[6a3a178] | 1 | /**
|
---|
| 2 | * Javascript implementation of basic RSA algorithms.
|
---|
| 3 | *
|
---|
| 4 | * @author Dave Longley
|
---|
| 5 | *
|
---|
| 6 | * Copyright (c) 2010-2014 Digital Bazaar, Inc.
|
---|
| 7 | *
|
---|
| 8 | * The only algorithm currently supported for PKI is RSA.
|
---|
| 9 | *
|
---|
| 10 | * An RSA key is often stored in ASN.1 DER format. The SubjectPublicKeyInfo
|
---|
| 11 | * ASN.1 structure is composed of an algorithm of type AlgorithmIdentifier
|
---|
| 12 | * and a subjectPublicKey of type bit string.
|
---|
| 13 | *
|
---|
| 14 | * The AlgorithmIdentifier contains an Object Identifier (OID) and parameters
|
---|
| 15 | * for the algorithm, if any. In the case of RSA, there aren't any.
|
---|
| 16 | *
|
---|
| 17 | * SubjectPublicKeyInfo ::= SEQUENCE {
|
---|
| 18 | * algorithm AlgorithmIdentifier,
|
---|
| 19 | * subjectPublicKey BIT STRING
|
---|
| 20 | * }
|
---|
| 21 | *
|
---|
| 22 | * AlgorithmIdentifer ::= SEQUENCE {
|
---|
| 23 | * algorithm OBJECT IDENTIFIER,
|
---|
| 24 | * parameters ANY DEFINED BY algorithm OPTIONAL
|
---|
| 25 | * }
|
---|
| 26 | *
|
---|
| 27 | * For an RSA public key, the subjectPublicKey is:
|
---|
| 28 | *
|
---|
| 29 | * RSAPublicKey ::= SEQUENCE {
|
---|
| 30 | * modulus INTEGER, -- n
|
---|
| 31 | * publicExponent INTEGER -- e
|
---|
| 32 | * }
|
---|
| 33 | *
|
---|
| 34 | * PrivateKeyInfo ::= SEQUENCE {
|
---|
| 35 | * version Version,
|
---|
| 36 | * privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
|
---|
| 37 | * privateKey PrivateKey,
|
---|
| 38 | * attributes [0] IMPLICIT Attributes OPTIONAL
|
---|
| 39 | * }
|
---|
| 40 | *
|
---|
| 41 | * Version ::= INTEGER
|
---|
| 42 | * PrivateKeyAlgorithmIdentifier ::= AlgorithmIdentifier
|
---|
| 43 | * PrivateKey ::= OCTET STRING
|
---|
| 44 | * Attributes ::= SET OF Attribute
|
---|
| 45 | *
|
---|
| 46 | * An RSA private key as the following structure:
|
---|
| 47 | *
|
---|
| 48 | * RSAPrivateKey ::= SEQUENCE {
|
---|
| 49 | * version Version,
|
---|
| 50 | * modulus INTEGER, -- n
|
---|
| 51 | * publicExponent INTEGER, -- e
|
---|
| 52 | * privateExponent INTEGER, -- d
|
---|
| 53 | * prime1 INTEGER, -- p
|
---|
| 54 | * prime2 INTEGER, -- q
|
---|
| 55 | * exponent1 INTEGER, -- d mod (p-1)
|
---|
| 56 | * exponent2 INTEGER, -- d mod (q-1)
|
---|
| 57 | * coefficient INTEGER -- (inverse of q) mod p
|
---|
| 58 | * }
|
---|
| 59 | *
|
---|
| 60 | * Version ::= INTEGER
|
---|
| 61 | *
|
---|
| 62 | * The OID for the RSA key algorithm is: 1.2.840.113549.1.1.1
|
---|
| 63 | */
|
---|
| 64 | var forge = require('./forge');
|
---|
| 65 | require('./asn1');
|
---|
| 66 | require('./jsbn');
|
---|
| 67 | require('./oids');
|
---|
| 68 | require('./pkcs1');
|
---|
| 69 | require('./prime');
|
---|
| 70 | require('./random');
|
---|
| 71 | require('./util');
|
---|
| 72 |
|
---|
| 73 | if(typeof BigInteger === 'undefined') {
|
---|
| 74 | var BigInteger = forge.jsbn.BigInteger;
|
---|
| 75 | }
|
---|
| 76 |
|
---|
| 77 | var _crypto = forge.util.isNodejs ? require('crypto') : null;
|
---|
| 78 |
|
---|
| 79 | // shortcut for asn.1 API
|
---|
| 80 | var asn1 = forge.asn1;
|
---|
| 81 |
|
---|
| 82 | // shortcut for util API
|
---|
| 83 | var util = forge.util;
|
---|
| 84 |
|
---|
| 85 | /*
|
---|
| 86 | * RSA encryption and decryption, see RFC 2313.
|
---|
| 87 | */
|
---|
| 88 | forge.pki = forge.pki || {};
|
---|
| 89 | module.exports = forge.pki.rsa = forge.rsa = forge.rsa || {};
|
---|
| 90 | var pki = forge.pki;
|
---|
| 91 |
|
---|
| 92 | // for finding primes, which are 30k+i for i = 1, 7, 11, 13, 17, 19, 23, 29
|
---|
| 93 | var GCD_30_DELTA = [6, 4, 2, 4, 2, 4, 6, 2];
|
---|
| 94 |
|
---|
| 95 | // validator for a PrivateKeyInfo structure
|
---|
| 96 | var privateKeyValidator = {
|
---|
| 97 | // PrivateKeyInfo
|
---|
| 98 | name: 'PrivateKeyInfo',
|
---|
| 99 | tagClass: asn1.Class.UNIVERSAL,
|
---|
| 100 | type: asn1.Type.SEQUENCE,
|
---|
| 101 | constructed: true,
|
---|
| 102 | value: [{
|
---|
| 103 | // Version (INTEGER)
|
---|
| 104 | name: 'PrivateKeyInfo.version',
|
---|
| 105 | tagClass: asn1.Class.UNIVERSAL,
|
---|
| 106 | type: asn1.Type.INTEGER,
|
---|
| 107 | constructed: false,
|
---|
| 108 | capture: 'privateKeyVersion'
|
---|
| 109 | }, {
|
---|
| 110 | // privateKeyAlgorithm
|
---|
| 111 | name: 'PrivateKeyInfo.privateKeyAlgorithm',
|
---|
| 112 | tagClass: asn1.Class.UNIVERSAL,
|
---|
| 113 | type: asn1.Type.SEQUENCE,
|
---|
| 114 | constructed: true,
|
---|
| 115 | value: [{
|
---|
| 116 | name: 'AlgorithmIdentifier.algorithm',
|
---|
| 117 | tagClass: asn1.Class.UNIVERSAL,
|
---|
| 118 | type: asn1.Type.OID,
|
---|
| 119 | constructed: false,
|
---|
| 120 | capture: 'privateKeyOid'
|
---|
| 121 | }]
|
---|
| 122 | }, {
|
---|
| 123 | // PrivateKey
|
---|
| 124 | name: 'PrivateKeyInfo',
|
---|
| 125 | tagClass: asn1.Class.UNIVERSAL,
|
---|
| 126 | type: asn1.Type.OCTETSTRING,
|
---|
| 127 | constructed: false,
|
---|
| 128 | capture: 'privateKey'
|
---|
| 129 | }]
|
---|
| 130 | };
|
---|
| 131 |
|
---|
| 132 | // validator for an RSA private key
|
---|
| 133 | var rsaPrivateKeyValidator = {
|
---|
| 134 | // RSAPrivateKey
|
---|
| 135 | name: 'RSAPrivateKey',
|
---|
| 136 | tagClass: asn1.Class.UNIVERSAL,
|
---|
| 137 | type: asn1.Type.SEQUENCE,
|
---|
| 138 | constructed: true,
|
---|
| 139 | value: [{
|
---|
| 140 | // Version (INTEGER)
|
---|
| 141 | name: 'RSAPrivateKey.version',
|
---|
| 142 | tagClass: asn1.Class.UNIVERSAL,
|
---|
| 143 | type: asn1.Type.INTEGER,
|
---|
| 144 | constructed: false,
|
---|
| 145 | capture: 'privateKeyVersion'
|
---|
| 146 | }, {
|
---|
| 147 | // modulus (n)
|
---|
| 148 | name: 'RSAPrivateKey.modulus',
|
---|
| 149 | tagClass: asn1.Class.UNIVERSAL,
|
---|
| 150 | type: asn1.Type.INTEGER,
|
---|
| 151 | constructed: false,
|
---|
| 152 | capture: 'privateKeyModulus'
|
---|
| 153 | }, {
|
---|
| 154 | // publicExponent (e)
|
---|
| 155 | name: 'RSAPrivateKey.publicExponent',
|
---|
| 156 | tagClass: asn1.Class.UNIVERSAL,
|
---|
| 157 | type: asn1.Type.INTEGER,
|
---|
| 158 | constructed: false,
|
---|
| 159 | capture: 'privateKeyPublicExponent'
|
---|
| 160 | }, {
|
---|
| 161 | // privateExponent (d)
|
---|
| 162 | name: 'RSAPrivateKey.privateExponent',
|
---|
| 163 | tagClass: asn1.Class.UNIVERSAL,
|
---|
| 164 | type: asn1.Type.INTEGER,
|
---|
| 165 | constructed: false,
|
---|
| 166 | capture: 'privateKeyPrivateExponent'
|
---|
| 167 | }, {
|
---|
| 168 | // prime1 (p)
|
---|
| 169 | name: 'RSAPrivateKey.prime1',
|
---|
| 170 | tagClass: asn1.Class.UNIVERSAL,
|
---|
| 171 | type: asn1.Type.INTEGER,
|
---|
| 172 | constructed: false,
|
---|
| 173 | capture: 'privateKeyPrime1'
|
---|
| 174 | }, {
|
---|
| 175 | // prime2 (q)
|
---|
| 176 | name: 'RSAPrivateKey.prime2',
|
---|
| 177 | tagClass: asn1.Class.UNIVERSAL,
|
---|
| 178 | type: asn1.Type.INTEGER,
|
---|
| 179 | constructed: false,
|
---|
| 180 | capture: 'privateKeyPrime2'
|
---|
| 181 | }, {
|
---|
| 182 | // exponent1 (d mod (p-1))
|
---|
| 183 | name: 'RSAPrivateKey.exponent1',
|
---|
| 184 | tagClass: asn1.Class.UNIVERSAL,
|
---|
| 185 | type: asn1.Type.INTEGER,
|
---|
| 186 | constructed: false,
|
---|
| 187 | capture: 'privateKeyExponent1'
|
---|
| 188 | }, {
|
---|
| 189 | // exponent2 (d mod (q-1))
|
---|
| 190 | name: 'RSAPrivateKey.exponent2',
|
---|
| 191 | tagClass: asn1.Class.UNIVERSAL,
|
---|
| 192 | type: asn1.Type.INTEGER,
|
---|
| 193 | constructed: false,
|
---|
| 194 | capture: 'privateKeyExponent2'
|
---|
| 195 | }, {
|
---|
| 196 | // coefficient ((inverse of q) mod p)
|
---|
| 197 | name: 'RSAPrivateKey.coefficient',
|
---|
| 198 | tagClass: asn1.Class.UNIVERSAL,
|
---|
| 199 | type: asn1.Type.INTEGER,
|
---|
| 200 | constructed: false,
|
---|
| 201 | capture: 'privateKeyCoefficient'
|
---|
| 202 | }]
|
---|
| 203 | };
|
---|
| 204 |
|
---|
| 205 | // validator for an RSA public key
|
---|
| 206 | var rsaPublicKeyValidator = {
|
---|
| 207 | // RSAPublicKey
|
---|
| 208 | name: 'RSAPublicKey',
|
---|
| 209 | tagClass: asn1.Class.UNIVERSAL,
|
---|
| 210 | type: asn1.Type.SEQUENCE,
|
---|
| 211 | constructed: true,
|
---|
| 212 | value: [{
|
---|
| 213 | // modulus (n)
|
---|
| 214 | name: 'RSAPublicKey.modulus',
|
---|
| 215 | tagClass: asn1.Class.UNIVERSAL,
|
---|
| 216 | type: asn1.Type.INTEGER,
|
---|
| 217 | constructed: false,
|
---|
| 218 | capture: 'publicKeyModulus'
|
---|
| 219 | }, {
|
---|
| 220 | // publicExponent (e)
|
---|
| 221 | name: 'RSAPublicKey.exponent',
|
---|
| 222 | tagClass: asn1.Class.UNIVERSAL,
|
---|
| 223 | type: asn1.Type.INTEGER,
|
---|
| 224 | constructed: false,
|
---|
| 225 | capture: 'publicKeyExponent'
|
---|
| 226 | }]
|
---|
| 227 | };
|
---|
| 228 |
|
---|
| 229 | // validator for an SubjectPublicKeyInfo structure
|
---|
| 230 | // Note: Currently only works with an RSA public key
|
---|
| 231 | var publicKeyValidator = forge.pki.rsa.publicKeyValidator = {
|
---|
| 232 | name: 'SubjectPublicKeyInfo',
|
---|
| 233 | tagClass: asn1.Class.UNIVERSAL,
|
---|
| 234 | type: asn1.Type.SEQUENCE,
|
---|
| 235 | constructed: true,
|
---|
| 236 | captureAsn1: 'subjectPublicKeyInfo',
|
---|
| 237 | value: [{
|
---|
| 238 | name: 'SubjectPublicKeyInfo.AlgorithmIdentifier',
|
---|
| 239 | tagClass: asn1.Class.UNIVERSAL,
|
---|
| 240 | type: asn1.Type.SEQUENCE,
|
---|
| 241 | constructed: true,
|
---|
| 242 | value: [{
|
---|
| 243 | name: 'AlgorithmIdentifier.algorithm',
|
---|
| 244 | tagClass: asn1.Class.UNIVERSAL,
|
---|
| 245 | type: asn1.Type.OID,
|
---|
| 246 | constructed: false,
|
---|
| 247 | capture: 'publicKeyOid'
|
---|
| 248 | }]
|
---|
| 249 | }, {
|
---|
| 250 | // subjectPublicKey
|
---|
| 251 | name: 'SubjectPublicKeyInfo.subjectPublicKey',
|
---|
| 252 | tagClass: asn1.Class.UNIVERSAL,
|
---|
| 253 | type: asn1.Type.BITSTRING,
|
---|
| 254 | constructed: false,
|
---|
| 255 | value: [{
|
---|
| 256 | // RSAPublicKey
|
---|
| 257 | name: 'SubjectPublicKeyInfo.subjectPublicKey.RSAPublicKey',
|
---|
| 258 | tagClass: asn1.Class.UNIVERSAL,
|
---|
| 259 | type: asn1.Type.SEQUENCE,
|
---|
| 260 | constructed: true,
|
---|
| 261 | optional: true,
|
---|
| 262 | captureAsn1: 'rsaPublicKey'
|
---|
| 263 | }]
|
---|
| 264 | }]
|
---|
| 265 | };
|
---|
| 266 |
|
---|
| 267 | /**
|
---|
| 268 | * Wrap digest in DigestInfo object.
