1 | /**
|
---|
2 | * Javascript implementation of basic RSA algorithms.
|
---|
3 | *
|
---|
4 | * @author Dave Longley
|
---|
5 | *
|
---|
6 | * Copyright (c) 2010-2014 Digital Bazaar, Inc.
|
---|
7 | *
|
---|
8 | * The only algorithm currently supported for PKI is RSA.
|
---|
9 | *
|
---|
10 | * An RSA key is often stored in ASN.1 DER format. The SubjectPublicKeyInfo
|
---|
11 | * ASN.1 structure is composed of an algorithm of type AlgorithmIdentifier
|
---|
12 | * and a subjectPublicKey of type bit string.
|
---|
13 | *
|
---|
14 | * The AlgorithmIdentifier contains an Object Identifier (OID) and parameters
|
---|
15 | * for the algorithm, if any. In the case of RSA, there aren't any.
|
---|
16 | *
|
---|
17 | * SubjectPublicKeyInfo ::= SEQUENCE {
|
---|
18 | * algorithm AlgorithmIdentifier,
|
---|
19 | * subjectPublicKey BIT STRING
|
---|
20 | * }
|
---|
21 | *
|
---|
22 | * AlgorithmIdentifer ::= SEQUENCE {
|
---|
23 | * algorithm OBJECT IDENTIFIER,
|
---|
24 | * parameters ANY DEFINED BY algorithm OPTIONAL
|
---|
25 | * }
|
---|
26 | *
|
---|
27 | * For an RSA public key, the subjectPublicKey is:
|
---|
28 | *
|
---|
29 | * RSAPublicKey ::= SEQUENCE {
|
---|
30 | * modulus INTEGER, -- n
|
---|
31 | * publicExponent INTEGER -- e
|
---|
32 | * }
|
---|
33 | *
|
---|
34 | * PrivateKeyInfo ::= SEQUENCE {
|
---|
35 | * version Version,
|
---|
36 | * privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
|
---|
37 | * privateKey PrivateKey,
|
---|
38 | * attributes [0] IMPLICIT Attributes OPTIONAL
|
---|
39 | * }
|
---|
40 | *
|
---|
41 | * Version ::= INTEGER
|
---|
42 | * PrivateKeyAlgorithmIdentifier ::= AlgorithmIdentifier
|
---|
43 | * PrivateKey ::= OCTET STRING
|
---|
44 | * Attributes ::= SET OF Attribute
|
---|
45 | *
|
---|
46 | * An RSA private key as the following structure:
|
---|
47 | *
|
---|
48 | * RSAPrivateKey ::= SEQUENCE {
|
---|
49 | * version Version,
|
---|
50 | * modulus INTEGER, -- n
|
---|
51 | * publicExponent INTEGER, -- e
|
---|
52 | * privateExponent INTEGER, -- d
|
---|
53 | * prime1 INTEGER, -- p
|
---|
54 | * prime2 INTEGER, -- q
|
---|
55 | * exponent1 INTEGER, -- d mod (p-1)
|
---|
56 | * exponent2 INTEGER, -- d mod (q-1)
|
---|
57 | * coefficient INTEGER -- (inverse of q) mod p
|
---|
58 | * }
|
---|
59 | *
|
---|
60 | * Version ::= INTEGER
|
---|
61 | *
|
---|
62 | * The OID for the RSA key algorithm is: 1.2.840.113549.1.1.1
|
---|
63 | */
|
---|
64 | var forge = require('./forge');
|
---|
65 | require('./asn1');
|
---|
66 | require('./jsbn');
|
---|
67 | require('./oids');
|
---|
68 | require('./pkcs1');
|
---|
69 | require('./prime');
|
---|
70 | require('./random');
|
---|
71 | require('./util');
|
---|
72 |
|
---|
73 | if(typeof BigInteger === 'undefined') {
|
---|
74 | var BigInteger = forge.jsbn.BigInteger;
|
---|
75 | }
|
---|
76 |
|
---|
77 | var _crypto = forge.util.isNodejs ? require('crypto') : null;
|
---|
78 |
|
---|
79 | // shortcut for asn.1 API
|
---|
80 | var asn1 = forge.asn1;
|
---|
81 |
|
---|
82 | // shortcut for util API
|
---|
83 | var util = forge.util;
|
---|
84 |
|
---|
85 | /*
|
---|
86 | * RSA encryption and decryption, see RFC 2313.
