes.ecb.prototype.start = function(options) {};
|
---|
29 |
|
---|
30 | modes.ecb.prototype.encrypt = function(input, output, finish) {
|
---|
31 | // not enough input to encrypt
|
---|
32 | if(input.length() < this.blockSize && !(finish && input.length() > 0)) {
|
---|
33 | return true;
|
---|
34 | }
|
---|
35 |
|
---|
36 | // get next block
|
---|
37 | for(var i = 0; i < this._ints; ++i) {
|
---|
38 | this._inBlock[i] = input.getInt32();
|
---|
39 | }
|
---|
40 |
|
---|
41 | // encrypt block
|
---|
42 | this.cipher.encrypt(this._inBlock, this._outBlock);
|
---|
43 |
|
---|
44 | // write output
|
---|
45 | for(var i = 0; i < this._ints; ++i) {
|
---|
46 | output.putInt32(this._outBlock[i]);
|
---|
47 | }
|
---|
48 | };
|
---|
49 |
|
---|
50 | modes.ecb.prototype.decrypt = function(input, output, finish) {
|
---|
51 | // not enough input to decrypt
|
---|
52 | if(input.length() < this.blockSize && !(finish && input.length() > 0)) {
|
---|
53 | return true;
|
---|
54 | }
|
---|
55 |
|
---|
56 | // get next block
|
---|
57 | for(var i = 0; i < this._ints; ++i) {
|
---|
58 | this._inBlock[i] = input.getInt32();
|
---|
59 | }
|
---|
60 |
|
---|
61 | // decrypt block
|
---|
62 | this.cipher.decrypt(this._inBlock, this._outBlock);
|
---|
63 |
|
---|
64 | // write output
|
---|
65 | for(var i = 0; i < this._ints; ++i) {
|
---|
66 | output.putInt32(this._outBlock[i]);
|
---|
67 | }
|
---|
68 | };
|
---|
69 |
|
---|
70 | modes.ecb.prototype.pad = function(input, options) {
|
---|
71 | // add PKCS#7 padding to block (each pad byte is the
|
---|
72 | // value of the number of pad bytes)
|
---|
73 | var padding = (input.length() === this.blockSize ?
|
---|
74 | this.blockSize : (this.blockSize - input.length()));
|
---|
75 | input.fillWithByte(padding, padding);
|
---|
76 | return true;
|
---|
77 | };
|
---|
78 |
|
---|
79 | modes.ecb.prototype.unpad = function(output, options) {
|
---|
80 | // check for error: input data not a multiple of blockSize
|
---|
81 | if(options.overflow > 0) {
|
---|
82 | return false;
|
---|
83 | }
|
---|
84 |
|
---|
85 | // ensure padding byte count is valid
|
---|
86 | var len = output.length();
|
---|
87 | var count = output.at(len - 1);
|
---|
88 | if(count > (this.blockSize << 2)) {
|
---|
89 | return false;
|
---|
90 | }
|
---|
91 |
|
---|
92 | // trim off padding bytes
|
---|
93 | output.truncate(count);
|
---|
94 | return true;
|
---|
95 | };
|
---|
96 |
|
---|
97 | /** Cipher-block Chaining (CBC) **/
|
---|
98 |
|
---|
99 | modes.cbc = function(options) {
|
---|
100 | options = options || {};
|
---|
101 | this.name = 'CBC';
|
---|
102 | this.cipher = options.cipher;
|
---|
103 | this.blockSize = options.blockSize || 16;
|
---|
104 | this._ints = this.blockSize / 4;
|
---|
105 | this._inBlock = new Array(this._ints);
|
---|
106 | this._outBlock = new Array(this._ints);
|
---|
107 | };
|
---|
108 |
|
---|
109 | modes.cbc.prototype.start = function(options) {
|
---|
110 | // Note: legacy support for using IV residue (has security flaws)
|
---|
111 | // if IV is null, reuse block from previous processing
|
---|
112 | if(options.iv === null) {
|
---|
113 | // must have a previous block
|
---|
114 | if(!this._prev) {
|
---|
115 | throw new Error('Invalid IV parameter.');
|
---|
116 | }
|
---|
117 | this._iv = this._prev.slice(0);
|
---|
118 | } else if(!('iv' in options)) {
|
---|
119 | throw new Error('Invalid IV parameter.');
|
---|
120 | } else {
|
---|
121 | // save IV as "previous" block
|
---|
122 | this._iv = transformIV(options.iv, this.blockSize);
|
---|
123 | this._prev = this._iv.slice(0);
|
---|
124 | }
|
---|
125 | };
|
---|
126 |
|
---|
127 | modes.cbc.prototype.encrypt = function(input, output, finish) {
|
---|
128 | // not enough input to encrypt
|
---|
129 | if(input.length() < this.blockSize && !(finish && input.length() > 0)) {
|
---|
130 | return true;
|
---|
131 | }
|
---|
132 |
|
---|
133 | // get next block
|
---|
134 | // CBC XOR's IV (or previous block) with plaintext
|
---|
135 | for(var i = 0; i < this._ints; ++i) {
|
---|
136 | this._inBlock[i] = this._prev[i] ^ input.getInt32();
|
---|
137 | }
|
---|
138 |
|
---|
139 | // encrypt block
|
---|
140 | this.cipher.encrypt(this._inBlock, this._outBlock);
|
---|
141 |
|
---|
142 | // write output, save previous block
|
---|
143 | for(var i = 0; i < this._ints; ++i) {
|
---|
144 | output.putInt32(this._outBlock[i]);
|
---|
145 | }
|
---|
146 | this._prev = this._outBlock;
|
---|
147 | };
|
---|
148 |
|
---|
149 | modes.cbc.prototype.decrypt = function(input, output, finish) {
|
---|
150 | // not enough input to decrypt
|
---|
151 | if(input.length() < this.blockSize && !(finish && input.length() > 0)) {
|
---|
152 | return true;
|
---|
153 | }
|
---|
154 |
|
---|
155 | // get next block
|
---|
156 | for(var i = 0; i < this._ints; ++i) {
|
---|
157 | this._inBlock[i] = input.getInt32();
|
---|
158 | }
|
---|
159 |
|
---|
160 | // decrypt block
|
---|
161 | this.cipher.decrypt(this._inBlock, this._outBlock);
|
---|
162 |
|
---|
163 | // write output, save previous ciphered block
|
---|
164 | // CBC XOR's IV (or previous block) with ciphertext
|
---|
165 | for(var i = 0; i < this._ints; ++i) {
|
---|
166 | output.putInt32(this._prev[i] ^ this._outBlock[i]);
|
---|
167 | }
|
---|
168 | this._prev = this._inBlock.slice(0);
|
---|
169 | };
|
---|
170 |
|
---|
171 | modes.cbc.prototype.pad = function(input, options) {
|
---|
172 | // add PKCS#7 padding to block (each pad byte is the
|
---|
173 | // value of the number of pad bytes)
|
---|
174 | var padding = (input.length() === this.blockSize ?