|
---|
| 269 | *
|
---|
| 270 | * This function implements EMSA-PKCS1-v1_5-ENCODE as per RFC 3447.
|
---|
| 271 | *
|
---|
| 272 | * DigestInfo ::= SEQUENCE {
|
---|
| 273 | * digestAlgorithm DigestAlgorithmIdentifier,
|
---|
| 274 | * digest Digest
|
---|
| 275 | * }
|
---|
| 276 | *
|
---|
| 277 | * DigestAlgorithmIdentifier ::= AlgorithmIdentifier
|
---|
| 278 | * Digest ::= OCTET STRING
|
---|
| 279 | *
|
---|
| 280 | * @param md the message digest object with the hash to sign.
|
---|
| 281 | *
|
---|
| 282 | * @return the encoded message (ready for RSA encrytion)
|
---|
| 283 | */
|
---|
| 284 | var emsaPkcs1v15encode = function(md) {
|
---|
| 285 | // get the oid for the algorithm
|
---|
| 286 | var oid;
|
---|
| 287 | if(md.algorithm in pki.oids) {
|
---|
| 288 | oid = pki.oids[md.algorithm];
|
---|
| 289 | } else {
|
---|
| 290 | var error = new Error('Unknown message digest algorithm.');
|
---|
| 291 | error.algorithm = md.algorithm;
|
---|
| 292 | throw error;
|
---|
| 293 | }
|
---|
| 294 | var oidBytes = asn1.oidToDer(oid).getBytes();
|
---|
| 295 |
|
---|
| 296 | // create the digest info
|
---|
| 297 | var digestInfo = asn1.create(
|
---|
| 298 | asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, []);
|
---|
| 299 | var digestAlgorithm = asn1.create(
|
---|
| 300 | asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, []);
|
---|
| 301 | digestAlgorithm.value.push(asn1.create(
|
---|
| 302 | asn1.Class.UNIVERSAL, asn1.Type.OID, false, oidBytes));
|
---|
| 303 | digestAlgorithm.value.push(asn1.create(
|
---|
| 304 | asn1.Class.UNIVERSAL, asn1.Type.NULL, false, ''));
|
---|
| 305 | var digest = asn1.create(
|
---|
| 306 | asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING,
|
---|
| 307 | false, md.digest().getBytes());
|
---|
| 308 | digestInfo.value.push(digestAlgorithm);
|
---|
| 309 | digestInfo.value.push(digest);
|
---|
| 310 |
|
---|
| 311 | // encode digest info
|
---|
| 312 | return asn1.toDer(digestInfo).getBytes();
|
---|
| 313 | };
|
---|
| 314 |
|
---|
| 315 | /**
|
---|
| 316 | * Performs x^c mod n (RSA encryption or decryption operation).
|
---|
| 317 | *
|
---|
| 318 | * @param x the number to raise and mod.
|
---|
| 319 | * @param key the key to use.
|
---|
| 320 | * @param pub true if the key is public, false if private.
|
---|
| 321 | *
|
---|
| 322 | * @return the result of x^c mod n.
|
---|
| 323 | */
|
---|
| 324 | var _modPow = function(x, key, pub) {
|
---|
| 325 | if(pub) {
|
---|
| 326 | return x.modPow(key.e, key.n);
|
---|
| 327 | }
|
---|
| 328 |
|
---|
| 329 | if(!key.p || !key.q) {
|
---|
| 330 | // allow calculation without CRT params (slow)
|
---|
| 331 | return x.modPow(key.d, key.n);
|
---|
| 332 | }
|
---|
| 333 |
|
---|
| 334 | // pre-compute dP, dQ, and qInv if necessary
|
---|
| 335 | if(!key.dP) {
|
---|
| 336 | key.dP = key.d.mod(key.p.subtract(BigInteger.ONE));
|
---|
| 337 | }
|
---|
| 338 | if(!key.dQ) {
|
---|
| 339 | key.dQ = key.d.mod(key.q.subtract(BigInteger.ONE));
|
---|
| 340 | }
|
---|
| 341 | if(!key.qInv) {
|
---|
| 342 | key.qInv = key.q.modInverse(key.p);
|
---|
| 343 | }
|
---|
| 344 |
|
---|
| 345 | /* Chinese remainder theorem (CRT) states:
|
---|
| 346 |
|
---|
| 347 | Suppose n1, n2, ..., nk are positive integers which are pairwise
|
---|
| 348 | coprime (n1 and n2 have no common factors other than 1). For any
|
---|
| 349 | integers x1, x2, ..., xk there exists an integer x solving the
|
---|
| 350 | system of simultaneous congruences (where ~= means modularly
|
---|
| 351 | congruent so a ~= b mod n means a mod n = b mod n):
|
---|
| 352 |
|
---|
| 353 | x ~= x1 mod n1
|
---|
| 354 | x ~= x2 mod n2
|
---|
| 355 | ...
|
---|
| 356 | x ~= xk mod nk
|
---|
| 357 |
|
---|
| 358 | This system of congruences has a single simultaneous solution x
|
---|
| 359 | between 0 and n - 1. Furthermore, each xk solution and x itself
|
---|
| 360 | is congruent modulo the product n = n1*n2*...*nk.
|
---|
| 361 | So x1 mod n = x2 mod n = xk mod n = x mod n.
|
---|
| 362 |
|
---|
| 363 | The single simultaneous solution x can be solved with the following
|
---|
| 364 | equation:
|
---|
| 365 |
|
---|
| 366 | x = sum(xi*ri*si) mod n where ri = n/ni and si = ri^-1 mod ni.
|
---|
| 367 |
|
---|
| 368 | Where x is less than n, xi = x mod ni.
|
---|
| 369 |
|
---|
| 370 | For RSA we are only concerned with k = 2. The modulus n = pq, where
|
---|
| 371 | p and q are coprime. The RSA decryption algorithm is:
|
---|
| 372 |
|
---|
| 373 | y = x^d mod n
|
---|
| 374 |
|
---|
| 375 | Given the above:
|
---|
| 376 |
|
---|
| 377 | x1 = x^d mod p
|
---|
| 378 | r1 = n/p = q
|
---|
| 379 | s1 = q^-1 mod p
|
---|
| 380 | x2 = x^d mod q
|
---|
| 381 | r2 = n/q = p
|
---|
| 382 | s2 = p^-1 mod q
|
---|
| 383 |
|
---|
| 384 | So y = (x1r1s1 + x2r2s2) mod n
|
---|
| 385 | = ((x^d mod p)q(q^-1 mod p) + (x^d mod q)p(p^-1 mod q)) mod n
|
---|
| 386 |
|
---|
| 387 | According to Fermat's Little Theorem, if the modulus P is prime,
|
---|
| 388 | for any integer A not evenly divisible by P, A^(P-1) ~= 1 mod P.
|
---|
| 389 | Since A is not divisible by P it follows that if:
|
---|
| 390 | N ~= M mod (P - 1), then A^N mod P = A^M mod P. Therefore:
|
---|
| 391 |
|
---|
| 392 | A^N mod P = A^(M mod (P - 1)) mod P. (The latter takes less effort
|
---|
| 393 | to calculate). In order to calculate x^d mod p more quickly the
|
---|
| 394 | exponent d mod (p - 1) is stored in the RSA private key (the same
|
---|
| 395 | is done for x^d mod q). These values are referred to as dP and dQ
|
---|
| 396 | respectively. Therefore we now have:
|
---|
| 397 |
|
---|
| 398 | y = ((x^dP mod p)q(q^-1 mod p) + (x^dQ mod q)p(p^-1 mod q)) mod n
|
---|
| 399 |
|
---|
| 400 | Since we'll be reducing x^dP by modulo p (same for q) we can also
|
---|
| 401 | reduce x by p (and q respectively) before hand. Therefore, let
|
---|
| 402 |
|
---|
| 403 | xp = ((x mod p)^dP mod p), and
|
---|
| 404 | xq = ((x mod q)^dQ mod q), yielding:
|
---|
| 405 |
|
---|
| 406 | y = (xp*q*(q^-1 mod p) + xq*p*(p^-1 mod q)) mod n
|
---|
| 407 |
|
---|
| 408 | This can be further reduced to a simple algorithm that only
|
---|
| 409 | requires 1 inverse (the q inverse is used) to be used and stored.
|
---|
| 410 | The algorithm is called Garner's algorithm. If qInv is the
|
---|
| 411 | inverse of q, we simply calculate:
|
---|
| 412 |
|
---|
| 413 | y = (qInv*(xp - xq) mod p) * q + xq
|
---|
| 414 |
|
---|
| 415 | However, there are two further complications. First, we need to
|
---|
| 416 | ensure that xp > xq to prevent signed BigIntegers from being used
|
---|
| 417 | so we add p until this is true (since we will be mod'ing with
|
---|
| 418 | p anyway). Then, there is a known timing attack on algorithms
|
---|
| 419 | using the CRT. To mitigate this risk, "cryptographic blinding"
|
---|
| 420 | should be used. This requires simply generating a random number r
|
---|
| 421 | between 0 and n-1 and its inverse and multiplying x by r^e before
|
---|
| 422 | calculating y and then multiplying y by r^-1 afterwards. Note that
|
---|
| 423 | r must be coprime with n (gcd(r, n) === 1) in order to have an
|
---|
| 424 | inverse.
|
---|
| 425 | */
|
---|
| 426 |
|
---|
| 427 | // cryptographic blinding
|
---|
| 428 | var r;
|
---|
| 429 | do {
|
---|
| 430 | r = new BigInteger(
|
---|
| 431 | forge.util.bytesToHex(forge.random.getBytes(key.n.bitLength() / 8)),
|
---|
| 432 | 16);
|
---|
| 433 | } while(r.compareTo(key.n) >= 0 || !r.gcd(key.n).equals(BigInteger.ONE));
|
---|
| 434 | x = x.multiply(r.modPow(key.e, key.n)).mod(key.n);
|
---|
| 435 |
|
---|
| 436 | // calculate xp and xq
|
---|
| 437 | var xp = x.mod(key.p).modPow(key.dP, key.p);
|
---|
| 438 | var xq = x.mod(key.q).modPow(key.dQ, key.q);
|
---|
| 439 |
|
---|
| 440 | // xp must be larger than xq to avoid signed bit usage
|
---|
| 441 | while(xp.compareTo(xq) < 0) {
|
---|
| 442 | xp = xp.add(key.p);
|
---|
| 443 | }
|
---|
| 444 |
|
---|
| 445 | // do last step
|
---|
| 446 | var y = xp.subtract(xq)
|
---|
| 447 | .multiply(key.qInv).mod(key.p)
|
---|
| 448 | .multiply(key.q).add(xq);
|
---|
| 449 |
|
---|
| 450 | // remove effect of random for cryptographic blinding
|
---|
| 451 | y = y.multiply(r.modInverse(key.n)).mod(key.n);
|
---|
| 452 |
|
---|
| 453 | return y;
|
---|
| 454 | };
|
---|
| 455 |
|
---|
| 456 | /**
|
---|
| 457 | * NOTE: THIS METHOD IS DEPRECATED, use 'sign' on a private key object or
|
---|
| 458 | * 'encrypt' on a public key object instead.