|
---|
87 | */
|
---|
88 | forge.pki = forge.pki || {};
|
---|
89 | module.exports = forge.pki.rsa = forge.rsa = forge.rsa || {};
|
---|
90 | var pki = forge.pki;
|
---|
91 |
|
---|
92 | // for finding primes, which are 30k+i for i = 1, 7, 11, 13, 17, 19, 23, 29
|
---|
93 | var GCD_30_DELTA = [6, 4, 2, 4, 2, 4, 6, 2];
|
---|
94 |
|
---|
95 | // validator for a PrivateKeyInfo structure
|
---|
96 | var privateKeyValidator = {
|
---|
97 | // PrivateKeyInfo
|
---|
98 | name: 'PrivateKeyInfo',
|
---|
99 | tagClass: asn1.Class.UNIVERSAL,
|
---|
100 | type: asn1.Type.SEQUENCE,
|
---|
101 | constructed: true,
|
---|
102 | value: [{
|
---|
103 | // Version (INTEGER)
|
---|
104 | name: 'PrivateKeyInfo.version',
|
---|
105 | tagClass: asn1.Class.UNIVERSAL,
|
---|
106 | type: asn1.Type.INTEGER,
|
---|
107 | constructed: false,
|
---|
108 | capture: 'privateKeyVersion'
|
---|
109 | }, {
|
---|
110 | // privateKeyAlgorithm
|
---|
111 | name: 'PrivateKeyInfo.privateKeyAlgorithm',
|
---|
112 | tagClass: asn1.Class.UNIVERSAL,
|
---|
113 | type: asn1.Type.SEQUENCE,
|
---|
114 | constructed: true,
|
---|
115 | value: [{
|
---|
116 | name: 'AlgorithmIdentifier.algorithm',
|
---|
117 | tagClass: asn1.Class.UNIVERSAL,
|
---|
118 | type: asn1.Type.OID,
|
---|
119 | constructed: false,
|
---|
120 | capture: 'privateKeyOid'
|
---|
121 | }]
|
---|
122 | }, {
|
---|
123 | // PrivateKey
|
---|
124 | name: 'PrivateKeyInfo',
|
---|
125 | tagClass: asn1.Class.UNIVERSAL,
|
---|
126 | type: asn1.Type.OCTETSTRING,
|
---|
127 | constructed: false,
|
---|
128 | capture: 'privateKey'
|
---|
129 | }]
|
---|
130 | };
|
---|
131 |
|
---|
132 | // validator for an RSA private key
|
---|
133 | var rsaPrivateKeyValidator = {
|
---|
134 | // RSAPrivateKey
|
---|
135 | name: 'RSAPrivateKey',
|
---|
136 | tagClass: asn1.Class.UNIVERSAL,
|
---|
137 | type: asn1.Type.SEQUENCE,
|
---|
138 | constructed: true,
|
---|
139 | value: [{
|
---|
140 | // Version (INTEGER)
|
---|
141 | name: 'RSAPrivateKey.version',
|
---|
142 | tagClass: asn1.Class.UNIVERSAL,
|
---|
143 | type: asn1.Type.INTEGER,
|
---|
144 | constructed: false,
|
---|
145 | capture: 'privateKeyVersion'
|
---|
146 | }, {
|
---|
147 | // modulus (n)
|
---|
148 | name: 'RSAPrivateKey.modulus',
|
---|
149 | tagClass: asn1.Class.UNIVERSAL,
|
---|
150 | type: asn1.Type.INTEGER,
|
---|
151 | constructed: false,
|
---|
152 | capture: 'privateKeyModulus'
|
---|
153 | }, {
|
---|
154 | // publicExponent (e)
|
---|
155 | name: 'RSAPrivateKey.publicExponent',
|
---|
156 | tagClass: asn1.Class.UNIVERSAL,
|
---|
157 | type: asn1.Type.INTEGER,
|
---|
158 | constructed: false,
|
---|
159 | capture: 'privateKeyPublicExponent'
|
---|
160 | }, {
|
---|
161 | // privateExponent (d)
|
---|
162 | name: 'RSAPrivateKey.privateExponent',
|
---|
163 | tagClass: asn1.Class.UNIVERSAL,
|
---|
164 | type: asn1.Type.INTEGER,
|
---|
165 | constructed: false,
|
---|
166 | capture: 'privateKeyPrivateExponent'
|
---|
167 | }, {
|
---|
168 | // prime1 (p)
|
---|
169 | name: 'RSAPrivateKey.prime1',
|
---|
170 | tagClass: asn1.Class.UNIVERSAL,
|
---|
171 | type: asn1.Type.INTEGER,
|
---|
172 | constructed: false,
|
---|
173 | capture: 'privateKeyPrime1'
|
---|
174 | }, {
|
---|
175 | // prime2 (q)
|
---|
176 | name: 'RSAPrivateKey.prime2',
|
---|
177 | tagClass: asn1.Class.UNIVERSAL,
|
---|
178 | type: asn1.Type.INTEGER,
|
---|
179 | constructed: false,
|
---|
180 | capture: 'privateKeyPrime2'
|
---|
181 | }, {
|
---|
182 | // exponent1 (d mod (p-1))
|
---|
183 | name: 'RSAPrivateKey.exponent1',
|
---|
184 | tagClass: asn1.Class.UNIVERSAL,
|
---|
185 | type: asn1.Type.INTEGER,
|
---|
186 | constructed: false,
|
---|
187 | capture: 'privateKeyExponent1'
|
---|
188 | }, {
|
---|
189 | // exponent2 (d mod (q-1))
|
---|
190 | name: 'RSAPrivateKey.exponent2',
|
---|
191 | tagClass: asn1.Class.UNIVERSAL,
|
---|
192 | type: asn1.Type.INTEGER,
|
---|
193 | constructed: false,
|
---|
194 | capture: 'privateKeyExponent2'
|
---|
195 | }, {
|
---|
196 | // coefficient ((inverse of q) mod p)
|
---|
197 | name: 'RSAPrivateKey.coefficient',
|
---|
198 | tagClass: asn1.Class.UNIVERSAL,
|
---|
199 | type: asn1.Type.INTEGER,
|
---|
200 | constructed: false,
|
---|
201 | capture: 'privateKeyCoefficient'
|
---|
202 | }]
|
---|
203 | };
|
---|
204 |
|
---|
205 | // validator for an RSA public key