|
---|
175 | this.blockSize : (this.blockSize - input.length()));
|
---|
176 | input.fillWithByte(padding, padding);
|
---|
177 | return true;
|
---|
178 | };
|
---|
179 |
|
---|
180 | modes.cbc.prototype.unpad = function(output, options) {
|
---|
181 | // check for error: input data not a multiple of blockSize
|
---|
182 | if(options.overflow > 0) {
|
---|
183 | return false;
|
---|
184 | }
|
---|
185 |
|
---|
186 | // ensure padding byte count is valid
|
---|
187 | var len = output.length();
|
---|
188 | var count = output.at(len - 1);
|
---|
189 | if(count > (this.blockSize << 2)) {
|
---|
190 | return false;
|
---|
191 | }
|
---|
192 |
|
---|
193 | // trim off padding bytes
|
---|
194 | output.truncate(count);
|
---|
195 | return true;
|
---|
196 | };
|
---|
197 |
|
---|
198 | /** Cipher feedback (CFB) **/
|
---|
199 |
|
---|
200 | modes.cfb = function(options) {
|
---|
201 | options = options || {};
|
---|
202 | this.name = 'CFB';
|
---|
203 | this.cipher = options.cipher;
|
---|
204 | this.blockSize = options.blockSize || 16;
|
---|
205 | this._ints = this.blockSize / 4;
|
---|
206 | this._inBlock = null;
|
---|
207 | this._outBlock = new Array(this._ints);
|
---|
208 | this._partialBlock = new Array(this._ints);
|
---|
209 | this._partialOutput = forge.util.createBuffer();
|
---|
210 | this._partialBytes = 0;
|
---|
211 | };
|
---|
212 |
|
---|
213 | modes.cfb.prototype.start = function(options) {
|
---|
214 | if(!('iv' in options)) {
|
---|
215 | throw new Error('Invalid IV parameter.');
|
---|
216 | }
|
---|
217 | // use IV as first input
|
---|
218 | this._iv = transformIV(options.iv, this.blockSize);
|
---|
219 | this._inBlock = this._iv.slice(0);
|
---|
220 | this._partialBytes = 0;
|
---|
221 | };
|
---|
222 |
|
---|
223 | modes.cfb.prototype.encrypt = function(input, output, finish) {
|
---|
224 | // not enough input to encrypt
|
---|
225 | var inputLength = input.length();
|
---|
226 | if(inputLength === 0) {
|
---|
227 | return true;
|
---|
228 | }
|
---|
229 |
|
---|
230 | // encrypt block
|
---|
231 | this.cipher.encrypt(this._inBlock, this._outBlock);
|
---|
232 |
|
---|
233 | // handle full block
|
---|
234 | if(this._partialBytes === 0 && inputLength >= this.blockSize) {
|
---|
235 | // XOR input with output, write input as output
|
---|
236 | for(var i = 0; i < this._ints; ++i) {
|
---|
237 | this._inBlock[i] = input.getInt32() ^ this._outBlock[i];
|
---|
238 | output.putInt32(this._inBlock[i]);
|
---|
239 | }
|
---|
240 | return;
|
---|
241 | }
|
---|
242 |
|
---|
243 | // handle partial block
|
---|
244 | var partialBytes = (this.blockSize - inputLength) % this.blockSize;
|
---|
245 | if(partialBytes > 0) {
|
---|
246 | partialBytes = this.blockSize - partialBytes;
|
---|
247 | }
|
---|
248 |
|
---|
249 | // XOR input with output, write input as partial output
|
---|
250 | this._partialOutput.clear();
|
---|
251 | for(var i = 0; i < this._ints; ++i) {
|
---|
252 | this._partialBlock[i] = input.getInt32() ^ this._outBlock[i];
|
---|
253 | this._partialOutput.putInt32(this._partialBlock[i]);
|
---|
254 | }
|
---|
255 |
|
---|
256 | if(partialBytes > 0) {
|
---|
257 | // block still incomplete, restore input buffer
|
---|
258 | input.read -= this.blockSize;
|
---|
259 | } else {
|
---|
260 | // block complete, update input block
|
---|
261 | for(var i = 0; i < this._ints; ++i) {
|
---|
262 | this._inBlock[i] = this._partialBlock[i];
|
---|
263 | }
|
---|
264 | }
|
---|
265 |
|
---|
266 | // skip any previous partial bytes
|
---|
267 | if(this._partialBytes > 0) {
|
---|
268 | this._partialOutput.getBytes(this._partialBytes);
|
---|
269 | }
|
---|
270 |
|
---|
271 | if(partialBytes > 0 && !finish) {
|
---|
272 | output.putBytes(this._partialOutput.getBytes(
|
---|
273 | partialBytes - this._partialBytes));
|
---|
274 | this._partialBytes = partialBytes;
|
---|
275 | return true;
|
---|
276 | }
|
---|
277 |
|
---|
278 | output.putBytes(this._partialOutput.getBytes(
|
---|
279 | inputLength - this._partialBytes));
|
---|
280 | this._partialBytes = 0;
|
---|
281 | };
|
---|
282 |
|
---|
283 | modes.cfb.prototype.decrypt = function(input, output, finish) {
|
---|
284 | // not enough input to decrypt
|
---|
285 | var inputLength = input.length();
|
---|
286 | if(inputLength === 0) {
|
---|
287 | return true;
|
---|
288 | }
|
---|
289 |
|
---|
290 | // encrypt block (CFB always uses encryption mode)
|
---|
291 | this.cipher.encrypt(this._inBlock, this._outBlock);
|
---|
292 |
|
---|
293 | // handle full block
|
---|
294 | if(this._partialBytes === 0 && inputLength >= this.blockSize) {
|
---|
295 | // XOR input with output, write input as output
|
---|
296 | for(var i = 0; i < this._ints; ++i) {
|
---|
297 | this._inBlock[i] = input.getInt32();
|