|
---|
| 459 | *
|
---|
| 460 | * Performs RSA encryption.
|
---|
| 461 | *
|
---|
| 462 | * The parameter bt controls whether to put padding bytes before the
|
---|
| 463 | * message passed in. Set bt to either true or false to disable padding
|
---|
| 464 | * completely (in order to handle e.g. EMSA-PSS encoding seperately before),
|
---|
| 465 | * signaling whether the encryption operation is a public key operation
|
---|
| 466 | * (i.e. encrypting data) or not, i.e. private key operation (data signing).
|
---|
| 467 | *
|
---|
| 468 | * For PKCS#1 v1.5 padding pass in the block type to use, i.e. either 0x01
|
---|
| 469 | * (for signing) or 0x02 (for encryption). The key operation mode (private
|
---|
| 470 | * or public) is derived from this flag in that case).
|
---|
| 471 | *
|
---|
| 472 | * @param m the message to encrypt as a byte string.
|
---|
| 473 | * @param key the RSA key to use.
|
---|
| 474 | * @param bt for PKCS#1 v1.5 padding, the block type to use
|
---|
| 475 | * (0x01 for private key, 0x02 for public),
|
---|
| 476 | * to disable padding: true = public key, false = private key.
|
---|
| 477 | *
|
---|
| 478 | * @return the encrypted bytes as a string.
|
---|
| 479 | */
|
---|
| 480 | pki.rsa.encrypt = function(m, key, bt) {
|
---|
| 481 | var pub = bt;
|
---|
| 482 | var eb;
|
---|
| 483 |
|
---|
| 484 | // get the length of the modulus in bytes
|
---|
| 485 | var k = Math.ceil(key.n.bitLength() / 8);
|
---|
| 486 |
|
---|
| 487 | if(bt !== false && bt !== true) {
|
---|
| 488 | // legacy, default to PKCS#1 v1.5 padding
|
---|
| 489 | pub = (bt === 0x02);
|
---|
| 490 | eb = _encodePkcs1_v1_5(m, key, bt);
|
---|
| 491 | } else {
|
---|
| 492 | eb = forge.util.createBuffer();
|
---|
| 493 | eb.putBytes(m);
|
---|
| 494 | }
|
---|
| 495 |
|
---|
| 496 | // load encryption block as big integer 'x'
|
---|
| 497 | // FIXME: hex conversion inefficient, get BigInteger w/byte strings
|
---|
| 498 | var x = new BigInteger(eb.toHex(), 16);
|
---|
| 499 |
|
---|
| 500 | // do RSA encryption
|
---|
| 501 | var y = _modPow(x, key, pub);
|
---|
| 502 |
|
---|
| 503 | // convert y into the encrypted data byte string, if y is shorter in
|
---|
| 504 | // bytes than k, then prepend zero bytes to fill up ed
|
---|
| 505 | // FIXME: hex conversion inefficient, get BigInteger w/byte strings
|
---|
| 506 | var yhex = y.toString(16);
|
---|
| 507 | var ed = forge.util.createBuffer();
|
---|
| 508 | var zeros = k - Math.ceil(yhex.length / 2);
|
---|
| 509 | while(zeros > 0) {
|
---|
| 510 | ed.putByte(0x00);
|
---|
| 511 | --zeros;
|
---|
| 512 | }
|
---|
| 513 | ed.putBytes(forge.util.hexToBytes(yhex));
|
---|
| 514 | return ed.getBytes();
|
---|
| 515 | };
|
---|
| 516 |
|
---|
| 517 | /**
|
---|
| 518 | * NOTE: THIS METHOD IS DEPRECATED, use 'decrypt' on a private key object or
|
---|
| 519 | * 'verify' on a public key object instead.
|
---|
| 520 | *
|
---|
| 521 | * Performs RSA decryption.
|
---|
| 522 | *
|
---|
| 523 | * The parameter ml controls whether to apply PKCS#1 v1.5 padding
|
---|
| 524 | * or not. Set ml = false to disable padding removal completely
|
---|
| 525 | * (in order to handle e.g. EMSA-PSS later on) and simply pass back
|
---|
| 526 | * the RSA encryption block.
|
---|
| 527 | *
|
---|
| 528 | * @param ed the encrypted data to decrypt in as a byte string.
|
---|
| 529 | * @param key the RSA key to use.
|
---|
| 530 | * @param pub true for a public key operation, false for private.
|
---|
| 531 | * @param ml the message length, if known, false to disable padding.
|
---|
| 532 | *
|
---|
| 533 | * @return the decrypted message as a byte string.
|
---|
| 534 | */
|
---|
| 535 | pki.rsa.decrypt = function(ed, key, pub, ml) {
|
---|
| 536 | // get the length of the modulus in bytes
|
---|
| 537 | var k = Math.ceil(key.n.bitLength() / 8);
|
---|
| 538 |
|
---|
| 539 | // error if the length of the encrypted data ED is not k
|
---|
| 540 | if(ed.length !== k) {
|
---|
| 541 | var error = new Error('Encrypted message length is invalid.');
|
---|
| 542 | error.length = ed.length;
|
---|
| 543 | error.expected = k;
|
---|
| 544 | throw error;
|
---|
| 545 | }
|
---|
| 546 |
|
---|
| 547 | // convert encrypted data into a big integer
|
---|
| 548 | // FIXME: hex conversion inefficient, get BigInteger w/byte strings
|
---|
| 549 | var y = new BigInteger(forge.util.createBuffer(ed).toHex(), 16);
|
---|
| 550 |
|
---|
| 551 | // y must be less than the modulus or it wasn't the result of
|
---|
| 552 | // a previous mod operation (encryption) using that modulus
|
---|
| 553 | if(y.compareTo(key.n) >= 0) {
|
---|
| 554 | throw new Error('Encrypted message is invalid.');
|
---|
| 555 | }
|
---|
| 556 |
|
---|
| 557 | // do RSA decryption
|
---|
| 558 | var x = _modPow(y, key, pub);
|
---|
| 559 |
|
---|
| 560 | // create the encryption block, if x is shorter in bytes than k, then
|
---|
| 561 | // prepend zero bytes to fill up eb
|
---|
| 562 | // FIXME: hex conversion inefficient, get BigInteger w/byte strings
|
---|
| 563 | var xhex = x.toString(16);
|
---|
| 564 | var eb = forge.util.createBuffer();
|
---|
| 565 | var zeros = k - Math.ceil(xhex.length / 2);
|
---|
| 566 | while(zeros > 0) {
|
---|
| 567 | eb.putByte(0x00);
|
---|
| 568 | --zeros;
|
---|
| 569 | }
|
---|
| 570 | eb.putBytes(forge.util.hexToBytes(xhex));
|
---|
| 571 |
|
---|
| 572 | if(ml !== false) {
|
---|
| 573 | // legacy, default to PKCS#1 v1.5 padding
|
---|
| 574 | return _decodePkcs1_v1_5(eb.getBytes(), key, pub);
|
---|
| 575 | }
|
---|
| 576 |
|
---|
| 577 | // return message
|
---|
| 578 | return eb.getBytes();
|
---|
| 579 | };
|
---|
| 580 |
|
---|
| 581 | /**
|
---|
| 582 | * Creates an RSA key-pair generation state object. It is used to allow
|
---|
| 583 | * key-generation to be performed in steps. It also allows for a UI to
|
---|
| 584 | * display progress updates.
|
---|
| 585 | *
|
---|
| 586 | * @param bits the size for the private key in bits, defaults to 2048.
|
---|
| 587 | * @param e the public exponent to use, defaults to 65537 (0x10001).
|
---|
| 588 | * @param [options] the options to use.
|
---|
| 589 | * prng a custom crypto-secure pseudo-random number generator to use,
|
---|
| 590 | * that must define "getBytesSync".
|
---|
| 591 | * algorithm the algorithm to use (default: 'PRIMEINC').
|
---|
| 592 | *
|
---|
| 593 | * @return the state object to use to generate the key-pair.
|
---|
| 594 | */
|
---|
| 595 | pki.rsa.createKeyPairGenerationState = function(bits, e, options) {
|
---|
| 596 | // TODO: migrate step-based prime generation code to forge.prime
|
---|
| 597 |
|
---|
| 598 | // set default bits
|
---|
| 599 | if(typeof(bits) === 'string') {
|
---|
| 600 | bits = parseInt(bits, 10);
|
---|
| 601 | }
|
---|
| 602 | bits = bits || 2048;
|
---|
| 603 |
|
---|
| 604 | // create prng with api that matches BigInteger secure random
|
---|
| 605 | options = options || {};
|
---|
| 606 | var prng = options.prng || forge.random;
|
---|
| 607 | var rng = {
|
---|
| 608 | // x is an array to fill with bytes
|
---|
| 609 | nextBytes: function(x) {
|
---|
| 610 | var b = prng.getBytesSync(x.length);
|
---|
| 611 | for(var i = 0; i < x.length; ++i) {
|
---|
| 612 | x[i] = b.charCodeAt(i);
|
---|
| 613 | }
|
---|
| 614 | }
|
---|
| 615 | };
|
---|
| 616 |
|
---|
| 617 | var algorithm = options.algorithm || 'PRIMEINC';
|
---|
| 618 |
|
---|
| 619 | // create PRIMEINC algorithm state
|
---|
| 620 | var rval;
|
---|
| 621 | if(algorithm === 'PRIMEINC') {
|
---|
| 622 | rval = {
|
---|
| 623 | algorithm: algorithm,
|
---|
| 624 | state: 0,
|
---|
| 625 | bits: bits,
|
---|
| 626 | rng: rng,
|
---|
| 627 | eInt: e || 65537,
|
---|
| 628 | e: new BigInteger(null),
|
---|
| 629 | p: null,
|
---|
| 630 | q: null,
|
---|
| 631 | qBits: bits >> 1,
|
---|
| 632 | pBits: bits - (bits >> 1),
|
---|
| 633 | pqState: 0,
|
---|
| 634 | num: null,
|
---|
| 635 | keys: null
|
---|
| 636 | };
|
---|
| 637 | rval.e.fromInt(rval.eInt);
|
---|
| 638 | } else {
|
---|
| 639 | throw new Error('Invalid key generation algorithm: ' + algorithm);
|
---|
| 640 | }
|
---|
| 641 |
|
---|
| 642 | return rval;
|
---|
| 643 | };
|
---|
| 644 |
|
---|
| 645 | /**
|
---|
| 646 | * Attempts to runs the key-generation algorithm for at most n seconds
|
---|
| 647 | * (approximately) using the given state. When key-generation has completed,
|
---|
| 648 | * the keys will be stored in state.keys.
|
---|
| 649 | *
|
---|
| 650 | * To use this function to update a UI while generating a key or to prevent
|
---|
| 651 | * causing browser lockups/warnings, set "n" to a value other than 0. A
|
---|
| 652 | * simple pattern for generating a key and showing a progress indicator is:
|
---|
| 653 | *
|
---|
| 654 | * var state = pki.rsa.createKeyPairGenerationState(2048);
|
---|
| 655 | * var step = function() {
|
---|
| 656 | * // step key-generation, run algorithm for 100 ms, repeat
|
---|
| 657 | * if(!forge.pki.rsa.stepKeyPairGenerationState(state, 100)) {
|
---|
| 658 | * setTimeout(step, 1);
|
---|
| 659 | * } else {
|
---|
| 660 | * // key-generation complete
|
---|
| 661 | * // TODO: turn off progress indicator here
|
---|
| 662 | * // TODO: use the generated key-pair in "state.keys"
|
---|
| 663 | * }
|
---|
| 664 | * };
|
---|
| 665 | * // TODO: turn on progress indicator here
|
---|
| 666 | * setTimeout(step, 0);
|
---|
| 667 | *
|
---|
| 668 | * @param state the state to use.
|
---|
| 669 | * @param n the maximum number of milliseconds to run the algorithm for, 0
|
---|
| 670 | * to run the algorithm to completion.
|
---|
| 671 | *
|
---|
| 672 | * @return true if the key-generation completed, false if not.