|
---|
206 | var rsaPublicKeyValidator = {
|
---|
207 | // RSAPublicKey
|
---|
208 | name: 'RSAPublicKey',
|
---|
209 | tagClass: asn1.Class.UNIVERSAL,
|
---|
210 | type: asn1.Type.SEQUENCE,
|
---|
211 | constructed: true,
|
---|
212 | value: [{
|
---|
213 | // modulus (n)
|
---|
214 | name: 'RSAPublicKey.modulus',
|
---|
215 | tagClass: asn1.Class.UNIVERSAL,
|
---|
216 | type: asn1.Type.INTEGER,
|
---|
217 | constructed: false,
|
---|
218 | capture: 'publicKeyModulus'
|
---|
219 | }, {
|
---|
220 | // publicExponent (e)
|
---|
221 | name: 'RSAPublicKey.exponent',
|
---|
222 | tagClass: asn1.Class.UNIVERSAL,
|
---|
223 | type: asn1.Type.INTEGER,
|
---|
224 | constructed: false,
|
---|
225 | capture: 'publicKeyExponent'
|
---|
226 | }]
|
---|
227 | };
|
---|
228 |
|
---|
229 | // validator for an SubjectPublicKeyInfo structure
|
---|
230 | // Note: Currently only works with an RSA public key
|
---|
231 | var publicKeyValidator = forge.pki.rsa.publicKeyValidator = {
|
---|
232 | name: 'SubjectPublicKeyInfo',
|
---|
233 | tagClass: asn1.Class.UNIVERSAL,
|
---|
234 | type: asn1.Type.SEQUENCE,
|
---|
235 | constructed: true,
|
---|
236 | captureAsn1: 'subjectPublicKeyInfo',
|
---|
237 | value: [{
|
---|
238 | name: 'SubjectPublicKeyInfo.AlgorithmIdentifier',
|
---|
239 | tagClass: asn1.Class.UNIVERSAL,
|
---|
240 | type: asn1.Type.SEQUENCE,
|
---|
241 | constructed: true,
|
---|
242 | value: [{
|
---|
243 | name: 'AlgorithmIdentifier.algorithm',
|
---|
244 | tagClass: asn1.Class.UNIVERSAL,
|
---|
245 | type: asn1.Type.OID,
|
---|
246 | constructed: false,
|
---|
247 | capture: 'publicKeyOid'
|
---|
248 | }]
|
---|
249 | }, {
|
---|
250 | // subjectPublicKey
|
---|
251 | name: 'SubjectPublicKeyInfo.subjectPublicKey',
|
---|
252 | tagClass: asn1.Class.UNIVERSAL,
|
---|
253 | type: asn1.Type.BITSTRING,
|
---|
254 | constructed: false,
|
---|
255 | value: [{
|
---|
256 | // RSAPublicKey
|
---|
257 | name: 'SubjectPublicKeyInfo.subjectPublicKey.RSAPublicKey',
|
---|
258 | tagClass: asn1.Class.UNIVERSAL,
|
---|
259 | type: asn1.Type.SEQUENCE,
|
---|
260 | constructed: true,
|
---|
261 | optional: true,
|
---|
262 | captureAsn1: 'rsaPublicKey'
|
---|
263 | }]
|
---|
264 | }]
|
---|
265 | };
|
---|
266 |
|
---|
267 | /**
|
---|
268 | * Wrap digest in DigestInfo object.
|
---|
269 | *
|
---|
270 | * This function implements EMSA-PKCS1-v1_5-ENCODE as per RFC 3447.
|
---|
271 | *
|
---|
272 | * DigestInfo ::= SEQUENCE {
|
---|
273 | * digestAlgorithm DigestAlgorithmIdentifier,
|
---|
274 | * digest Digest
|
---|
275 | * }
|
---|
276 | *
|
---|
277 | * DigestAlgorithmIdentifier ::= AlgorithmIdentifier
|
---|
278 | * Digest ::= OCTET STRING
|
---|
279 | *
|
---|
280 | * @param md the message digest object with the hash to sign.
|
---|
281 | *
|
---|
282 | * @return the encoded message (ready for RSA encrytion)
|
---|
283 | */
|
---|
284 | var emsaPkcs1v15encode = function(md) {
|
---|
285 | // get the oid for the algorithm
|
---|
286 | var oid;
|
---|
287 | if(md.algorithm in pki.oids) {
|
---|
288 | oid = pki.oids[md.algorithm];
|
---|
289 | } else {
|
---|
290 | var error = new Error('Unknown message digest algorithm.');
|
---|
291 | error.algorithm = md.algorithm;
|
---|
292 | throw error;
|
---|
293 | }
|
---|
294 | var oidBytes = asn1.oidToDer(oid).getBytes();
|
---|
295 |
|
---|
296 | // create the digest info
|
---|
297 | var digestInfo = asn1.create(
|
---|
298 | asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, []);
|
---|
299 | var digestAlgorithm = asn1.create(
|
---|
300 | asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, []);
|
---|
301 | digestAlgorithm.value.push(asn1.create(
|
---|
302 | asn1.Class.UNIVERSAL, asn1.Type.OID, false, oidBytes));
|
---|
303 | digestAlgorithm.value.push(asn1.create(
|
---|
304 | asn1.Class.UNIVERSAL, asn1.Type.NULL, false, ''));
|
---|
305 | var digest = asn1.create(
|
---|
306 | asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING,
|
---|
307 | false, md.digest().getBytes());
|
---|
308 | digestInfo.value.push(digestAlgorithm);
|
---|
309 | digestInfo.value.push(digest);
|
---|
310 |
|
---|
311 | // encode digest info
|
---|
312 | return asn1.toDer(digestInfo).getBytes();
|
---|
313 | };
|
---|
314 |
|
---|
315 | /**
|
---|
316 | * Performs x^c mod n (RSA encryption or decryption operation).