---|
298 | output.putInt32(this._inBlock[i] ^ this._outBlock[i]);
|
---|
299 | }
|
---|
300 | return;
|
---|
301 | }
|
---|
302 |
|
---|
303 | // handle partial block
|
---|
304 | var partialBytes = (this.blockSize - inputLength) % this.blockSize;
|
---|
305 | if(partialBytes > 0) {
|
---|
306 | partialBytes = this.blockSize - partialBytes;
|
---|
307 | }
|
---|
308 |
|
---|
309 | // XOR input with output, write input as partial output
|
---|
310 | this._partialOutput.clear();
|
---|
311 | for(var i = 0; i < this._ints; ++i) {
|
---|
312 | this._partialBlock[i] = input.getInt32();
|
---|
313 | this._partialOutput.putInt32(this._partialBlock[i] ^ this._outBlock[i]);
|
---|
314 | }
|
---|
315 |
|
---|
316 | if(partialBytes > 0) {
|
---|
317 | // block still incomplete, restore input buffer
|
---|
318 | input.read -= this.blockSize;
|
---|
319 | } else {
|
---|
320 | // block complete, update input block
|
---|
321 | for(var i = 0; i < this._ints; ++i) {
|
---|
322 | this._inBlock[i] = this._partialBlock[i];
|
---|
323 | }
|
---|
324 | }
|
---|
325 |
|
---|
326 | // skip any previous partial bytes
|
---|
327 | if(this._partialBytes > 0) {
|
---|
328 | this._partialOutput.getBytes(this._partialBytes);
|
---|
329 | }
|
---|
330 |
|
---|
331 | if(partialBytes > 0 && !finish) {
|
---|
332 | output.putBytes(this._partialOutput.getBytes(
|
---|
333 | partialBytes - this._partialBytes));
|
---|
334 | this._partialBytes = partialBytes;
|
---|
335 | return true;
|
---|
336 | }
|
---|
337 |
|
---|
338 | output.putBytes(this._partialOutput.getBytes(
|
---|
339 | inputLength - this._partialBytes));
|
---|
340 | this._partialBytes = 0;
|
---|
341 | };
|
---|
342 |
|
---|
343 | /** Output feedback (OFB) **/
|
---|
344 |
|
---|
345 | modes.ofb = function(options) {
|
---|
346 | options = options || {};
|
---|
347 | this.name = 'OFB';
|
---|
348 | this.cipher = options.cipher;
|
---|
349 | this.blockSize = options.blockSize || 16;
|
---|
350 | this._ints = this.blockSize / 4;
|
---|
351 | this._inBlock = null;
|
---|
352 | this._outBlock = new Array(this._ints);
|
---|
353 | this._partialOutput = forge.util.createBuffer();
|
---|
354 | this._partialBytes = 0;
|
---|
355 | };
|
---|
356 |
|
---|
357 | modes.ofb.prototype.start = function(options) {
|
---|
358 | if(!('iv' in options)) {
|
---|
359 | throw new Error('Invalid IV parameter.');
|
---|
360 | }
|
---|
361 | // use IV as first input
|
---|
362 | this._iv = transformIV(options.iv, this.blockSize);
|
---|
363 | this._inBlock = this._iv.slice(0);
|
---|
364 | this._partialBytes = 0;
|
---|
365 | };
|
---|
366 |
|
---|
367 | modes.ofb.prototype.encrypt = function(input, output, finish) {
|
---|
368 | // not enough input to encrypt
|
---|
369 | var inputLength = input.length();
|
---|
370 | if(input.length() === 0) {
|
---|
371 | return true;
|
---|
372 | }
|
---|
373 |
|
---|
374 | // encrypt block (OFB always uses encryption mode)
|
---|
375 | this.cipher.encrypt(this._inBlock, this._outBlock);
|
---|
376 |
|
---|
377 | // handle full block
|
---|
378 | if(this._partialBytes === 0 && inputLength >= this.blockSize) {
|
---|
379 | // XOR input with output and update next input
|
---|
380 | for(var i = 0; i < this._ints; ++i) {
|
---|
381 | output.putInt32(input.getInt32() ^ this._outBlock[i]);
|
---|
382 | this._inBlock[i] = this._outBlock[i];
|
---|
383 | }
|
---|
384 | return;
|
---|
385 | }
|
---|
386 |
|
---|
387 | // handle partial block
|
---|
388 | var partialBytes = (this.blockSize - inputLength) % this.blockSize;
|
---|
389 | if(partialBytes > 0) {
|
---|
390 | partialBytes = this.blockSize - partialBytes;
|
---|
391 | }
|
---|
392 |
|
---|
393 | // XOR input with output
|
---|
394 | this._partialOutput.clear();
|
---|
395 | for(var i = 0; i < this._ints; ++i) {
|
---|
396 | this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]);
|
---|
397 | }
|
---|
398 |
|
---|
399 | if(partialBytes > 0) {
|
---|
400 | // block still incomplete, restore input buffer
|
---|
401 | input.read -= this.blockSize;
|
---|
402 | } else {
|
---|
403 | // block complete, update input block
|
---|
404 | for(var i = 0; i < this._ints; ++i) {
|
---|
405 | this._inBlock[i] = this._outBlock[i];
|
---|
406 | }
|
---|
407 | }
|
---|
408 |
|
---|
409 | // skip any previous partial bytes
|
---|
410 | if(this._partialBytes > 0) {
|
---|
411 | this._partialOutput.getBytes(this._partialBytes);
|
---|
412 | }
|
---|
413 |
|
---|
414 | if(partialBytes > 0 && !finish) {
|
---|
415 | output.putBytes(this._partialOutput.getBytes(
|
---|
416 | partialBytes - this._partialBytes));
|
---|
417 | this._partialBytes = partialBytes;
|
---|
418 | return true;
|
---|
419 | }
|
---|
420 |
|
---|
421 | output.putBytes(this._partialOutput.getBytes(
|
---|