|
---|
| 673 | */
|
---|
| 674 | pki.rsa.stepKeyPairGenerationState = function(state, n) {
|
---|
| 675 | // set default algorithm if not set
|
---|
| 676 | if(!('algorithm' in state)) {
|
---|
| 677 | state.algorithm = 'PRIMEINC';
|
---|
| 678 | }
|
---|
| 679 |
|
---|
| 680 | // TODO: migrate step-based prime generation code to forge.prime
|
---|
| 681 | // TODO: abstract as PRIMEINC algorithm
|
---|
| 682 |
|
---|
| 683 | // do key generation (based on Tom Wu's rsa.js, see jsbn.js license)
|
---|
| 684 | // with some minor optimizations and designed to run in steps
|
---|
| 685 |
|
---|
| 686 | // local state vars
|
---|
| 687 | var THIRTY = new BigInteger(null);
|
---|
| 688 | THIRTY.fromInt(30);
|
---|
| 689 | var deltaIdx = 0;
|
---|
| 690 | var op_or = function(x, y) {return x | y;};
|
---|
| 691 |
|
---|
| 692 | // keep stepping until time limit is reached or done
|
---|
| 693 | var t1 = +new Date();
|
---|
| 694 | var t2;
|
---|
| 695 | var total = 0;
|
---|
| 696 | while(state.keys === null && (n <= 0 || total < n)) {
|
---|
| 697 | // generate p or q
|
---|
| 698 | if(state.state === 0) {
|
---|
| 699 | /* Note: All primes are of the form:
|
---|
| 700 |
|
---|
| 701 | 30k+i, for i < 30 and gcd(30, i)=1, where there are 8 values for i
|
---|
| 702 |
|
---|
| 703 | When we generate a random number, we always align it at 30k + 1. Each
|
---|
| 704 | time the number is determined not to be prime we add to get to the
|
---|
| 705 | next 'i', eg: if the number was at 30k + 1 we add 6. */
|
---|
| 706 | var bits = (state.p === null) ? state.pBits : state.qBits;
|
---|
| 707 | var bits1 = bits - 1;
|
---|
| 708 |
|
---|
| 709 | // get a random number
|
---|
| 710 | if(state.pqState === 0) {
|
---|
| 711 | state.num = new BigInteger(bits, state.rng);
|
---|
| 712 | // force MSB set
|
---|
| 713 | if(!state.num.testBit(bits1)) {
|
---|
| 714 | state.num.bitwiseTo(
|
---|
| 715 | BigInteger.ONE.shiftLeft(bits1), op_or, state.num);
|
---|
| 716 | }
|
---|
| 717 | // align number on 30k+1 boundary
|
---|
| 718 | state.num.dAddOffset(31 - state.num.mod(THIRTY).byteValue(), 0);
|
---|
| 719 | deltaIdx = 0;
|
---|
| 720 |
|
---|
| 721 | ++state.pqState;
|
---|
| 722 | } else if(state.pqState === 1) {
|
---|
| 723 | // try to make the number a prime
|
---|
| 724 | if(state.num.bitLength() > bits) {
|
---|
| 725 | // overflow, try again
|
---|
| 726 | state.pqState = 0;
|
---|
| 727 | // do primality test
|
---|
| 728 | } else if(state.num.isProbablePrime(
|
---|
| 729 | _getMillerRabinTests(state.num.bitLength()))) {
|
---|
| 730 | ++state.pqState;
|
---|
| 731 | } else {
|
---|
| 732 | // get next potential prime
|
---|
| 733 | state.num.dAddOffset(GCD_30_DELTA[deltaIdx++ % 8], 0);
|
---|
| 734 | }
|
---|
| 735 | } else if(state.pqState === 2) {
|
---|
| 736 | // ensure number is coprime with e
|
---|
| 737 | state.pqState =
|
---|
| 738 | (state.num.subtract(BigInteger.ONE).gcd(state.e)
|
---|
| 739 | .compareTo(BigInteger.ONE) === 0) ? 3 : 0;
|
---|
| 740 | } else if(state.pqState === 3) {
|
---|
| 741 | // store p or q
|
---|
| 742 | state.pqState = 0;
|
---|
| 743 | if(state.p === null) {
|
---|
| 744 | state.p = state.num;
|
---|
| 745 | } else {
|
---|
| 746 | state.q = state.num;
|
---|
| 747 | }
|
---|
| 748 |
|
---|
| 749 | // advance state if both p and q are ready
|
---|
| 750 | if(state.p !== null && state.q !== null) {
|
---|
| 751 | ++state.state;
|
---|
| 752 | }
|
---|
| 753 | state.num = null;
|
---|
| 754 | }
|
---|
| 755 | } else if(state.state === 1) {
|
---|
| 756 | // ensure p is larger than q (swap them if not)
|
---|
| 757 | if(state.p.compareTo(state.q) < 0) {
|
---|
| 758 | state.num = state.p;
|
---|
| 759 | state.p = state.q;
|
---|
| 760 | state.q = state.num;
|
---|
| 761 | }
|
---|
| 762 | ++state.state;
|
---|
| 763 | } else if(state.state === 2) {
|
---|
| 764 | // compute phi: (p - 1)(q - 1) (Euler's totient function)
|
---|
| 765 | state.p1 = state.p.subtract(BigInteger.ONE);
|
---|
| 766 | state.q1 = state.q.subtract(BigInteger.ONE);
|
---|
| 767 | state.phi = state.p1.multiply(state.q1);
|
---|
| 768 | ++state.state;
|
---|
| 769 | } else if(state.state === 3) {
|
---|
| 770 | // ensure e and phi are coprime
|
---|
| 771 | if(state.phi.gcd(state.e).compareTo(BigInteger.ONE) === 0) {
|
---|
| 772 | // phi and e are coprime, advance
|
---|
| 773 | ++state.state;
|
---|
| 774 | } else {
|
---|
| 775 | // phi and e aren't coprime, so generate a new p and q
|
---|
| 776 | state.p = null;
|
---|
| 777 | state.q = null;
|
---|
| 778 | state.state = 0;
|
---|
| 779 | }
|
---|
| 780 | } else if(state.state === 4) {
|
---|
| 781 | // create n, ensure n is has the right number of bits
|
---|
| 782 | state.n = state.p.multiply(state.q);
|
---|
| 783 |
|
---|
| 784 | // ensure n is right number of bits
|
---|
| 785 | if(state.n.bitLength() === state.bits) {
|
---|
| 786 | // success, advance
|
---|
| 787 | ++state.state;
|
---|
| 788 | } else {
|
---|
| 789 | // failed, get new q
|
---|
| 790 | state.q = null;
|
---|
| 791 | state.state = 0;
|
---|
| 792 | }
|
---|
| 793 | } else if(state.state === 5) {
|
---|
| 794 | // set keys
|
---|
| 795 | var d = state.e.modInverse(state.phi);
|
---|
| 796 | state.keys = {
|
---|
| 797 | privateKey: pki.rsa.setPrivateKey(
|
---|
| 798 | state.n, state.e, d, state.p, state.q,
|
---|
| 799 | d.mod(state.p1), d.mod(state.q1),
|
---|
| 800 | state.q.modInverse(state.p)),
|
---|
| 801 | publicKey: pki.rsa.setPublicKey(state.n, state.e)
|
---|
| 802 | };
|
---|
| 803 | }
|
---|
| 804 |
|
---|
| 805 | // update timing
|
---|
| 806 | t2 = +new Date();
|
---|
| 807 | total += t2 - t1;
|
---|
| 808 | t1 = t2;
|
---|
| 809 | }
|
---|
| 810 |
|
---|
| 811 | return state.keys !== null;
|
---|
| 812 | };
|
---|
| 813 |
|
---|
| 814 | /**
|
---|
| 815 | * Generates an RSA public-private key pair in a single call.
|
---|
| 816 | *
|
---|
| 817 | * To generate a key-pair in steps (to allow for progress updates and to
|
---|
| 818 | * prevent blocking or warnings in slow browsers) then use the key-pair
|
---|
| 819 | * generation state functions.
|
---|
| 820 | *
|
---|
| 821 | * To generate a key-pair asynchronously (either through web-workers, if
|
---|
| 822 | * available, or by breaking up the work on the main thread), pass a
|
---|
| 823 | * callback function.
|
---|
| 824 | *
|
---|
| 825 | * @param [bits] the size for the private key in bits, defaults to 2048.
|
---|
| 826 | * @param [e] the public exponent to use, defaults to 65537.
|
---|
| 827 | * @param [options] options for key-pair generation, if given then 'bits'
|
---|
| 828 | * and 'e' must *not* be given:
|
---|
| 829 | * bits the size for the private key in bits, (default: 2048).
|
---|
| 830 | * e the public exponent to use, (default: 65537 (0x10001)).
|
---|
| 831 | * workerScript the worker script URL.
|
---|
| 832 | * workers the number of web workers (if supported) to use,
|
---|
| 833 | * (default: 2).
|
---|
| 834 | * workLoad the size of the work load, ie: number of possible prime
|
---|
| 835 | * numbers for each web worker to check per work assignment,
|
---|
| 836 | * (default: 100).
|
---|
| 837 | * prng a custom crypto-secure pseudo-random number generator to use,
|
---|
| 838 | * that must define "getBytesSync". Disables use of native APIs.
|
---|
| 839 | * algorithm the algorithm to use (default: 'PRIMEINC').
|
---|
| 840 | * @param [callback(err, keypair)] called once the operation completes.
|
---|
| 841 | *
|
---|
| 842 | * @return an object with privateKey and publicKey properties.
|
---|
| 843 | */
|
---|
| 844 | pki.rsa.generateKeyPair = function(bits, e, options, callback) {
|
---|
| 845 | // (bits), (options), (callback)
|
---|
| 846 | if(arguments.length === 1) {
|
---|
| 847 | if(typeof bits === 'object') {
|
---|
| 848 | options = bits;
|
---|
| 849 | bits = undefined;
|
---|
| 850 | } else if(typeof bits === 'function') {
|
---|
| 851 | callback = bits;
|
---|
| 852 | bits = undefined;
|
---|
| 853 | }
|
---|
| 854 | } else if(arguments.length === 2) {
|
---|
| 855 | // (bits, e), (bits, options), (bits, callback), (options, callback)
|
---|
| 856 | if(typeof bits === 'number') {
|
---|
| 857 | if(typeof e === 'function') {
|
---|
| 858 | callback = e;
|
---|
| 859 | e = undefined;
|
---|
| 860 | } else if(typeof e !== 'number') {
|
---|
| 861 | options = e;
|
---|
| 862 | e = undefined;
|
---|
| 863 | }
|
---|
| 864 | } else {
|
---|
| 865 | options = bits;
|
---|
| 866 | callback = e;
|
---|
| 867 | bits = undefined;
|
---|
| 868 | e = undefined;
|
---|
| 869 | }
|
---|
| 870 | } else if(arguments.length === 3) {
|
---|
| 871 | // (bits, e, options), (bits, e, callback), (bits, options, callback)
|
---|
| 872 | if(typeof e === 'number') {
|
---|
| 873 | if(typeof options === 'function') {
|
---|
| 874 | callback = options;
|
---|
| 875 | options = undefined;
|
---|
| 876 | }
|
---|
| 877 | } else {
|
---|
| 878 | callback = options;
|
---|
| 879 | options = e;
|
---|
| 880 | e = undefined;
|
---|
| 881 | }
|
---|
| 882 | }
|
---|
| 883 | options = options || {};
|
---|
| 884 | if(bits === undefined) {
|
---|
| 885 | bits = options.bits || 2048;
|
---|
| 886 | }
|
---|
| 887 | if(e === undefined) {
|
---|
| 888 | e = options.e || 0x10001;
|
---|
| 889 | }
|
---|
| 890 |
|
---|
| 891 | // use native code if permitted, available, and parameters are acceptable
|
---|
| 892 | if(!forge.options.usePureJavaScript && !options.prng &&
|
---|
| 893 | bits >= 256 && bits <= 16384 && (e === 0x10001 || e === 3)) {
|
---|
| 894 | if(callback) {
|
---|
| 895 | // try native async
|
---|
| 896 | if(_detectNodeCrypto('generateKeyPair')) {
|
---|
| 897 | return _crypto.generateKeyPair('rsa', {
|
---|
| 898 | modulusLength: bits,
|
---|
| 899 | publicExponent: e,
|
---|
| 900 | publicKeyEncoding: {
|
---|
| 901 | type: 'spki',
|
---|
| 902 | format: 'pem'
|
---|
| 903 | },
|
---|
| 904 | privateKeyEncoding: {
|
---|
| 905 | type: 'pkcs8',
|
---|
| 906 | format: 'pem'
|
---|
| 907 | }
|
---|
| 908 | }, function(err, pub, priv) {
|
---|
| 909 | if(err) {
|
---|
| 910 | return callback(err);
|
---|
| 911 | }
|
---|
| 912 | callback(null, {
|
---|
| 913 | privateKey: pki.privateKeyFromPem(priv),
|
---|
| 914 | publicKey: pki.publicKeyFromPem(pub)
|
---|
| 915 | });
|
---|
| 916 | });
|
---|
| 917 | }
|
---|
| 918 | if(_detectSubtleCrypto('generateKey') &&
|
---|
| 919 | _detectSubtleCrypto('exportKey')) {