|
---|
317 | *
|
---|
318 | * @param x the number to raise and mod.
|
---|
319 | * @param key the key to use.
|
---|
320 | * @param pub true if the key is public, false if private.
|
---|
321 | *
|
---|
322 | * @return the result of x^c mod n.
|
---|
323 | */
|
---|
324 | var _modPow = function(x, key, pub) {
|
---|
325 | if(pub) {
|
---|
326 | return x.modPow(key.e, key.n);
|
---|
327 | }
|
---|
328 |
|
---|
329 | if(!key.p || !key.q) {
|
---|
330 | // allow calculation without CRT params (slow)
|
---|
331 | return x.modPow(key.d, key.n);
|
---|
332 | }
|
---|
333 |
|
---|
334 | // pre-compute dP, dQ, and qInv if necessary
|
---|
335 | if(!key.dP) {
|
---|
336 | key.dP = key.d.mod(key.p.subtract(BigInteger.ONE));
|
---|
337 | }
|
---|
338 | if(!key.dQ) {
|
---|
339 | key.dQ = key.d.mod(key.q.subtract(BigInteger.ONE));
|
---|
340 | }
|
---|
341 | if(!key.qInv) {
|
---|
342 | key.qInv = key.q.modInverse(key.p);
|
---|
343 | }
|
---|
344 |
|
---|
345 | /* Chinese remainder theorem (CRT) states:
|
---|
346 |
|
---|
347 | Suppose n1, n2, ..., nk are positive integers which are pairwise
|
---|
348 | coprime (n1 and n2 have no common factors other than 1). For any
|
---|
349 | integers x1, x2, ..., xk there exists an integer x solving the
|
---|
350 | system of simultaneous congruences (where ~= means modularly
|
---|
351 | congruent so a ~= b mod n means a mod n = b mod n):
|
---|
352 |
|
---|
353 | x ~= x1 mod n1
|
---|
354 | x ~= x2 mod n2
|
---|
355 | ...
|
---|
356 | x ~= xk mod nk
|
---|
357 |
|
---|
358 | This system of congruences has a single simultaneous solution x
|
---|
359 | between 0 and n - 1. Furthermore, each xk solution and x itself
|
---|
360 | is congruent modulo the product n = n1*n2*...*nk.
|
---|
361 | So x1 mod n = x2 mod n = xk mod n = x mod n.
|
---|
362 |
|
---|
363 | The single simultaneous solution x can be solved with the following
|
---|
364 | equation:
|
---|
365 |
|
---|
366 | x = sum(xi*ri*si) mod n where ri = n/ni and si = ri^-1 mod ni.
|
---|
367 |
|
---|
368 | Where x is less than n, xi = x mod ni.
|
---|
369 |
|
---|
370 | For RSA we are only concerned with k = 2. The modulus n = pq, where
|
---|
371 | p and q are coprime. The RSA decryption algorithm is:
|
---|
372 |
|
---|
373 | y = x^d mod n
|
---|
374 |
|
---|
375 | Given the above:
|
---|
376 |
|
---|
377 | x1 = x^d mod p
|
---|
378 | r1 = n/p = q
|
---|
379 | s1 = q^-1 mod p
|
---|
380 | x2 = x^d mod q
|
---|
381 | r2 = n/q = p
|
---|
382 | s2 = p^-1 mod q
|
---|
383 |
|
---|
384 | So y = (x1r1s1 + x2r2s2) mod n
|
---|
385 | = ((x^d mod p)q(q^-1 mod p) + (x^d mod q)p(p^-1 mod q)) mod n
|
---|
386 |
|
---|
387 | According to Fermat's Little Theorem, if the modulus P is prime,
|
---|
388 | for any integer A not evenly divisible by P, A^(P-1) ~= 1 mod P.