422 | inputLength - this._partialBytes));
|
---|
423 | this._partialBytes = 0;
|
---|
424 | };
|
---|
425 |
|
---|
426 | modes.ofb.prototype.decrypt = modes.ofb.prototype.encrypt;
|
---|
427 |
|
---|
428 | /** Counter (CTR) **/
|
---|
429 |
|
---|
430 | modes.ctr = function(options) {
|
---|
431 | options = options || {};
|
---|
432 | this.name = 'CTR';
|
---|
433 | this.cipher = options.cipher;
|
---|
434 | this.blockSize = options.blockSize || 16;
|
---|
435 | this._ints = this.blockSize / 4;
|
---|
436 | this._inBlock = null;
|
---|
437 | this._outBlock = new Array(this._ints);
|
---|
438 | this._partialOutput = forge.util.createBuffer();
|
---|
439 | this._partialBytes = 0;
|
---|
440 | };
|
---|
441 |
|
---|
442 | modes.ctr.prototype.start = function(options) {
|
---|
443 | if(!('iv' in options)) {
|
---|
444 | throw new Error('Invalid IV parameter.');
|
---|
445 | }
|
---|
446 | // use IV as first input
|
---|
447 | this._iv = transformIV(options.iv, this.blockSize);
|
---|
448 | this._inBlock = this._iv.slice(0);
|
---|
449 | this._partialBytes = 0;
|
---|
450 | };
|
---|
451 |
|
---|
452 | modes.ctr.prototype.encrypt = function(input, output, finish) {
|
---|
453 | // not enough input to encrypt
|
---|
454 | var inputLength = input.length();
|
---|
455 | if(inputLength === 0) {
|
---|
456 | return true;
|
---|
457 | }
|
---|
458 |
|
---|
459 | // encrypt block (CTR always uses encryption mode)
|
---|
460 | this.cipher.encrypt(this._inBlock, this._outBlock);
|
---|
461 |
|
---|
462 | // handle full block
|
---|
463 | if(this._partialBytes === 0 && inputLength >= this.blockSize) {
|
---|
464 | // XOR input with output
|
---|
465 | for(var i = 0; i < this._ints; ++i) {
|
---|
466 | output.putInt32(input.getInt32() ^ this._outBlock[i]);
|
---|
467 | }
|
---|
468 | } else {
|
---|
469 | // handle partial block
|
---|
470 | var partialBytes = (this.blockSize - inputLength) % this.blockSize;
|
---|
471 | if(partialBytes > 0) {
|
---|
472 | partialBytes = this.blockSize - partialBytes;
|
---|
473 | }
|
---|
474 |
|
---|
475 | // XOR input with output
|
---|
476 | this._partialOutput.clear();
|
---|
477 | for(var i = 0; i < this._ints; ++i) {
|
---|
478 | this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]);
|
---|
479 | }
|
---|
480 |
|
---|
481 | if(partialBytes > 0) {
|
---|
482 | // block still incomplete, restore input buffer
|
---|
483 | input.read -= this.blockSize;
|
---|
484 | }
|
---|
485 |
|
---|
486 | // skip any previous partial bytes
|
---|
487 | if(this._partialBytes > 0) {
|
---|
488 | this._partialOutput.getBytes(this._partialBytes);
|
---|
489 | }
|
---|
490 |
|
---|
491 | if(partialBytes > 0 && !finish) {
|
---|
492 | output.putBytes(this._partialOutput.getBytes(
|
---|
493 | partialBytes - this._partialBytes));
|
---|
494 | this._partialBytes = partialBytes;
|
---|
495 | return true;
|
---|
496 | }
|
---|
497 |
|
---|
498 | output.putBytes(this._partialOutput.getBytes(
|
---|
499 | inputLength - this._partialBytes));
|
---|
500 | this._partialBytes = 0;
|
---|
501 | }
|
---|
502 |
|
---|
503 | // block complete, increment counter (input block)
|
---|
504 | inc32(this._inBlock);
|
---|
505 | };
|
---|
506 |
|
---|
507 | modes.ctr.prototype.decrypt = modes.ctr.prototype.encrypt;
|
---|
508 |
|
---|
509 | /** Galois/Counter Mode (GCM) **/
|
---|
510 |
|
---|
511 | modes.gcm = function(options) {
|
---|
512 | options = options || {};
|
---|
513 | this.name = 'GCM';
|
---|
514 | this.cipher = options.cipher;
|
---|
515 | this.blockSize = options.blockSize || 16;
|
---|
516 | this._ints = this.blockSize / 4;
|
---|
517 | this._inBlock = new Array(this._ints);
|
---|
518 | this._outBlock = new Array(this._ints);
|
---|
519 | this._partialOutput = forge.util.createBuffer();
|
---|
520 | this._partialBytes = 0;
|
---|
521 |
|
---|
522 | // R is actually this value concatenated with 120 more zero bits, but
|
---|
523 | // we only XOR against R so the other zeros have no effect -- we just
|
---|
524 | // apply this value to the first integer in a block
|
---|
525 | this._R = 0xE1000000;
|
---|
526 | };
|
---|
527 |
|
---|
528 | modes.gcm.prototype.start = function(options) {
|
---|
529 | if(!('iv' in options)) {
|
---|
530 | throw new Error('Invalid IV parameter.');
|
---|
531 | }
|
---|
532 | // ensure IV is a byte buffer
|
---|
533 | var iv = forge.util.createBuffer(options.iv);
|
---|
534 |
|
---|
535 | // no ciphered data processed yet
|
---|
536 | this._cipherLength = 0;
|
---|
537 |
|
---|
538 | // default additional data is none
|
---|
539 | var additionalData;
|
---|
540 | if('additionalData' in options) {
|
---|
541 | additionalData = forge.util.createBuffer(options.additionalData);
|
---|
542 | } else {
|
---|
543 | additionalData = forge.util.createBuffer();