|
---|
| 920 | // use standard native generateKey
|
---|
| 921 | return util.globalScope.crypto.subtle.generateKey({
|
---|
| 922 | name: 'RSASSA-PKCS1-v1_5',
|
---|
| 923 | modulusLength: bits,
|
---|
| 924 | publicExponent: _intToUint8Array(e),
|
---|
| 925 | hash: {name: 'SHA-256'}
|
---|
| 926 | }, true /* key can be exported*/, ['sign', 'verify'])
|
---|
| 927 | .then(function(pair) {
|
---|
| 928 | return util.globalScope.crypto.subtle.exportKey(
|
---|
| 929 | 'pkcs8', pair.privateKey);
|
---|
| 930 | // avoiding catch(function(err) {...}) to support IE <= 8
|
---|
| 931 | }).then(undefined, function(err) {
|
---|
| 932 | callback(err);
|
---|
| 933 | }).then(function(pkcs8) {
|
---|
| 934 | if(pkcs8) {
|
---|
| 935 | var privateKey = pki.privateKeyFromAsn1(
|
---|
| 936 | asn1.fromDer(forge.util.createBuffer(pkcs8)));
|
---|
| 937 | callback(null, {
|
---|
| 938 | privateKey: privateKey,
|
---|
| 939 | publicKey: pki.setRsaPublicKey(privateKey.n, privateKey.e)
|
---|
| 940 | });
|
---|
| 941 | }
|
---|
| 942 | });
|
---|
| 943 | }
|
---|
| 944 | if(_detectSubtleMsCrypto('generateKey') &&
|
---|
| 945 | _detectSubtleMsCrypto('exportKey')) {
|
---|
| 946 | var genOp = util.globalScope.msCrypto.subtle.generateKey({
|
---|
| 947 | name: 'RSASSA-PKCS1-v1_5',
|
---|
| 948 | modulusLength: bits,
|
---|
| 949 | publicExponent: _intToUint8Array(e),
|
---|
| 950 | hash: {name: 'SHA-256'}
|
---|
| 951 | }, true /* key can be exported*/, ['sign', 'verify']);
|
---|
| 952 | genOp.oncomplete = function(e) {
|
---|
| 953 | var pair = e.target.result;
|
---|
| 954 | var exportOp = util.globalScope.msCrypto.subtle.exportKey(
|
---|
| 955 | 'pkcs8', pair.privateKey);
|
---|
| 956 | exportOp.oncomplete = function(e) {
|
---|
| 957 | var pkcs8 = e.target.result;
|
---|
| 958 | var privateKey = pki.privateKeyFromAsn1(
|
---|
| 959 | asn1.fromDer(forge.util.createBuffer(pkcs8)));
|
---|
| 960 | callback(null, {
|
---|
| 961 | privateKey: privateKey,
|
---|
| 962 | publicKey: pki.setRsaPublicKey(privateKey.n, privateKey.e)
|
---|
| 963 | });
|
---|
| 964 | };
|
---|
| 965 | exportOp.onerror = function(err) {
|
---|
| 966 | callback(err);
|
---|
| 967 | };
|
---|
| 968 | };
|
---|
| 969 | genOp.onerror = function(err) {
|
---|
| 970 | callback(err);
|
---|
| 971 | };
|
---|
| 972 | return;
|
---|
| 973 | }
|
---|
| 974 | } else {
|
---|
| 975 | // try native sync
|
---|
| 976 | if(_detectNodeCrypto('generateKeyPairSync')) {
|
---|
| 977 | var keypair = _crypto.generateKeyPairSync('rsa', {
|
---|
| 978 | modulusLength: bits,
|
---|
| 979 | publicExponent: e,
|
---|
| 980 | publicKeyEncoding: {
|
---|
| 981 | type: 'spki',
|
---|
| 982 | format: 'pem'
|
---|
| 983 | },
|
---|
| 984 | privateKeyEncoding: {
|
---|
| 985 | type: 'pkcs8',
|
---|
| 986 | format: 'pem'
|
---|
| 987 | }
|
---|
| 988 | });
|
---|
| 989 | return {
|
---|
| 990 | privateKey: pki.privateKeyFromPem(keypair.privateKey),
|
---|
| 991 | publicKey: pki.publicKeyFromPem(keypair.publicKey)
|
---|
| 992 | };
|
---|
| 993 | }
|
---|
| 994 | }
|
---|
| 995 | }
|
---|
| 996 |
|
---|
| 997 | // use JavaScript implementation
|
---|
| 998 | var state = pki.rsa.createKeyPairGenerationState(bits, e, options);
|
---|
| 999 | if(!callback) {
|
---|
| 1000 | pki.rsa.stepKeyPairGenerationState(state, 0);
|
---|
| 1001 | return state.keys;
|
---|
| 1002 | }
|
---|
| 1003 | _generateKeyPair(state, options, callback);
|
---|
| 1004 | };
|
---|
| 1005 |
|
---|
| 1006 | /**
|
---|
| 1007 | * Sets an RSA public key from BigIntegers modulus and exponent.
|
---|
| 1008 | *
|
---|
| 1009 | * @param n the modulus.
|
---|
| 1010 | * @param e the exponent.
|
---|
| 1011 | *
|
---|
| 1012 | * @return the public key.
|
---|
| 1013 | */
|
---|
| 1014 | pki.setRsaPublicKey = pki.rsa.setPublicKey = function(n, e) {
|
---|
| 1015 | var key = {
|
---|
| 1016 | n: n,
|
---|
| 1017 | e: e
|
---|
| 1018 | };
|
---|
| 1019 |
|
---|
| 1020 | /**
|
---|
| 1021 | * Encrypts the given data with this public key. Newer applications
|
---|
| 1022 | * should use the 'RSA-OAEP' decryption scheme, 'RSAES-PKCS1-V1_5' is for
|
---|
| 1023 | * legacy applications.
|
---|
| 1024 | *
|
---|
| 1025 | * @param data the byte string to encrypt.
|
---|
| 1026 | * @param scheme the encryption scheme to use:
|
---|
| 1027 | * 'RSAES-PKCS1-V1_5' (default),
|
---|
| 1028 | * 'RSA-OAEP',
|
---|
| 1029 | * 'RAW', 'NONE', or null to perform raw RSA encryption,
|
---|
| 1030 | * an object with an 'encode' property set to a function
|
---|
| 1031 | * with the signature 'function(data, key)' that returns
|
---|
| 1032 | * a binary-encoded string representing the encoded data.
|
---|
| 1033 | * @param schemeOptions any scheme-specific options.
|
---|
| 1034 | *
|
---|
| 1035 | * @return the encrypted byte string.
|
---|
| 1036 | */
|
---|
| 1037 | key.encrypt = function(data, scheme, schemeOptions) {
|
---|
| 1038 | if(typeof scheme === 'string') {
|
---|
| 1039 | scheme = scheme.toUpperCase();
|
---|
| 1040 | } else if(scheme === undefined) {
|
---|
| 1041 | scheme = 'RSAES-PKCS1-V1_5';
|
---|
| 1042 | }
|
---|
| 1043 |
|
---|
| 1044 | if(scheme === 'RSAES-PKCS1-V1_5') {
|
---|
| 1045 | scheme = {
|
---|
| 1046 | encode: function(m, key, pub) {
|
---|
| 1047 | return _encodePkcs1_v1_5(m, key, 0x02).getBytes();
|
---|
| 1048 | }
|
---|
| 1049 | };
|
---|
| 1050 | } else if(scheme === 'RSA-OAEP' || scheme === 'RSAES-OAEP') {
|
---|
| 1051 | scheme = {
|
---|
| 1052 | encode: function(m, key) {
|
---|
| 1053 | return forge.pkcs1.encode_rsa_oaep(key, m, schemeOptions);
|
---|
| 1054 | }
|
---|
| 1055 | };
|
---|
| 1056 | } else if(['RAW', 'NONE', 'NULL', null].indexOf(scheme) !== -1) {
|
---|
| 1057 | scheme = {encode: function(e) {return e;}};
|
---|
| 1058 | } else if(typeof scheme === 'string') {
|
---|
| 1059 | throw new Error('Unsupported encryption scheme: "' + scheme + '".');
|
---|
| 1060 | }
|
---|
| 1061 |
|
---|
| 1062 | // do scheme-based encoding then rsa encryption
|
---|
| 1063 | var e = scheme.encode(data, key, true);
|
---|
| 1064 | return pki.rsa.encrypt(e, key, true);
|
---|
| 1065 | };
|
---|
| 1066 |
|
---|
| 1067 | /**
|
---|
| 1068 | * Verifies the given signature against the given digest.
|
---|
| 1069 | *
|
---|
| 1070 | * PKCS#1 supports multiple (currently two) signature schemes:
|
---|
| 1071 | * RSASSA-PKCS1-V1_5 and RSASSA-PSS.
|
---|
| 1072 | *
|
---|
| 1073 | * By default this implementation uses the "old scheme", i.e.
|
---|
| 1074 | * RSASSA-PKCS1-V1_5, in which case once RSA-decrypted, the
|
---|
| 1075 | * signature is an OCTET STRING that holds a DigestInfo.
|
---|
| 1076 | *
|
---|
| 1077 | * DigestInfo ::= SEQUENCE {
|
---|
| 1078 | * digestAlgorithm DigestAlgorithmIdentifier,
|
---|
| 1079 | * digest Digest
|
---|
| 1080 | * }
|
---|
| 1081 | * DigestAlgorithmIdentifier ::= AlgorithmIdentifier
|
---|
| 1082 | * Digest ::= OCTET STRING
|
---|
| 1083 | *
|
---|
| 1084 | * To perform PSS signature verification, provide an instance
|
---|
| 1085 | * of Forge PSS object as the scheme parameter.
|
---|
| 1086 | *
|
---|
| 1087 | * @param digest the message digest hash to compare against the signature,
|
---|
| 1088 | * as a binary-encoded string.
|
---|
| 1089 | * @param signature the signature to verify, as a binary-encoded string.
|
---|
| 1090 | * @param scheme signature verification scheme to use:
|
---|
| 1091 | * 'RSASSA-PKCS1-V1_5' or undefined for RSASSA PKCS#1 v1.5,
|
---|
| 1092 | * a Forge PSS object for RSASSA-PSS,
|
---|
| 1093 | * 'NONE' or null for none, DigestInfo will not be expected, but
|
---|
| 1094 | * PKCS#1 v1.5 padding will still be used.
|
---|
| 1095 | *
|
---|
| 1096 | * @return true if the signature was verified, false if not.
|
---|
| 1097 | */
|
---|
| 1098 | key.verify = function(digest, signature, scheme) {
|
---|
| 1099 | if(typeof scheme === 'string') {
|
---|
| 1100 | scheme = scheme.toUpperCase();
|
---|
| 1101 | } else if(scheme === undefined) {
|
---|
| 1102 | scheme = 'RSASSA-PKCS1-V1_5';
|
---|
| 1103 | }
|
---|
| 1104 |
|
---|
| 1105 | if(scheme === 'RSASSA-PKCS1-V1_5') {
|
---|
| 1106 | scheme = {
|
---|
| 1107 | verify: function(digest, d) {
|
---|
| 1108 | // remove padding
|
---|
| 1109 | d = _decodePkcs1_v1_5(d, key, true);
|
---|
| 1110 | // d is ASN.1 BER-encoded DigestInfo
|
---|
| 1111 | var obj = asn1.fromDer(d);
|
---|
| 1112 | // compare the given digest to the decrypted one
|
---|
| 1113 | return digest === obj.value[1].value;
|
---|
| 1114 | }
|
---|
| 1115 | };
|
---|
| 1116 | } else if(scheme === 'NONE' || scheme === 'NULL' || scheme === null) {
|
---|
| 1117 | scheme = {
|
---|
| 1118 | verify: function(digest, d) {
|
---|
| 1119 | // remove padding
|
---|
| 1120 | d = _decodePkcs1_v1_5(d, key, true);
|
---|
| 1121 | return digest === d;
|
---|
| 1122 | }
|
---|
| 1123 | };
|
---|
| 1124 | }
|
---|
| 1125 |
|
---|
| 1126 | // do rsa decryption w/o any decoding, then verify -- which does decoding
|
---|
| 1127 | var d = pki.rsa.decrypt(signature, key, true, false);
|
---|
| 1128 | return scheme.verify(digest, d, key.n.bitLength());
|
---|
| 1129 | };
|
---|
| 1130 |
|
---|
| 1131 | return key;
|
---|
| 1132 | };
|
---|
| 1133 |
|
---|
| 1134 | /**
|
---|
| 1135 | * Sets an RSA private key from BigIntegers modulus, exponent, primes,
|
---|
| 1136 | * prime exponents, and modular multiplicative inverse.
|
---|
| 1137 | *
|
---|
| 1138 | * @param n the modulus.
|
---|
| 1139 | * @param e the public exponent.
|
---|
| 1140 | * @param d the private exponent ((inverse of e) mod n).
|
---|
| 1141 | * @param p the first prime.
|
---|
| 1142 | * @param q the second prime.
|
---|
| 1143 | * @param dP exponent1 (d mod (p-1)).
|
---|
| 1144 | * @param dQ exponent2 (d mod (q-1)).
|
---|
| 1145 | * @param qInv ((inverse of q) mod p)
|
---|
| 1146 | *
|
---|
| 1147 | * @return the private key.
|
---|
| 1148 | */
|
---|
| 1149 | pki.setRsaPrivateKey = pki.rsa.setPrivateKey = function(
|
---|
| 1150 | n, e, d, p, q, dP, dQ, qInv) {
|
---|
| 1151 | var key = {
|
---|
| 1152 | n: n,
|
---|
| 1153 | e: e,
|
---|
| 1154 | d: d,
|
---|
| 1155 | p: p,
|
---|
| 1156 | q: q,
|
---|
| 1157 | dP: dP,
|
---|
| 1158 | dQ: dQ,
|
---|
| 1159 | qInv: qInv
|
---|
| 1160 | };
|
---|
| 1161 |
|
---|
| 1162 | /**
|
---|
| 1163 | * Decrypts the given data with this private key. The decryption scheme
|
---|
| 1164 | * must match the one used to encrypt the data.