|
---|
389 | Since A is not divisible by P it follows that if:
|
---|
390 | N ~= M mod (P - 1), then A^N mod P = A^M mod P. Therefore:
|
---|
391 |
|
---|
392 | A^N mod P = A^(M mod (P - 1)) mod P. (The latter takes less effort
|
---|
393 | to calculate). In order to calculate x^d mod p more quickly the
|
---|
394 | exponent d mod (p - 1) is stored in the RSA private key (the same
|
---|
395 | is done for x^d mod q). These values are referred to as dP and dQ
|
---|
396 | respectively. Therefore we now have:
|
---|
397 |
|
---|
398 | y = ((x^dP mod p)q(q^-1 mod p) + (x^dQ mod q)p(p^-1 mod q)) mod n
|
---|
399 |
|
---|
400 | Since we'll be reducing x^dP by modulo p (same for q) we can also
|
---|
401 | reduce x by p (and q respectively) before hand. Therefore, let
|
---|
402 |
|
---|
403 | xp = ((x mod p)^dP mod p), and
|
---|
404 | xq = ((x mod q)^dQ mod q), yielding:
|
---|
405 |
|
---|
406 | y = (xp*q*(q^-1 mod p) + xq*p*(p^-1 mod q)) mod n
|
---|
407 |
|
---|
408 | This can be further reduced to a simple algorithm that only
|
---|
409 | requires 1 inverse (the q inverse is used) to be used and stored.
|
---|
410 | The algorithm is called Garner's algorithm. If qInv is the
|
---|
411 | inverse of q, we simply calculate:
|
---|
412 |
|
---|
413 | y = (qInv*(xp - xq) mod p) * q + xq
|
---|
414 |
|
---|
415 | However, there are two further complications. First, we need to
|
---|
416 | ensure that xp > xq to prevent signed BigIntegers from being used
|
---|
417 | so we add p until this is true (since we will be mod'ing with
|
---|
418 | p anyway). Then, there is a known timing attack on algorithms
|
---|
419 | using the CRT. To mitigate this risk, "cryptographic blinding"
|
---|
420 | should be used. This requires simply generating a random number r
|
---|
421 | between 0 and n-1 and its inverse and multiplying x by r^e before
|
---|
422 | calculating y and then multiplying y by r^-1 afterwards. Note that
|
---|
423 | r must be coprime with n (gcd(r, n) === 1) in order to have an
|
---|
424 | inverse.
|
---|
425 | */
|
---|
426 |
|
---|
427 | // cryptographic blinding
|
---|
428 | var r;
|
---|
429 | do {
|
---|
430 | r = new BigInteger(
|
---|
431 | forge.util.bytesToHex(forge.random.getBytes(key.n.bitLength() / 8)),
|
---|
432 | 16);
|
---|
433 | } while(r.compareTo(key.n) >= 0 || !r.gcd(key.n).equals(BigInteger.ONE));
|
---|
434 | x = x.multiply(r.modPow(key.e, key.n)).mod(key.n);
|
---|
435 |
|
---|
436 | // calculate xp and xq
|
---|
437 | var xp = x.mod(key.p).modPow(key.dP, key.p);
|
---|
438 | var xq = x.mod(key.q).modPow(key.dQ, key.q);
|
---|
439 |
|
---|
440 | // xp must be larger than xq to avoid signed bit usage
|
---|
441 | while(xp.compareTo(xq) < 0) {
|
---|
442 | xp = xp.add(key.p);
|
---|
443 | }
|
---|
444 |
|
---|
445 | // do last step
|
---|
446 | var y = xp.subtract(xq)
|
---|
447 | .multiply(key.qInv).mod(key.p)
|
---|
448 | .multiply(key.q).add(xq);
|
---|
449 |
|
---|
450 | // remove effect of random for cryptographic blinding
|
---|
451 | y = y.multiply(r.modInverse(key.n)).mod(key.n);
|
---|
452 |
|
---|
453 | return y;
|
---|
454 | };
|
---|
455 |
|
---|
456 | /**
|
---|
457 | * NOTE: THIS METHOD IS DEPRECATED, use 'sign' on a private key object or
|
---|
458 | * 'encrypt' on a public key object instead.
|
---|
459 | *
|
---|
460 | * Performs RSA encryption.
|
---|
461 | *
|
---|
462 | * The parameter bt controls whether to put padding bytes before the
|
---|
463 | * message passed in. Set bt to either true or false to disable padding
|
---|
464 | * completely (in order to handle e.g. EMSA-PSS encoding seperately before),
|
---|
465 | * signaling whether the encryption operation is a public key operation
|
---|
466 | * (i.e. encrypting data) or not, i.e. private key operation (data signing).
|
---|
467 | *
|
---|
468 | * For PKCS#1 v1.5 padding pass in the block type to use, i.e. either 0x01
|
---|
469 | * (for signing) or 0x02 (for encryption). The key operation mode (private
|
---|
470 | * or public) is derived from this flag in that case).
|
---|
471 | *
|
---|
472 | * @param m the message to encrypt as a byte string.
|
---|
473 | * @param key the RSA key to use.
|
---|
474 | * @param bt for PKCS#1 v1.5 padding, the block type to use
|
---|
475 | * (0x01 for private key, 0x02 for public),
|
---|
476 | * to disable padding: true = public key, false = private key.
|
---|
477 | *
|
---|
478 | * @return the encrypted bytes as a string.