|
---|
544 | }
|
---|
545 |
|
---|
546 | // default tag length is 128 bits
|
---|
547 | if('tagLength' in options) {
|
---|
548 | this._tagLength = options.tagLength;
|
---|
549 | } else {
|
---|
550 | this._tagLength = 128;
|
---|
551 | }
|
---|
552 |
|
---|
553 | // if tag is given, ensure tag matches tag length
|
---|
554 | this._tag = null;
|
---|
555 | if(options.decrypt) {
|
---|
556 | // save tag to check later
|
---|
557 | this._tag = forge.util.createBuffer(options.tag).getBytes();
|
---|
558 | if(this._tag.length !== (this._tagLength / 8)) {
|
---|
559 | throw new Error('Authentication tag does not match tag length.');
|
---|
560 | }
|
---|
561 | }
|
---|
562 |
|
---|
563 | // create tmp storage for hash calculation
|
---|
564 | this._hashBlock = new Array(this._ints);
|
---|
565 |
|
---|
566 | // no tag generated yet
|
---|
567 | this.tag = null;
|
---|
568 |
|
---|
569 | // generate hash subkey
|
---|
570 | // (apply block cipher to "zero" block)
|
---|
571 | this._hashSubkey = new Array(this._ints);
|
---|
572 | this.cipher.encrypt([0, 0, 0, 0], this._hashSubkey);
|
---|
573 |
|
---|
574 | // generate table M
|
---|
575 | // use 4-bit tables (32 component decomposition of a 16 byte value)
|
---|
576 | // 8-bit tables take more space and are known to have security
|
---|
577 | // vulnerabilities (in native implementations)
|
---|
578 | this.componentBits = 4;
|
---|
579 | this._m = this.generateHashTable(this._hashSubkey, this.componentBits);
|
---|
580 |
|
---|
581 | // Note: support IV length different from 96 bits? (only supporting
|
---|
582 | // 96 bits is recommended by NIST SP-800-38D)
|
---|
583 | // generate J_0
|
---|
584 | var ivLength = iv.length();
|
---|
585 | if(ivLength === 12) {
|
---|
586 | // 96-bit IV
|
---|
587 | this._j0 = [iv.getInt32(), iv.getInt32(), iv.getInt32(), 1];
|
---|
588 | } else {
|
---|
589 | // IV is NOT 96-bits
|
---|
590 | this._j0 = [0, 0, 0, 0];
|
---|
591 | while(iv.length() > 0) {
|
---|
592 | this._j0 = this.ghash(
|
---|
593 | this._hashSubkey, this._j0,
|
---|
594 | [iv.getInt32(), iv.getInt32(), iv.getInt32(), iv.getInt32()]);
|
---|
595 | }
|
---|
596 | this._j0 = this.ghash(
|
---|
597 | this._hashSubkey, this._j0, [0, 0].concat(from64To32(ivLength * 8)));
|
---|
598 | }
|
---|
599 |
|
---|
600 | // generate ICB (initial counter block)
|
---|
601 | this._inBlock = this._j0.slice(0);
|
---|
602 | inc32(this._inBlock);
|
---|
603 | this._partialBytes = 0;
|
---|
604 |
|
---|
605 | // consume authentication data
|
---|
606 | additionalData = forge.util.createBuffer(additionalData);
|
---|
607 | // save additional data length as a BE 64-bit number
|
---|
608 | this._aDataLength = from64To32(additionalData.length() * 8);
|
---|
609 | // pad additional data to 128 bit (16 byte) block size
|
---|
610 | var overflow = additionalData.length() % this.blockSize;
|
---|
611 | if(overflow) {
|
---|
612 | additionalData.fillWithByte(0, this.blockSize - overflow);
|
---|
613 | }
|
---|
614 | this._s = [0, 0, 0, 0];
|
---|
615 | while(additionalData.length() > 0) {
|
---|
616 | this._s = this.ghash(this._hashSubkey, this._s, [
|
---|
617 | additionalData.getInt32(),
|
---|
618 | additionalData.getInt32(),
|
---|
619 | additionalData.getInt32(),
|
---|
620 | additionalData.getInt32()
|
---|
621 | ]);
|
---|
622 | }
|
---|
623 | };
|
---|
624 |
|
---|
625 | modes.gcm.prototype.encrypt = function(input, output, finish) {
|
---|
626 | // not enough input to encrypt
|
---|
627 | var inputLength = input.length();
|
---|
628 | if(inputLength === 0) {
|
---|
629 | return true;
|
---|
630 | }
|
---|
631 |
|
---|
632 | // encrypt block
|
---|
633 | this.cipher.encrypt(this._inBlock, this._outBlock);
|
---|
634 |
|
---|
635 | // handle full block
|
---|
636 | if(this._partialBytes === 0 && inputLength >= this.blockSize) {
|
---|
637 | // XOR input with output
|
---|
638 | for(var i = 0; i < this._ints; ++i) {
|
---|
639 | output.putInt32(this._outBlock[i] ^= input.getInt32());
|
---|
640 | }
|
---|
641 | this._cipherLength += this.blockSize;
|
---|
642 | } else {
|
---|
643 | // handle partial block
|
---|
644 | var partialBytes = (this.blockSize - inputLength) % this.blockSize;
|
---|
645 | if(partialBytes > 0) {
|
---|
646 | partialBytes = this.blockSize - partialBytes;
|
---|
647 | }
|
---|
648 |
|
---|
649 | // XOR input with output
|
---|
650 | this._partialOutput.clear();
|
---|
651 | for(var i = 0; i < this._ints; ++i) {
|
---|
652 | this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]);
|
---|
653 | }
|
---|
654 |
|
---|
655 | if(partialBytes <= 0 || finish) {
|
---|
656 | // handle overflow prior to hashing
|
---|
657 | if(finish) {
|
---|
658 | // get block overflow
|
---|