|
---|
| 1165 | *
|
---|
| 1166 | * @param data the byte string to decrypt.
|
---|
| 1167 | * @param scheme the decryption scheme to use:
|
---|
| 1168 | * 'RSAES-PKCS1-V1_5' (default),
|
---|
| 1169 | * 'RSA-OAEP',
|
---|
| 1170 | * 'RAW', 'NONE', or null to perform raw RSA decryption.
|
---|
| 1171 | * @param schemeOptions any scheme-specific options.
|
---|
| 1172 | *
|
---|
| 1173 | * @return the decrypted byte string.
|
---|
| 1174 | */
|
---|
| 1175 | key.decrypt = function(data, scheme, schemeOptions) {
|
---|
| 1176 | if(typeof scheme === 'string') {
|
---|
| 1177 | scheme = scheme.toUpperCase();
|
---|
| 1178 | } else if(scheme === undefined) {
|
---|
| 1179 | scheme = 'RSAES-PKCS1-V1_5';
|
---|
| 1180 | }
|
---|
| 1181 |
|
---|
| 1182 | // do rsa decryption w/o any decoding
|
---|
| 1183 | var d = pki.rsa.decrypt(data, key, false, false);
|
---|
| 1184 |
|
---|
| 1185 | if(scheme === 'RSAES-PKCS1-V1_5') {
|
---|
| 1186 | scheme = {decode: _decodePkcs1_v1_5};
|
---|
| 1187 | } else if(scheme === 'RSA-OAEP' || scheme === 'RSAES-OAEP') {
|
---|
| 1188 | scheme = {
|
---|
| 1189 | decode: function(d, key) {
|
---|
| 1190 | return forge.pkcs1.decode_rsa_oaep(key, d, schemeOptions);
|
---|
| 1191 | }
|
---|
| 1192 | };
|
---|
| 1193 | } else if(['RAW', 'NONE', 'NULL', null].indexOf(scheme) !== -1) {
|
---|
| 1194 | scheme = {decode: function(d) {return d;}};
|
---|
| 1195 | } else {
|
---|
| 1196 | throw new Error('Unsupported encryption scheme: "' + scheme + '".');
|
---|
| 1197 | }
|
---|
| 1198 |
|
---|
| 1199 | // decode according to scheme
|
---|
| 1200 | return scheme.decode(d, key, false);
|
---|
| 1201 | };
|
---|
| 1202 |
|
---|
| 1203 | /**
|
---|
| 1204 | * Signs the given digest, producing a signature.
|
---|
| 1205 | *
|
---|
| 1206 | * PKCS#1 supports multiple (currently two) signature schemes:
|
---|
| 1207 | * RSASSA-PKCS1-V1_5 and RSASSA-PSS.
|
---|
| 1208 | *
|
---|
| 1209 | * By default this implementation uses the "old scheme", i.e.
|
---|
| 1210 | * RSASSA-PKCS1-V1_5. In order to generate a PSS signature, provide
|
---|
| 1211 | * an instance of Forge PSS object as the scheme parameter.
|
---|
| 1212 | *
|
---|
| 1213 | * @param md the message digest object with the hash to sign.
|
---|
| 1214 | * @param scheme the signature scheme to use:
|
---|
| 1215 | * 'RSASSA-PKCS1-V1_5' or undefined for RSASSA PKCS#1 v1.5,
|
---|
| 1216 | * a Forge PSS object for RSASSA-PSS,
|
---|
| 1217 | * 'NONE' or null for none, DigestInfo will not be used but
|
---|
| 1218 | * PKCS#1 v1.5 padding will still be used.
|
---|
| 1219 | *
|
---|
| 1220 | * @return the signature as a byte string.
|
---|
| 1221 | */
|
---|
| 1222 | key.sign = function(md, scheme) {
|
---|
| 1223 | /* Note: The internal implementation of RSA operations is being
|
---|
| 1224 | transitioned away from a PKCS#1 v1.5 hard-coded scheme. Some legacy
|
---|
| 1225 | code like the use of an encoding block identifier 'bt' will eventually
|
---|
| 1226 | be removed. */
|
---|
| 1227 |
|
---|
| 1228 | // private key operation
|
---|
| 1229 | var bt = false;
|
---|
| 1230 |
|
---|
| 1231 | if(typeof scheme === 'string') {
|
---|
| 1232 | scheme = scheme.toUpperCase();
|
---|
| 1233 | }
|
---|
| 1234 |
|
---|
| 1235 | if(scheme === undefined || scheme === 'RSASSA-PKCS1-V1_5') {
|
---|
| 1236 | scheme = {encode: emsaPkcs1v15encode};
|
---|
| 1237 | bt = 0x01;
|
---|
| 1238 | } else if(scheme === 'NONE' || scheme === 'NULL' || scheme === null) {
|
---|
| 1239 | scheme = {encode: function() {return md;}};
|
---|
| 1240 | bt = 0x01;
|
---|
| 1241 | }
|
---|
| 1242 |
|
---|
| 1243 | // encode and then encrypt
|
---|
| 1244 | var d = scheme.encode(md, key.n.bitLength());
|
---|
| 1245 | return pki.rsa.encrypt(d, key, bt);
|
---|
| 1246 | };
|
---|
| 1247 |
|
---|
| 1248 | return key;
|
---|
| 1249 | };
|
---|
| 1250 |
|
---|
| 1251 | /**
|
---|
| 1252 | * Wraps an RSAPrivateKey ASN.1 object in an ASN.1 PrivateKeyInfo object.
|
---|
| 1253 | *
|
---|
| 1254 | * @param rsaKey the ASN.1 RSAPrivateKey.
|
---|
| 1255 | *
|
---|
| 1256 | * @return the ASN.1 PrivateKeyInfo.
|
---|
| 1257 | */
|
---|
| 1258 | pki.wrapRsaPrivateKey = function(rsaKey) {
|
---|
| 1259 | // PrivateKeyInfo
|
---|
| 1260 | return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
|
---|
| 1261 | // version (0)
|
---|
| 1262 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
|
---|
| 1263 | asn1.integerToDer(0).getBytes()),
|
---|
| 1264 | // privateKeyAlgorithm
|
---|
| 1265 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
|
---|
| 1266 | asn1.create(
|
---|
| 1267 | asn1.Class.UNIVERSAL, asn1.Type.OID, false,
|
---|
| 1268 | asn1.oidToDer(pki.oids.rsaEncryption).getBytes()),
|
---|
| 1269 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '')
|
---|
| 1270 | ]),
|
---|
| 1271 | // PrivateKey
|
---|
| 1272 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING, false,
|
---|
| 1273 | asn1.toDer(rsaKey).getBytes())
|
---|
| 1274 | ]);
|
---|
| 1275 | };
|
---|
| 1276 |
|
---|
| 1277 | /**
|
---|
| 1278 | * Converts a private key from an ASN.1 object.
|
---|
| 1279 | *
|
---|
| 1280 | * @param obj the ASN.1 representation of a PrivateKeyInfo containing an
|
---|
| 1281 | * RSAPrivateKey or an RSAPrivateKey.
|
---|
| 1282 | *
|
---|
| 1283 | * @return the private key.
|
---|
| 1284 | */
|
---|
| 1285 | pki.privateKeyFromAsn1 = function(obj) {
|
---|
| 1286 | // get PrivateKeyInfo
|
---|
| 1287 | var capture = {};
|
---|
| 1288 | var errors = [];
|
---|
| 1289 | if(asn1.validate(obj, privateKeyValidator, capture, errors)) {
|
---|
| 1290 | obj = asn1.fromDer(forge.util.createBuffer(capture.privateKey));
|
---|
| 1291 | }
|
---|
| 1292 |
|
---|
| 1293 | // get RSAPrivateKey
|
---|
| 1294 | capture = {};
|
---|
| 1295 | errors = [];
|
---|
| 1296 | if(!asn1.validate(obj, rsaPrivateKeyValidator, capture, errors)) {
|
---|
| 1297 | var error = new Error('Cannot read private key. ' +
|
---|
| 1298 | 'ASN.1 object does not contain an RSAPrivateKey.');
|
---|
| 1299 | error.errors = errors;
|
---|
| 1300 | throw error;
|
---|
| 1301 | }
|
---|
| 1302 |
|
---|
| 1303 | // Note: Version is currently ignored.
|
---|
| 1304 | // capture.privateKeyVersion
|
---|
| 1305 | // FIXME: inefficient, get a BigInteger that uses byte strings
|
---|
| 1306 | var n, e, d, p, q, dP, dQ, qInv;
|
---|
| 1307 | n = forge.util.createBuffer(capture.privateKeyModulus).toHex();
|
---|
| 1308 | e = forge.util.createBuffer(capture.privateKeyPublicExponent).toHex();
|
---|
| 1309 | d = forge.util.createBuffer(capture.privateKeyPrivateExponent).toHex();
|
---|
| 1310 | p = forge.util.createBuffer(capture.privateKeyPrime1).toHex();
|
---|
| 1311 | q = forge.util.createBuffer(capture.privateKeyPrime2).toHex();
|
---|
| 1312 | dP = forge.util.createBuffer(capture.privateKeyExponent1).toHex();
|
---|
| 1313 | dQ = forge.util.createBuffer(capture.privateKeyExponent2).toHex();
|
---|
| 1314 | qInv = forge.util.createBuffer(capture.privateKeyCoefficient).toHex();
|
---|
| 1315 |
|
---|
| 1316 | // set private key
|
---|
| 1317 | return pki.setRsaPrivateKey(
|
---|
| 1318 | new BigInteger(n, 16),
|
---|
| 1319 | new BigInteger(e, 16),
|
---|
| 1320 | new BigInteger(d, 16),
|
---|
| 1321 | new BigInteger(p, 16),
|
---|
| 1322 | new BigInteger(q, 16),
|
---|
| 1323 | new BigInteger(dP, 16),
|
---|
| 1324 | new BigInteger(dQ, 16),
|
---|
| 1325 | new BigInteger(qInv, 16));
|
---|
| 1326 | };
|
---|
| 1327 |
|
---|
| 1328 | /**
|
---|
| 1329 | * Converts a private key to an ASN.1 RSAPrivateKey.
|
---|
| 1330 | *
|
---|
| 1331 | * @param key the private key.
|
---|
| 1332 | *
|
---|
| 1333 | * @return the ASN.1 representation of an RSAPrivateKey.
|
---|
| 1334 | */
|
---|
| 1335 | pki.privateKeyToAsn1 = pki.privateKeyToRSAPrivateKey = function(key) {
|
---|
| 1336 | // RSAPrivateKey
|
---|
| 1337 | return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
|
---|
| 1338 | // version (0 = only 2 primes, 1 multiple primes)
|
---|
| 1339 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
|
---|
| 1340 | asn1.integerToDer(0).getBytes()),
|
---|
| 1341 | // modulus (n)
|
---|
| 1342 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
|
---|
| 1343 | _bnToBytes(key.n)),
|
---|
| 1344 | // publicExponent (e)
|
---|
| 1345 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
|
---|
| 1346 | _bnToBytes(key.e)),
|
---|
| 1347 | // privateExponent (d)
|
---|
| 1348 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
|
---|
| 1349 | _bnToBytes(key.d)),
|
---|
| 1350 | // privateKeyPrime1 (p)
|
---|
| 1351 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
|
---|
| 1352 | _bnToBytes(key.p)),
|
---|
| 1353 | // privateKeyPrime2 (q)
|
---|
| 1354 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
|
---|
| 1355 | _bnToBytes(key.q)),
|
---|
| 1356 | // privateKeyExponent1 (dP)
|
---|
| 1357 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
|
---|
| 1358 | _bnToBytes(key.dP)),
|
---|
| 1359 | // privateKeyExponent2 (dQ)
|
---|
| 1360 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
|
---|
| 1361 | _bnToBytes(key.dQ)),
|
---|
| 1362 | // coefficient (qInv)
|
---|
| 1363 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
|
---|
| 1364 | _bnToBytes(key.qInv))
|
---|
| 1365 | ]);
|
---|
| 1366 | };
|
---|
| 1367 |
|
---|
| 1368 | /**
|
---|
| 1369 | * Converts a public key from an ASN.1 SubjectPublicKeyInfo or RSAPublicKey.
|
---|
| 1370 | *
|
---|
| 1371 | * @param obj the asn1 representation of a SubjectPublicKeyInfo or RSAPublicKey.
|
---|
| 1372 | *
|
---|
| 1373 | * @return the public key.