|
---|
479 | */
|
---|
480 | pki.rsa.encrypt = function(m, key, bt) {
|
---|
481 | var pub = bt;
|
---|
482 | var eb;
|
---|
483 |
|
---|
484 | // get the length of the modulus in bytes
|
---|
485 | var k = Math.ceil(key.n.bitLength() / 8);
|
---|
486 |
|
---|
487 | if(bt !== false && bt !== true) {
|
---|
488 | // legacy, default to PKCS#1 v1.5 padding
|
---|
489 | pub = (bt === 0x02);
|
---|
490 | eb = _encodePkcs1_v1_5(m, key, bt);
|
---|
491 | } else {
|
---|
492 | eb = forge.util.createBuffer();
|
---|
493 | eb.putBytes(m);
|
---|
494 | }
|
---|
495 |
|
---|
496 | // load encryption block as big integer 'x'
|
---|
497 | // FIXME: hex conversion inefficient, get BigInteger w/byte strings
|
---|
498 | var x = new BigInteger(eb.toHex(), 16);
|
---|
499 |
|
---|
500 | // do RSA encryption
|
---|
501 | var y = _modPow(x, key, pub);
|
---|
502 |
|
---|
503 | // convert y into the encrypted data byte string, if y is shorter in
|
---|
504 | // bytes than k, then prepend zero bytes to fill up ed
|
---|
505 | // FIXME: hex conversion inefficient, get BigInteger w/byte strings
|
---|
506 | var yhex = y.toString(16);
|
---|
507 | var ed = forge.util.createBuffer();
|
---|
508 | var zeros = k - Math.ceil(yhex.length / 2);
|
---|
509 | while(zeros > 0) {
|
---|
510 | ed.putByte(0x00);
|
---|
511 | --zeros;
|
---|
512 | }
|
---|
513 | ed.putBytes(forge.util.hexToBytes(yhex));
|
---|
514 | return ed.getBytes();
|
---|
515 | };
|
---|
516 |
|
---|
517 | /**
|
---|
518 | * NOTE: THIS METHOD IS DEPRECATED, use 'decrypt' on a private key object or
|
---|
519 | * 'verify' on a public key object instead.
|
---|
520 | *
|
---|
521 | * Performs RSA decryption.
|
---|
522 | *
|
---|
523 | * The parameter ml controls whether to apply PKCS#1 v1.5 padding
|
---|
524 | * or not. Set ml = false to disable padding removal completely
|
---|
525 | * (in order to handle e.g. EMSA-PSS later on) and simply pass back
|
---|
526 | * the RSA encryption block.
|
---|
527 | *
|
---|
528 | * @param ed the encrypted data to decrypt in as a byte string.
|
---|
529 | * @param key the RSA key to use.
|
---|
530 | * @param pub true for a public key operation, false for private.
|
---|
531 | * @param ml the message length, if known, false to disable padding.
|
---|
532 | *
|
---|
533 | * @return the decrypted message as a byte string.
|
---|
534 | */
|
---|
535 | pki.rsa.decrypt = function(ed, key, pub, ml) {
|
---|
536 | // get the length of the modulus in bytes
|
---|
537 | var k = Math.ceil(key.n.bitLength() / 8);
|
---|
538 |
|
---|
539 | // error if the length of the encrypted data ED is not k
|
---|
540 | if(ed.length !== k) {
|
---|
541 | var error = new Error('Encrypted message length is invalid.');
|
---|
542 | error.length = ed.length;
|
---|
543 | error.expected = k;
|
---|
544 | throw error;
|
---|
545 | }
|
---|
546 |
|
---|
547 | // convert encrypted data into a big integer
|
---|
548 | // FIXME: hex conversion inefficient, get BigInteger w/byte strings
|
---|
549 | var y = new BigInteger(forge.util.createBuffer(ed).toHex(), 16);
|
---|
550 |
|
---|
551 | // y must be less than the modulus or it wasn't the result of
|
---|
552 | // a previous mod operation (encryption) using that modulus
|
---|
553 | if(y.compareTo(key.n) >= 0) {
|
---|
554 | throw new Error('Encrypted message is invalid.');
|
---|
555 | }
|
---|
556 |
|
---|
557 | // do RSA decryption
|
---|
558 | var x = _modPow(y, key, pub);
|
---|
559 |
|
---|
560 | // create the encryption block, if x is shorter in bytes than k, then
|
---|
561 | // prepend zero bytes to fill up eb
|
---|
562 | // FIXME: hex conversion inefficient, get BigInteger w/byte strings
|
---|
563 | var xhex = x.toString(16);
|
---|
564 | var eb = forge.util.createBuffer();
|
---|
565 | var zeros = k - Math.ceil(xhex.length / 2);
|
---|
566 | while(zeros > 0) {
|
---|
567 | eb.putByte(0x00);
|
---|
568 | --zeros;
|
---|
569 | }
|
---|
570 | eb.putBytes(forge.util.hexToBytes(xhex));
|
---|
571 |
|
---|
572 | if(ml !== false) {
|
---|
573 | // legacy, default to PKCS#1 v1.5 padding
|
---|
574 | return _decodePkcs1_v1_5(eb.getBytes(), key, pub);
|
---|
575 | }
|
---|
576 |
|
---|
577 | // return message
|
---|
578 | return eb.getBytes();
|
---|
579 | };
|
---|
580 |
|
---|
581 | /**
|
---|
582 | * Creates an RSA key-pair generation state object. It is used to allow
|
---|
583 | * key-generation to be performed in steps. It also allows for a UI to
|
---|
584 | * display progress updates.
|
---|
585 | *
|
---|
586 | * @param bits the size for the private key in bits, defaults to 2048.
|
---|
587 | * @param e the public exponent to use, defaults to 65537 (0x10001).