659 | var overflow = inputLength % this.blockSize;
|
---|
660 | this._cipherLength += overflow;
|
---|
661 | // truncate for hash function
|
---|
662 | this._partialOutput.truncate(this.blockSize - overflow);
|
---|
663 | } else {
|
---|
664 | this._cipherLength += this.blockSize;
|
---|
665 | }
|
---|
666 |
|
---|
667 | // get output block for hashing
|
---|
668 | for(var i = 0; i < this._ints; ++i) {
|
---|
669 | this._outBlock[i] = this._partialOutput.getInt32();
|
---|
670 | }
|
---|
671 | this._partialOutput.read -= this.blockSize;
|
---|
672 | }
|
---|
673 |
|
---|
674 | // skip any previous partial bytes
|
---|
675 | if(this._partialBytes > 0) {
|
---|
676 | this._partialOutput.getBytes(this._partialBytes);
|
---|
677 | }
|
---|
678 |
|
---|
679 | if(partialBytes > 0 && !finish) {
|
---|
680 | // block still incomplete, restore input buffer, get partial output,
|
---|
681 | // and return early
|
---|
682 | input.read -= this.blockSize;
|
---|
683 | output.putBytes(this._partialOutput.getBytes(
|
---|
684 | partialBytes - this._partialBytes));
|
---|
685 | this._partialBytes = partialBytes;
|
---|
686 | return true;
|
---|
687 | }
|
---|
688 |
|
---|
689 | output.putBytes(this._partialOutput.getBytes(
|
---|
690 | inputLength - this._partialBytes));
|
---|
691 | this._partialBytes = 0;
|
---|
692 | }
|
---|
693 |
|
---|
694 | // update hash block S
|
---|
695 | this._s = this.ghash(this._hashSubkey, this._s, this._outBlock);
|
---|
696 |
|
---|
697 | // increment counter (input block)
|
---|
698 | inc32(this._inBlock);
|
---|
699 | };
|
---|
700 |
|
---|
701 | modes.gcm.prototype.decrypt = function(input, output, finish) {
|
---|
702 | // not enough input to decrypt
|
---|
703 | var inputLength = input.length();
|
---|
704 | if(inputLength < this.blockSize && !(finish && inputLength > 0)) {
|
---|
705 | return true;
|
---|
706 | }
|
---|
707 |
|
---|
708 | // encrypt block (GCM always uses encryption mode)
|
---|
709 | this.cipher.encrypt(this._inBlock, this._outBlock);
|
---|
710 |
|
---|
711 | // increment counter (input block)
|
---|
712 | inc32(this._inBlock);
|
---|
713 |
|
---|
714 | // update hash block S
|
---|
715 | this._hashBlock[0] = input.getInt32();
|
---|
716 | this._hashBlock[1] = input.getInt32();
|
---|
717 | this._hashBlock[2] = input.getInt32();
|
---|
718 | this._hashBlock[3] = input.getInt32();
|
---|
719 | this._s = this.ghash(this._hashSubkey, this._s, this._hashBlock);
|
---|
720 |
|
---|
721 | // XOR hash input with output
|
---|
722 | for(var i = 0; i < this._ints; ++i) {
|
---|
723 | output.putInt32(this._outBlock[i] ^ this._hashBlock[i]);
|
---|
724 | }
|
---|
725 |
|
---|
726 | // increment cipher data length
|
---|
727 | if(inputLength < this.blockSize) {
|
---|
728 | this._cipherLength += inputLength % this.blockSize;
|
---|
729 | } else {
|
---|
730 | this._cipherLength += this.blockSize;
|
---|
731 | }
|
---|
732 | };
|
---|
733 |
|
---|
734 | modes.gcm.prototype.afterFinish = function(output, options) {
|
---|
735 | var rval = true;
|
---|
736 |
|
---|
737 | // handle overflow
|
---|
738 | if(options.decrypt && options.overflow) {
|
---|
739 | output.truncate(this.blockSize - options.overflow);
|
---|
740 | }
|
---|
741 |
|
---|
742 | // handle authentication tag
|
---|
743 | this.tag = forge.util.createBuffer();
|
---|
744 |
|
---|
745 | // concatenate additional data length with cipher length
|
---|
746 | var lengths = this._aDataLength.concat(from64To32(this._cipherLength * 8));
|
---|
747 |
|
---|
748 | // include lengths in hash
|
---|
749 | this._s = this.ghash(this._hashSubkey, this._s, lengths);
|
---|
750 |
|
---|
751 | // do GCTR(J_0, S)
|
---|
752 | var tag = [];
|
---|
753 | this.cipher.encrypt(this._j0, tag);
|
---|
754 | for(var i = 0; i < this._ints; ++i) {
|
---|
755 | this.tag.putInt32(this._s[i] ^ tag[i]);
|
---|
756 | }
|
---|
757 |
|
---|
758 | // trim tag to length
|
---|
759 | this.tag.truncate(this.tag.length() % (this._tagLength / 8));
|
---|
760 |
|
---|
761 | // check authentication tag
|
---|
762 | if(options.decrypt && this.tag.bytes() !== this._tag) {
|
---|
763 | rval = false;
|
---|
764 | }
|
---|
765 |
|
---|
766 | return rval;
|
---|
767 | };
|
---|
768 |
|
---|
769 | /**
|
---|
770 | * See NIST SP-800-38D 6.3 (Algorithm 1). This function performs Galois
|
---|
771 | * field multiplication. The field, GF(2^128), is defined by the polynomial:
|
---|
772 | *
|
---|
773 | * x^128 + x^7 + x^2 + x + 1
|
---|
774 | *
|
---|
775 | * Which is represented in little-endian binary form as: 11100001 (0xe1). When
|
---|
776 | * the value of a coefficient is 1, a bit is set. The value R, is the
|
---|
777 | * concatenation of this value and 120 zero bits, yielding a 128-bit value
|
---|
778 | * which matches the block size.