|
---|
| 1374 | */
|
---|
| 1375 | pki.publicKeyFromAsn1 = function(obj) {
|
---|
| 1376 | // get SubjectPublicKeyInfo
|
---|
| 1377 | var capture = {};
|
---|
| 1378 | var errors = [];
|
---|
| 1379 | if(asn1.validate(obj, publicKeyValidator, capture, errors)) {
|
---|
| 1380 | // get oid
|
---|
| 1381 | var oid = asn1.derToOid(capture.publicKeyOid);
|
---|
| 1382 | if(oid !== pki.oids.rsaEncryption) {
|
---|
| 1383 | var error = new Error('Cannot read public key. Unknown OID.');
|
---|
| 1384 | error.oid = oid;
|
---|
| 1385 | throw error;
|
---|
| 1386 | }
|
---|
| 1387 | obj = capture.rsaPublicKey;
|
---|
| 1388 | }
|
---|
| 1389 |
|
---|
| 1390 | // get RSA params
|
---|
| 1391 | errors = [];
|
---|
| 1392 | if(!asn1.validate(obj, rsaPublicKeyValidator, capture, errors)) {
|
---|
| 1393 | var error = new Error('Cannot read public key. ' +
|
---|
| 1394 | 'ASN.1 object does not contain an RSAPublicKey.');
|
---|
| 1395 | error.errors = errors;
|
---|
| 1396 | throw error;
|
---|
| 1397 | }
|
---|
| 1398 |
|
---|
| 1399 | // FIXME: inefficient, get a BigInteger that uses byte strings
|
---|
| 1400 | var n = forge.util.createBuffer(capture.publicKeyModulus).toHex();
|
---|
| 1401 | var e = forge.util.createBuffer(capture.publicKeyExponent).toHex();
|
---|
| 1402 |
|
---|
| 1403 | // set public key
|
---|
| 1404 | return pki.setRsaPublicKey(
|
---|
| 1405 | new BigInteger(n, 16),
|
---|
| 1406 | new BigInteger(e, 16));
|
---|
| 1407 | };
|
---|
| 1408 |
|
---|
| 1409 | /**
|
---|
| 1410 | * Converts a public key to an ASN.1 SubjectPublicKeyInfo.
|
---|
| 1411 | *
|
---|
| 1412 | * @param key the public key.
|
---|
| 1413 | *
|
---|
| 1414 | * @return the asn1 representation of a SubjectPublicKeyInfo.
|
---|
| 1415 | */
|
---|
| 1416 | pki.publicKeyToAsn1 = pki.publicKeyToSubjectPublicKeyInfo = function(key) {
|
---|
| 1417 | // SubjectPublicKeyInfo
|
---|
| 1418 | return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
|
---|
| 1419 | // AlgorithmIdentifier
|
---|
| 1420 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
|
---|
| 1421 | // algorithm
|
---|
| 1422 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OID, false,
|
---|
| 1423 | asn1.oidToDer(pki.oids.rsaEncryption).getBytes()),
|
---|
| 1424 | // parameters (null)
|
---|
| 1425 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '')
|
---|
| 1426 | ]),
|
---|
| 1427 | // subjectPublicKey
|
---|
| 1428 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.BITSTRING, false, [
|
---|
| 1429 | pki.publicKeyToRSAPublicKey(key)
|
---|
| 1430 | ])
|
---|
| 1431 | ]);
|
---|
| 1432 | };
|
---|
| 1433 |
|
---|
| 1434 | /**
|
---|
| 1435 | * Converts a public key to an ASN.1 RSAPublicKey.
|
---|
| 1436 | *
|
---|
| 1437 | * @param key the public key.
|
---|
| 1438 | *
|
---|
| 1439 | * @return the asn1 representation of a RSAPublicKey.
|
---|
| 1440 | */
|
---|
| 1441 | pki.publicKeyToRSAPublicKey = function(key) {
|
---|
| 1442 | // RSAPublicKey
|
---|
| 1443 | return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
|
---|
| 1444 | // modulus (n)
|
---|
| 1445 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
|
---|
| 1446 | _bnToBytes(key.n)),
|
---|
| 1447 | // publicExponent (e)
|
---|
| 1448 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
|
---|
| 1449 | _bnToBytes(key.e))
|
---|
| 1450 | ]);
|
---|
| 1451 | };
|
---|
| 1452 |
|
---|
| 1453 | /**
|
---|
| 1454 | * Encodes a message using PKCS#1 v1.5 padding.
|
---|
| 1455 | *
|
---|
| 1456 | * @param m the message to encode.
|
---|
| 1457 | * @param key the RSA key to use.
|
---|
| 1458 | * @param bt the block type to use, i.e. either 0x01 (for signing) or 0x02
|
---|
| 1459 | * (for encryption).
|
---|
| 1460 | *
|
---|
| 1461 | * @return the padded byte buffer.
|
---|
| 1462 | */
|
---|
| 1463 | function _encodePkcs1_v1_5(m, key, bt) {
|
---|
| 1464 | var eb = forge.util.createBuffer();
|
---|
| 1465 |
|
---|
| 1466 | // get the length of the modulus in bytes
|
---|
| 1467 | var k = Math.ceil(key.n.bitLength() / 8);
|
---|
| 1468 |
|
---|
| 1469 | /* use PKCS#1 v1.5 padding */
|
---|
| 1470 | if(m.length > (k - 11)) {
|
---|
| 1471 | var error = new Error('Message is too long for PKCS#1 v1.5 padding.');
|
---|
| 1472 | error.length = m.length;
|
---|
| 1473 | error.max = k - 11;
|
---|
| 1474 | throw error;
|
---|
| 1475 | }
|
---|
| 1476 |
|
---|
| 1477 | /* A block type BT, a padding string PS, and the data D shall be
|
---|
| 1478 | formatted into an octet string EB, the encryption block:
|
---|
| 1479 |
|
---|
| 1480 | EB = 00 || BT || PS || 00 || D
|
---|
| 1481 |
|
---|
| 1482 | The block type BT shall be a single octet indicating the structure of
|
---|
| 1483 | the encryption block. For this version of the document it shall have
|
---|
| 1484 | value 00, 01, or 02. For a private-key operation, the block type
|
---|
| 1485 | shall be 00 or 01. For a public-key operation, it shall be 02.
|
---|
| 1486 |
|
---|
| 1487 | The padding string PS shall consist of k-3-||D|| octets. For block
|
---|
| 1488 | type 00, the octets shall have value 00; for block type 01, they
|
---|
| 1489 | shall have value FF; and for block type 02, they shall be
|
---|
| 1490 | pseudorandomly generated and nonzero. This makes the length of the
|
---|
| 1491 | encryption block EB equal to k. */
|
---|
| 1492 |
|
---|
| 1493 | // build the encryption block
|
---|
| 1494 | eb.putByte(0x00);
|
---|
| 1495 | eb.putByte(bt);
|
---|
| 1496 |
|
---|
| 1497 | // create the padding
|
---|
| 1498 | var padNum = k - 3 - m.length;
|
---|
| 1499 | var padByte;
|
---|
| 1500 | // private key op
|
---|
| 1501 | if(bt === 0x00 || bt === 0x01) {
|
---|
| 1502 | padByte = (bt === 0x00) ? 0x00 : 0xFF;
|
---|
| 1503 | for(var i = 0; i < padNum; ++i) {
|
---|
| 1504 | eb.putByte(padByte);
|
---|
| 1505 | }
|
---|
| 1506 | } else {
|
---|
| 1507 | // public key op
|
---|
| 1508 | // pad with random non-zero values
|
---|
| 1509 | while(padNum > 0) {
|
---|
| 1510 | var numZeros = 0;
|
---|
| 1511 | var padBytes = forge.random.getBytes(padNum);
|
---|
| 1512 | for(var i = 0; i < padNum; ++i) {
|
---|
| 1513 | padByte = padBytes.charCodeAt(i);
|
---|
| 1514 | if(padByte === 0) {
|
---|
| 1515 | ++numZeros;
|
---|
| 1516 | } else {
|
---|
| 1517 | eb.putByte(padByte);
|
---|
| 1518 | }
|
---|
| 1519 | }
|
---|
| 1520 | padNum = numZeros;
|
---|
| 1521 | }
|
---|
| 1522 | }
|
---|
| 1523 |
|
---|
| 1524 | // zero followed by message
|
---|
| 1525 | eb.putByte(0x00);
|
---|
| 1526 | eb.putBytes(m);
|
---|
| 1527 |
|
---|
| 1528 | return eb;
|
---|
| 1529 | }
|
---|
| 1530 |
|
---|
| 1531 | /**
|
---|
| 1532 | * Decodes a message using PKCS#1 v1.5 padding.
|
---|
| 1533 | *
|
---|
| 1534 | * @param em the message to decode.
|
---|
| 1535 | * @param key the RSA key to use.
|
---|
| 1536 | * @param pub true if the key is a public key, false if it is private.
|
---|
| 1537 | * @param ml the message length, if specified.
|
---|
| 1538 | *
|
---|
| 1539 | * @return the decoded bytes.
|
---|
| 1540 | */
|
---|
| 1541 | function _decodePkcs1_v1_5(em, key, pub, ml) {
|
---|
| 1542 | // get the length of the modulus in bytes
|
---|
| 1543 | var k = Math.ceil(key.n.bitLength() / 8);
|
---|
| 1544 |
|
---|
| 1545 | /* It is an error if any of the following conditions occurs:
|
---|
| 1546 |
|
---|
| 1547 | 1. The encryption block EB cannot be parsed unambiguously.
|
---|
| 1548 | 2. The padding string PS consists of fewer than eight octets
|
---|
| 1549 | or is inconsisent with the block type BT.
|
---|
| 1550 | 3. The decryption process is a public-key operation and the block
|
---|
| 1551 | type BT is not 00 or 01, or the decryption process is a
|
---|
| 1552 | private-key operation and the block type is not 02.
|
---|
| 1553 | */
|
---|
| 1554 |
|
---|
| 1555 | // parse the encryption block
|
---|
| 1556 | var eb = forge.util.createBuffer(em);
|
---|
| 1557 | var first = eb.getByte();
|
---|
| 1558 | var bt = eb.getByte();
|
---|
| 1559 | if(first !== 0x00 ||
|
---|
| 1560 | (pub && bt !== 0x00 && bt !== 0x01) ||
|
---|
| 1561 | (!pub && bt != 0x02) ||
|
---|
| 1562 | (pub && bt === 0x00 && typeof(ml) === 'undefined')) {
|
---|
| 1563 | throw new Error('Encryption block is invalid.');
|
---|
| 1564 | }
|
---|
| 1565 |
|
---|
| 1566 | var padNum = 0;
|
---|
| 1567 | if(bt === 0x00) {
|
---|
| 1568 | // check all padding bytes for 0x00
|
---|
| 1569 | padNum = k - 3 - ml;
|
---|
| 1570 | for(var i = 0; i < padNum; ++i) {
|
---|
| 1571 | if(eb.getByte() !== 0x00) {
|
---|
| 1572 | throw new Error('Encryption block is invalid.');
|
---|
| 1573 | }
|
---|
| 1574 | }
|
---|
| 1575 | } else if(bt === 0x01) {
|
---|
| 1576 | // find the first byte that isn't 0xFF, should be after all padding
|
---|
| 1577 | padNum = 0;
|
---|
| 1578 | while(eb.length() > 1) {
|
---|
| 1579 | if(eb.getByte() !== 0xFF) {
|
---|
| 1580 | --eb.read;
|
---|
| 1581 | break;
|
---|
| 1582 | }
|
---|
| 1583 | ++padNum;
|
---|
| 1584 | }
|
---|
| 1585 | } else if(bt === 0x02) {
|
---|
| 1586 | // look for 0x00 byte
|
---|
| 1587 | padNum = 0;
|
---|
| 1588 | while(eb.length() > 1) {
|
---|
| 1589 | if(eb.getByte() === 0x00) {
|
---|
| 1590 | --eb.read;
|
---|
| 1591 | break;
|
---|
| 1592 | }
|
---|
| 1593 | ++padNum;
|
---|
| 1594 | }
|
---|
| 1595 | }
|
---|
| 1596 |
|
---|
| 1597 | // zero must be 0x00 and padNum must be (k - 3 - message length)
|
---|
| 1598 | var zero = eb.getByte();
|
---|
| 1599 | if(zero !== 0x00 || padNum !== (k - 3 - eb.length())) {
|
---|
| 1600 | throw new Error('Encryption block is invalid.');
|
---|
| 1601 | }
|
---|
| 1602 |
|
---|
| 1603 | return eb.getBytes();
|
---|
| 1604 | }
|
---|
| 1605 |
|
---|
| 1606 | /**
|
---|
| 1607 | * Runs the key-generation algorithm asynchronously, either in the background
|
---|
| 1608 | * via Web Workers, or using the main thread and setImmediate.
|
---|
| 1609 | *
|
---|
| 1610 | * @param state the key-pair generation state.
|
---|
| 1611 | * @param [options] options for key-pair generation:
|
---|
| 1612 | * workerScript the worker script URL.
|
---|
| 1613 | * workers the number of web workers (if supported) to use,
|
---|
| 1614 | * (default: 2, -1 to use estimated cores minus one).
|
---|
| 1615 | * workLoad the size of the work load, ie: number of possible prime
|
---|
| 1616 | * numbers for each web worker to check per work assignment,
|
---|
| 1617 | * (default: 100).
|
---|
| 1618 | * @param callback(err, keypair) called once the operation completes.