|
---|
588 | * @param [options] the options to use.
|
---|
589 | * prng a custom crypto-secure pseudo-random number generator to use,
|
---|
590 | * that must define "getBytesSync".
|
---|
591 | * algorithm the algorithm to use (default: 'PRIMEINC').
|
---|
592 | *
|
---|
593 | * @return the state object to use to generate the key-pair.
|
---|
594 | */
|
---|
595 | pki.rsa.createKeyPairGenerationState = function(bits, e, options) {
|
---|
596 | // TODO: migrate step-based prime generation code to forge.prime
|
---|
597 |
|
---|
598 | // set default bits
|
---|
599 | if(typeof(bits) === 'string') {
|
---|
600 | bits = parseInt(bits, 10);
|
---|
601 | }
|
---|
602 | bits = bits || 2048;
|
---|
603 |
|
---|
604 | // create prng with api that matches BigInteger secure random
|
---|
605 | options = options || {};
|
---|
606 | var prng = options.prng || forge.random;
|
---|
607 | var rng = {
|
---|
608 | // x is an array to fill with bytes
|
---|
609 | nextBytes: function(x) {
|
---|
610 | var b = prng.getBytesSync(x.length);
|
---|
611 | for(var i = 0; i < x.length; ++i) {
|
---|
612 | x[i] = b.charCodeAt(i);
|
---|
613 | }
|
---|
614 | }
|
---|
615 | };
|
---|
616 |
|
---|
617 | var algorithm = options.algorithm || 'PRIMEINC';
|
---|
618 |
|
---|
619 | // create PRIMEINC algorithm state
|
---|
620 | var rval;
|
---|
621 | if(algorithm === 'PRIMEINC') {
|
---|
622 | rval = {
|
---|
623 | algorithm: algorithm,
|
---|
624 | state: 0,
|
---|
625 | bits: bits,
|
---|
626 | rng: rng,
|
---|
627 | eInt: e || 65537,
|
---|
628 | e: new BigInteger(null),
|
---|
629 | p: null,
|
---|
630 | q: null,
|
---|
631 | qBits: bits >> 1,
|
---|
632 | pBits: bits - (bits >> 1),
|
---|
633 | pqState: 0,
|
---|
634 | num: null,
|
---|
635 | keys: null
|
---|
636 | };
|
---|
637 | rval.e.fromInt(rval.eInt);
|
---|
638 | } else {
|
---|
639 | throw new Error('Invalid key generation algorithm: ' + algorithm);
|
---|
640 | }
|
---|
641 |
|
---|
642 | return rval;
|
---|
643 | };
|
---|
644 |
|
---|
645 | /**
|
---|
646 | * Attempts to runs the key-generation algorithm for at most n seconds
|
---|
647 | * (approximately) using the given state. When key-generation has completed,
|
---|
648 | * the keys will be stored in state.keys.
|
---|
649 | *
|
---|
650 | * To use this function to update a UI while generating a key or to prevent
|
---|
651 | * causing browser lockups/warnings, set "n" to a value other than 0. A
|
---|
652 | * simple pattern for generating a key and showing a progress indicator is:
|
---|
653 | *
|
---|
654 | * var state = pki.rsa.createKeyPairGenerationState(2048);
|
---|
655 | * var step = function() {
|
---|
656 | * // step key-generation, run algorithm for 100 ms, repeat
|
---|
657 | * if(!forge.pki.rsa.stepKeyPairGenerationState(state, 100)) {
|
---|
658 | * setTimeout(step, 1);
|
---|
659 | * } else {
|
---|
660 | * // key-generation complete
|
---|
661 | * // TODO: turn off progress indicator here
|
---|
662 | * // TODO: use the generated key-pair in "state.keys"
|
---|
663 | * }
|
---|
664 | * };
|
---|
665 | * // TODO: turn on progress indicator here
|
---|
666 | * setTimeout(step, 0);
|
---|
667 | *
|
---|
668 | * @param state the state to use.
|
---|
669 | * @param n the maximum number of milliseconds to run the algorithm for, 0
|
---|
670 | * to run the algorithm to completion.
|
---|
671 | *
|
---|
672 | * @return true if the key-generation completed, false if not.