|
---|
779 | *
|
---|
780 | * This function will multiply two elements (vectors of bytes), X and Y, in
|
---|
781 | * the field GF(2^128). The result is initialized to zero. For each bit of
|
---|
782 | * X (out of 128), x_i, if x_i is set, then the result is multiplied (XOR'd)
|
---|
783 | * by the current value of Y. For each bit, the value of Y will be raised by
|
---|
784 | * a power of x (multiplied by the polynomial x). This can be achieved by
|
---|
785 | * shifting Y once to the right. If the current value of Y, prior to being
|
---|
786 | * multiplied by x, has 0 as its LSB, then it is a 127th degree polynomial.
|
---|
787 | * Otherwise, we must divide by R after shifting to find the remainder.
|
---|
788 | *
|
---|
789 | * @param x the first block to multiply by the second.
|
---|
790 | * @param y the second block to multiply by the first.
|
---|
791 | *
|
---|
792 | * @return the block result of the multiplication.
|
---|
793 | */
|
---|
794 | modes.gcm.prototype.multiply = function(x, y) {
|
---|
795 | var z_i = [0, 0, 0, 0];
|
---|
796 | var v_i = y.slice(0);
|
---|
797 |
|
---|
798 | // calculate Z_128 (block has 128 bits)
|
---|
799 | for(var i = 0; i < 128; ++i) {
|
---|
800 | // if x_i is 0, Z_{i+1} = Z_i (unchanged)
|
---|
801 | // else Z_{i+1} = Z_i ^ V_i
|
---|
802 | // get x_i by finding 32-bit int position, then left shift 1 by remainder
|
---|
803 | var x_i = x[(i / 32) | 0] & (1 << (31 - i % 32));
|
---|
804 | if(x_i) {
|
---|
805 | z_i[0] ^= v_i[0];
|
---|
806 | z_i[1] ^= v_i[1];
|
---|
807 | z_i[2] ^= v_i[2];
|
---|
808 | z_i[3] ^= v_i[3];
|
---|
809 | }
|
---|
810 |
|
---|
811 | // if LSB(V_i) is 1, V_i = V_i >> 1
|
---|
812 | // else V_i = (V_i >> 1) ^ R
|
---|
813 | this.pow(v_i, v_i);
|
---|
814 | }
|
---|
815 |
|
---|
816 | return z_i;
|
---|
817 | };
|
---|
818 |
|
---|
819 | modes.gcm.prototype.pow = function(x, out) {
|
---|
820 | // if LSB(x) is 1, x = x >>> 1
|
---|
821 | // else x = (x >>> 1) ^ R
|
---|
822 | var lsb = x[3] & 1;
|
---|
823 |
|
---|
824 | // always do x >>> 1:
|
---|
825 | // starting with the rightmost integer, shift each integer to the right
|
---|
826 | // one bit, pulling in the bit from the integer to the left as its top
|
---|
827 | // most bit (do this for the last 3 integers)
|
---|
828 | for(var i = 3; i > 0; --i) {
|
---|
829 | out[i] = (x[i] >>> 1) | ((x[i - 1] & 1) << 31);
|
---|
830 | }
|
---|
831 | // shift the first integer normally
|
---|
832 | out[0] = x[0] >>> 1;
|
---|
833 |
|
---|
834 | // if lsb was not set, then polynomial had a degree of 127 and doesn't
|
---|
835 | // need to divided; otherwise, XOR with R to find the remainder; we only
|
---|
836 | // need to XOR the first integer since R technically ends w/120 zero bits
|
---|
837 | if(lsb) {
|
---|
838 | out[0] ^= this._R;
|
---|
839 | }
|
---|
840 | };
|
---|
841 |
|
---|
842 | modes.gcm.prototype.tableMultiply = function(x) {
|
---|
843 | // assumes 4-bit tables are used
|
---|
844 | var z = [0, 0, 0, 0];
|
---|
845 | for(var i = 0; i < 32; ++i) {
|
---|
846 | var idx = (i / 8) | 0;
|
---|
847 | var x_i = (x[idx] >>> ((7 - (i % 8)) * 4)) & 0xF;
|
---|
848 | var ah = this._m[i][x_i];
|
---|
849 | z[0] ^= ah[0];
|
---|
850 | z[1] ^= ah[1];
|
---|
851 | z[2] ^= ah[2];
|
---|
852 | z[3] ^= ah[3];
|
---|
853 | }
|
---|
854 | return z;
|
---|
855 | };
|
---|
856 |
|
---|
857 | /**
|
---|
858 | * A continuing version of the GHASH algorithm that operates on a single
|
---|
859 | * block. The hash block, last hash value (Ym) and the new block to hash
|
---|
860 | * are given.
|
---|
861 | *
|
---|
862 | * @param h the hash block.
|
---|
863 | * @param y the previous value for Ym, use [0, 0, 0, 0] for a new hash.
|
---|
864 | * @param x the block to hash.
|
---|
865 | *
|
---|
866 | * @return the hashed value (Ym).
|
---|
867 | */
|
---|
868 | modes.gcm.prototype.ghash = function(h, y, x) {
|
---|
869 | y[0] ^= x[0];
|
---|
870 | y[1] ^= x[1];
|
---|
871 | y[2] ^= x[2];
|
---|
872 | y[3] ^= x[3];
|
---|
873 | return this.tableMultiply(y);
|
---|
874 | //return this.multiply(y, h);
|
---|
875 | };
|
---|
876 |
|
---|
877 | /**
|
---|
878 | * Precomputes a table for multiplying against the hash subkey. This
|
---|
879 | * mechanism provides a substantial speed increase over multiplication
|
---|
880 | * performed without a table. The table-based multiplication this table is
|
---|
881 | * for solves X * H by multiplying each component of X by H and then
|
---|
882 | * composing the results together using XOR.