|
---|
| 1619 | */
|
---|
| 1620 | function _generateKeyPair(state, options, callback) {
|
---|
| 1621 | if(typeof options === 'function') {
|
---|
| 1622 | callback = options;
|
---|
| 1623 | options = {};
|
---|
| 1624 | }
|
---|
| 1625 | options = options || {};
|
---|
| 1626 |
|
---|
| 1627 | var opts = {
|
---|
| 1628 | algorithm: {
|
---|
| 1629 | name: options.algorithm || 'PRIMEINC',
|
---|
| 1630 | options: {
|
---|
| 1631 | workers: options.workers || 2,
|
---|
| 1632 | workLoad: options.workLoad || 100,
|
---|
| 1633 | workerScript: options.workerScript
|
---|
| 1634 | }
|
---|
| 1635 | }
|
---|
| 1636 | };
|
---|
| 1637 | if('prng' in options) {
|
---|
| 1638 | opts.prng = options.prng;
|
---|
| 1639 | }
|
---|
| 1640 |
|
---|
| 1641 | generate();
|
---|
| 1642 |
|
---|
| 1643 | function generate() {
|
---|
| 1644 | // find p and then q (done in series to simplify)
|
---|
| 1645 | getPrime(state.pBits, function(err, num) {
|
---|
| 1646 | if(err) {
|
---|
| 1647 | return callback(err);
|
---|
| 1648 | }
|
---|
| 1649 | state.p = num;
|
---|
| 1650 | if(state.q !== null) {
|
---|
| 1651 | return finish(err, state.q);
|
---|
| 1652 | }
|
---|
| 1653 | getPrime(state.qBits, finish);
|
---|
| 1654 | });
|
---|
| 1655 | }
|
---|
| 1656 |
|
---|
| 1657 | function getPrime(bits, callback) {
|
---|
| 1658 | forge.prime.generateProbablePrime(bits, opts, callback);
|
---|
| 1659 | }
|
---|
| 1660 |
|
---|
| 1661 | function finish(err, num) {
|
---|
| 1662 | if(err) {
|
---|
| 1663 | return callback(err);
|
---|
| 1664 | }
|
---|
| 1665 |
|
---|
| 1666 | // set q
|
---|
| 1667 | state.q = num;
|
---|
| 1668 |
|
---|
| 1669 | // ensure p is larger than q (swap them if not)
|
---|
| 1670 | if(state.p.compareTo(state.q) < 0) {
|
---|
| 1671 | var tmp = state.p;
|
---|
| 1672 | state.p = state.q;
|
---|
| 1673 | state.q = tmp;
|
---|
| 1674 | }
|
---|
| 1675 |
|
---|
| 1676 | // ensure p is coprime with e
|
---|
| 1677 | if(state.p.subtract(BigInteger.ONE).gcd(state.e)
|
---|
| 1678 | .compareTo(BigInteger.ONE) !== 0) {
|
---|
| 1679 | state.p = null;
|
---|
| 1680 | generate();
|
---|
| 1681 | return;
|
---|
| 1682 | }
|
---|
| 1683 |
|
---|
| 1684 | // ensure q is coprime with e
|
---|
| 1685 | if(state.q.subtract(BigInteger.ONE).gcd(state.e)
|
---|
| 1686 | .compareTo(BigInteger.ONE) !== 0) {
|
---|
| 1687 | state.q = null;
|
---|
| 1688 | getPrime(state.qBits, finish);
|
---|
| 1689 | return;
|
---|
| 1690 | }
|
---|
| 1691 |
|
---|
| 1692 | // compute phi: (p - 1)(q - 1) (Euler's totient function)
|
---|
| 1693 | state.p1 = state.p.subtract(BigInteger.ONE);
|
---|
| 1694 | state.q1 = state.q.subtract(BigInteger.ONE);
|
---|
| 1695 | state.phi = state.p1.multiply(state.q1);
|
---|
| 1696 |
|
---|
| 1697 | // ensure e and phi are coprime
|
---|
| 1698 | if(state.phi.gcd(state.e).compareTo(BigInteger.ONE) !== 0) {
|
---|
| 1699 | // phi and e aren't coprime, so generate a new p and q
|
---|
| 1700 | state.p = state.q = null;
|
---|
| 1701 | generate();
|
---|
| 1702 | return;
|
---|
| 1703 | }
|
---|
| 1704 |
|
---|
| 1705 | // create n, ensure n is has the right number of bits
|
---|
| 1706 | state.n = state.p.multiply(state.q);
|
---|
| 1707 | if(state.n.bitLength() !== state.bits) {
|
---|
| 1708 | // failed, get new q
|
---|
| 1709 | state.q = null;
|
---|
| 1710 | getPrime(state.qBits, finish);
|
---|
| 1711 | return;
|
---|
| 1712 | }
|
---|
| 1713 |
|
---|
| 1714 | // set keys
|
---|
| 1715 | var d = state.e.modInverse(state.phi);
|
---|
| 1716 | state.keys = {
|
---|
| 1717 | privateKey: pki.rsa.setPrivateKey(
|
---|
| 1718 | state.n, state.e, d, state.p, state.q,
|
---|
| 1719 | d.mod(state.p1), d.mod(state.q1),
|
---|
| 1720 | state.q.modInverse(state.p)),
|
---|
| 1721 | publicKey: pki.rsa.setPublicKey(state.n, state.e)
|
---|
| 1722 | };
|
---|
| 1723 |
|
---|
| 1724 | callback(null, state.keys);
|
---|
| 1725 | }
|
---|
| 1726 | }
|
---|
| 1727 |
|
---|
| 1728 | /**
|
---|
| 1729 | * Converts a positive BigInteger into 2's-complement big-endian bytes.
|
---|
| 1730 | *
|
---|
| 1731 | * @param b the big integer to convert.
|
---|
| 1732 | *
|
---|
| 1733 | * @return the bytes.
|
---|
| 1734 | */
|
---|
| 1735 | function _bnToBytes(b) {
|
---|
| 1736 | // prepend 0x00 if first byte >= 0x80
|
---|
| 1737 | var hex = b.toString(16);
|
---|
| 1738 | if(hex[0] >= '8') {
|
---|
| 1739 | hex = '00' + hex;
|
---|
| 1740 | }
|
---|
| 1741 | var bytes = forge.util.hexToBytes(hex);
|
---|
| 1742 |
|
---|
| 1743 | // ensure integer is minimally-encoded
|
---|
| 1744 | if(bytes.length > 1 &&
|
---|
| 1745 | // leading 0x00 for positive integer
|
---|
| 1746 | ((bytes.charCodeAt(0) === 0 &&
|
---|
| 1747 | (bytes.charCodeAt(1) & 0x80) === 0) ||
|
---|
| 1748 | // leading 0xFF for negative integer
|
---|
| 1749 | (bytes.charCodeAt(0) === 0xFF &&
|
---|
| 1750 | (bytes.charCodeAt(1) & 0x80) === 0x80))) {
|
---|
| 1751 | return bytes.substr(1);
|
---|
| 1752 | }
|
---|
| 1753 | return bytes;
|
---|
| 1754 | }
|
---|
| 1755 |
|
---|
| 1756 | /**
|
---|
| 1757 | * Returns the required number of Miller-Rabin tests to generate a
|
---|
| 1758 | * prime with an error probability of (1/2)^80.
|
---|
| 1759 | *
|
---|
| 1760 | * See Handbook of Applied Cryptography Chapter 4, Table 4.4.
|
---|
| 1761 | *
|
---|
| 1762 | * @param bits the bit size.
|
---|
| 1763 | *
|
---|
| 1764 | * @return the required number of iterations.
|
---|
| 1765 | */
|
---|
| 1766 | function _getMillerRabinTests(bits) {
|
---|
| 1767 | if(bits <= 100) return 27;
|
---|
| 1768 | if(bits <= 150) return 18;
|
---|
| 1769 | if(bits <= 200) return 15;
|
---|
| 1770 | if(bits <= 250) return 12;
|
---|
| 1771 | if(bits <= 300) return 9;
|
---|
| 1772 | if(bits <= 350) return 8;
|
---|
| 1773 | if(bits <= 400) return 7;
|
---|
| 1774 | if(bits <= 500) return 6;
|
---|
| 1775 | if(bits <= 600) return 5;
|
---|
| 1776 | if(bits <= 800) return 4;
|
---|
| 1777 | if(bits <= 1250) return 3;
|
---|
| 1778 | return 2;
|
---|
| 1779 | }
|
---|
| 1780 |
|
---|
| 1781 | /**
|
---|
| 1782 | * Performs feature detection on the Node crypto interface.
|
---|
| 1783 | *
|
---|
| 1784 | * @param fn the feature (function) to detect.
|
---|
| 1785 | *
|
---|
| 1786 | * @return true if detected, false if not.
|
---|
| 1787 | */
|
---|
| 1788 | function _detectNodeCrypto(fn) {
|
---|
| 1789 | return forge.util.isNodejs && typeof _crypto[fn] === 'function';
|
---|
| 1790 | }
|
---|
| 1791 |
|
---|
| 1792 | /**
|
---|
| 1793 | * Performs feature detection on the SubtleCrypto interface.
|
---|
| 1794 | *
|
---|
| 1795 | * @param fn the feature (function) to detect.
|
---|
| 1796 | *
|
---|
| 1797 | * @return true if detected, false if not.
|
---|
| 1798 | */
|
---|
| 1799 | function _detectSubtleCrypto(fn) {
|
---|
| 1800 | return (typeof util.globalScope !== 'undefined' &&
|
---|
| 1801 | typeof util.globalScope.crypto === 'object' &&
|
---|
| 1802 | typeof util.globalScope.crypto.subtle === 'object' &&
|
---|
| 1803 | typeof util.globalScope.crypto.subtle[fn] === 'function');
|
---|
| 1804 | }
|
---|
| 1805 |
|
---|
| 1806 | /**
|
---|
| 1807 | * Performs feature detection on the deprecated Microsoft Internet Explorer
|
---|
| 1808 | * outdated SubtleCrypto interface. This function should only be used after
|
---|
| 1809 | * checking for the modern, standard SubtleCrypto interface.
|
---|
| 1810 | *
|
---|
| 1811 | * @param fn the feature (function) to detect.
|
---|
| 1812 | *
|
---|
| 1813 | * @return true if detected, false if not.
|
---|
| 1814 | */
|
---|
| 1815 | function _detectSubtleMsCrypto(fn) {
|
---|
| 1816 | return (typeof util.globalScope !== 'undefined' &&
|
---|
| 1817 | typeof util.globalScope.msCrypto === 'object' &&
|
---|
| 1818 | typeof util.globalScope.msCrypto.subtle === 'object' &&
|
---|
| 1819 | typeof util.globalScope.msCrypto.subtle[fn] === 'function');
|
---|
| 1820 | }
|
---|
| 1821 |
|
---|
| 1822 | function _intToUint8Array(x) {
|
---|
| 1823 | var bytes = forge.util.hexToBytes(x.toString(16));
|
---|
| 1824 | var buffer = new Uint8Array(bytes.length);
|
---|
| 1825 | for(var i = 0; i < bytes.length; ++i) {
|
---|
| 1826 | buffer[i] = bytes.charCodeAt(i);
|
---|
| 1827 | }
|
---|
| 1828 | return buffer;
|
---|
| 1829 | }
|
---|
| 1830 |
|
---|
| 1831 | function _privateKeyFromJwk(jwk) {
|
---|
| 1832 | if(jwk.kty !== 'RSA') {
|
---|
| 1833 | throw new Error(
|
---|
| 1834 | 'Unsupported key algorithm "' + jwk.kty + '"; algorithm must be "RSA".');
|
---|
| 1835 | }
|
---|
| 1836 | return pki.setRsaPrivateKey(
|
---|
| 1837 | _base64ToBigInt(jwk.n),
|
---|
| 1838 | _base64ToBigInt(jwk.e),
|
---|
| 1839 | _base64ToBigInt(jwk.d),
|
---|
| 1840 | _base64ToBigInt(jwk.p),
|
---|
| 1841 | _base64ToBigInt(jwk.q),
|
---|
| 1842 | _base64ToBigInt(jwk.dp),
|
---|
| 1843 | _base64ToBigInt(jwk.dq),
|
---|
| 1844 | _base64ToBigInt(jwk.qi));
|
---|
| 1845 | }
|
---|
| 1846 |
|
---|
| 1847 | function _publicKeyFromJwk(jwk) {
|
---|
| 1848 | if(jwk.kty !== 'RSA') {
|
---|
| 1849 | throw new Error('Key algorithm must be "RSA".');
|
---|
| 1850 | }
|
---|
| 1851 | return pki.setRsaPublicKey(
|
---|
| 1852 | _base64ToBigInt(jwk.n),
|
---|
| 1853 | _base64ToBigInt(jwk.e));
|
---|
| 1854 | }
|
---|
| 1855 |
|
---|
| 1856 | function _base64ToBigInt(b64) {
|
---|
| 1857 | return new BigInteger(forge.util.bytesToHex(forge.util.decode64(b64)), 16);
|
---|
| 1858 | }
|
---|