|
---|
883 | *
|
---|
884 | * This function can be used to generate tables with different bit sizes
|
---|
885 | * for the components, however, this implementation assumes there are
|
---|
886 | * 32 components of X (which is a 16 byte vector), therefore each component
|
---|
887 | * takes 4-bits (so the table is constructed with bits=4).
|
---|
888 | *
|
---|
889 | * @param h the hash subkey.
|
---|
890 | * @param bits the bit size for a component.
|
---|
891 | */
|
---|
892 | modes.gcm.prototype.generateHashTable = function(h, bits) {
|
---|
893 | // TODO: There are further optimizations that would use only the
|
---|
894 | // first table M_0 (or some variant) along with a remainder table;
|
---|
895 | // this can be explored in the future
|
---|
896 | var multiplier = 8 / bits;
|
---|
897 | var perInt = 4 * multiplier;
|
---|
898 | var size = 16 * multiplier;
|
---|
899 | var m = new Array(size);
|
---|
900 | for(var i = 0; i < size; ++i) {
|
---|
901 | var tmp = [0, 0, 0, 0];
|
---|
902 | var idx = (i / perInt) | 0;
|
---|
903 | var shft = ((perInt - 1 - (i % perInt)) * bits);
|
---|
904 | tmp[idx] = (1 << (bits - 1)) << shft;
|
---|
905 | m[i] = this.generateSubHashTable(this.multiply(tmp, h), bits);
|
---|
906 | }
|
---|
907 | return m;
|
---|
908 | };
|
---|
909 |
|
---|
910 | /**
|
---|
911 | * Generates a table for multiplying against the hash subkey for one
|
---|
912 | * particular component (out of all possible component values).
|
---|
913 | *
|
---|
914 | * @param mid the pre-multiplied value for the middle key of the table.
|
---|
915 | * @param bits the bit size for a component.
|
---|
916 | */
|
---|
917 | modes.gcm.prototype.generateSubHashTable = function(mid, bits) {
|
---|
918 | // compute the table quickly by minimizing the number of
|
---|
919 | // POW operations -- they only need to be performed for powers of 2,
|
---|
920 | // all other entries can be composed from those powers using XOR
|
---|
921 | var size = 1 << bits;
|
---|
922 | var half = size >>> 1;
|
---|
923 | var m = new Array(size);
|
---|
924 | m[half] = mid.slice(0);
|
---|
925 | var i = half >>> 1;
|
---|
926 | while(i > 0) {
|
---|
927 | // raise m0[2 * i] and store in m0[i]
|
---|
928 | this.pow(m[2 * i], m[i] = []);
|
---|
929 | i >>= 1;
|
---|
930 | }
|
---|
931 | i = 2;
|
---|
932 | while(i < half) {
|
---|
933 | for(var j = 1; j < i; ++j) {
|
---|
934 | var m_i = m[i];
|
---|
935 | var m_j = m[j];
|
---|
936 | m[i + j] = [
|
---|
937 | m_i[0] ^ m_j[0],
|
---|
938 | m_i[1] ^ m_j[1],
|
---|
939 | m_i[2] ^ m_j[2],
|
---|
940 | m_i[3] ^ m_j[3]
|
---|
941 | ];
|
---|
942 | }
|
---|
943 | i *= 2;
|
---|
944 | }
|
---|
945 | m[0] = [0, 0, 0, 0];
|
---|
946 | /* Note: We could avoid storing these by doing composition during multiply
|
---|
947 | calculate top half using composition by speed is preferred. */
|
---|
948 | for(i = half + 1; i < size; ++i) {
|
---|
949 | var c = m[i ^ half];
|
---|
950 | m[i] = [mid[0] ^ c[0], mid[1] ^ c[1], mid[2] ^ c[2], mid[3] ^ c[3]];
|
---|
951 | }
|
---|
952 | return m;
|
---|
953 | };
|
---|
954 |
|
---|
955 | /** Utility functions */
|
---|
956 |
|
---|
957 | function transformIV(iv, blockSize) {
|
---|
958 | if(typeof iv === 'string') {
|
---|
959 | // convert iv string into byte buffer
|
---|
960 | iv = forge.util.createBuffer(iv);
|
---|
961 | }
|
---|
962 |
|
---|
963 | if(forge.util.isArray(iv) && iv.length > 4) {
|
---|
964 | // convert iv byte array into byte buffer
|
---|
965 | var tmp = iv;
|
---|
966 | iv = forge.util.createBuffer();
|
---|
967 | for(var i = 0; i < tmp.length; ++i) {
|
---|
968 | iv.putByte(tmp[i]);
|
---|
969 | }
|
---|
970 | }
|
---|
971 |
|
---|
972 | if(iv.length() < blockSize) {
|
---|
973 | throw new Error(
|
---|
974 | 'Invalid IV length; got ' + iv.length() +
|
---|
975 | ' bytes and expected ' + blockSize + ' bytes.');
|
---|
976 | }
|
---|
977 |
|
---|
978 | if(!forge.util.isArray(iv)) {
|
---|
979 | // convert iv byte buffer into 32-bit integer array
|
---|
980 | var ints = [];
|
---|
981 | var blocks = blockSize / 4;
|
---|
982 | for(var i = 0; i < blocks; ++i) {
|
---|
983 | ints.push(iv.getInt32());
|
---|
984 | }
|
---|
985 | iv = ints;
|
---|
986 | }
|
---|
987 |
|
---|
988 | return iv;
|
---|
989 | }
|
---|
990 |
|
---|
991 | function inc32(block) {
|
---|
992 | // increment last 32 bits of block only
|
---|
993 | block[block.length - 1] = (block[block.length - 1] + 1) & 0xFFFFFFFF;
|
---|
994 | }
|
---|
995 |
|
---|
996 | function from64To32(num) {
|
---|
997 | // convert 64-bit number to two BE Int32s
|
---|
998 | return [(num / 0x100000000) | 0, num & 0xFFFFFFFF];
|
---|
999 | }
|
---|