|
---|
673 | */
|
---|
674 | pki.rsa.stepKeyPairGenerationState = function(state, n) {
|
---|
675 | // set default algorithm if not set
|
---|
676 | if(!('algorithm' in state)) {
|
---|
677 | state.algorithm = 'PRIMEINC';
|
---|
678 | }
|
---|
679 |
|
---|
680 | // TODO: migrate step-based prime generation code to forge.prime
|
---|
681 | // TODO: abstract as PRIMEINC algorithm
|
---|
682 |
|
---|
683 | // do key generation (based on Tom Wu's rsa.js, see jsbn.js license)
|
---|
684 | // with some minor optimizations and designed to run in steps
|
---|
685 |
|
---|
686 | // local state vars
|
---|
687 | var THIRTY = new BigInteger(null);
|
---|
688 | THIRTY.fromInt(30);
|
---|
689 | var deltaIdx = 0;
|
---|
690 | var op_or = function(x, y) {return x | y;};
|
---|
691 |
|
---|
692 | // keep stepping until time limit is reached or done
|
---|
693 | var t1 = +new Date();
|
---|
694 | var t2;
|
---|
695 | var total = 0;
|
---|
696 | while(state.keys === null && (n <= 0 || total < n)) {
|
---|
697 | // generate p or q
|
---|
698 | if(state.state === 0) {
|
---|
699 | /* Note: All primes are of the form:
|
---|
700 |
|
---|
701 | 30k+i, for i < 30 and gcd(30, i)=1, where there are 8 values for i
|
---|
702 |
|
---|
703 | When we generate a random number, we always align it at 30k + 1. Each
|
---|
704 | time the number is determined not to be prime we add to get to the
|
---|
705 | next 'i', eg: if the number was at 30k + 1 we add 6. */
|
---|
706 | var bits = (state.p === null) ? state.pBits : state.qBits;
|
---|
707 | var bits1 = bits - 1;
|
---|
708 |
|
---|
709 | // get a random number
|
---|
710 | if(state.pqState === 0) {
|
---|
711 | state.num = new BigInteger(bits, state.rng);
|
---|
712 | // force MSB set
|
---|
713 | if(!state.num.testBit(bits1)) {
|
---|
714 | state.num.bitwiseTo(
|
---|
715 | BigInteger.ONE.shiftLeft(bits1), op_or, state.num);
|
---|
716 | }
|
---|
717 | // align number on 30k+1 boundary
|
---|
718 | state.num.dAddOffset(31 - state.num.mod(THIRTY).byteValue(), 0);
|
---|
719 | deltaIdx = 0;
|
---|
720 |
|
---|
721 | ++state.pqState;
|
---|
722 | } else if(state.pqState === 1) {
|
---|
723 | // try to make the number a prime
|
---|
724 | if(state.num.bitLength() > bits) {
|
---|
725 | // overflow, try again
|
---|
726 | state.pqState = 0;
|
---|
727 | // do primality test
|
---|
728 | } else if(state.num.isProbablePrime(
|
---|
729 | _getMillerRabinTests(state.num.bitLength()))) {
|
---|
730 | ++state.pqState;
|
---|
731 | } else {
|
---|
732 | // get next potential prime
|
---|
733 | state.num.dAddOffset(GCD_30_DELTA[deltaIdx++ % 8], 0);
|
---|
734 | }
|
---|
735 | } else if(state.pqState === 2) {
|
---|
736 | // ensure number is coprime with e
|
---|
737 | state.pqState =
|
---|
738 | (state.num.subtract(BigInteger.ONE).gcd(state.e)
|
---|
739 | .compareTo(BigInteger.ONE) === 0) ? 3 : 0;
|
---|
740 | } else if(state.pqState === 3) {
|
---|
741 | // store p or q
|
---|
742 | state.pqState = 0;
|
---|
743 | if(state.p === null) {
|
---|
744 | state.p = state.num;
|
---|
745 | } else {
|
---|
746 | state.q = state.num;
|
---|
747 | }
|
---|
748 |
|
---|
749 | // advance state if both p and q are ready
|
---|
750 | if(state.p !== null && state.q !== null) {
|
---|
751 | ++state.state;
|
---|
752 | }
|
---|
753 | state.num = null;
|
---|
754 | }
|
---|
755 | } else if(state.state === 1) {
|
---|
756 | // ensure p is larger than q (swap them if not)
|
---|
757 | if(state.p.compareTo(state.q) < 0) {
|
---|
758 | state.num = state.p;
|
---|
759 | state.p = state.q;
|
---|
760 | state.q = state.num;
|
---|
761 | }
|
---|
762 | ++state.state;
|
---|
763 | } else if(state.state === 2) {
|
---|
764 | // compute phi: (p - 1)(q - 1) (Euler's totient function)
|
---|
765 | state.p1 = state.p.subtract(BigInteger.ONE);
|
---|
766 | state.q1 = state.q.subtract(BigInteger.ONE);
|
---|
767 | state.phi = state.p1.multiply(state.q1);
|
---|
768 | ++state.state;
|
---|
769 | } else if(state.state === 3) {
|
---|
770 | // ensure e and phi are coprime
|
---|
771 | if(state.phi.gcd(state.e).compareTo(BigInteger.ONE) === 0) {
|
---|
772 | // phi and e are coprime, advance
|
---|
773 | ++state.state;
|
---|
774 | } else {
|
---|
775 | // phi and e aren't coprime, so generate a new p and q
|
---|
776 | state.p = null;
|
---|
777 | state.q = null;
|
---|
778 | state.state = 0;
|
---|
779 | }
|
---|
780 | } else if(state.state === 4) {
|
---|
781 | // create n, ensure n is has the right number of bits
|
---|
782 | state.n = state.p.multiply(state.q);
|
---|
783 |
|
---|
784 | // ensure n is right number of bits
|
---|
785 | if(state.n.bitLength() === state.bits) {
|
---|
786 | // success, advance
|
---|
787 | ++state.state;
|
---|
788 | } else {
|
---|
789 | // failed, get new q
|
---|
790 | state.q = null;
|
---|
791 | state.state = 0;
|
---|
792 | }
|
---|
793 | } else if(state.state === 5) {
|
---|
794 | // set keys
|
---|
795 | var d = state.e.modInverse(state.phi);
|
---|
796 | state.keys = {
|
---|
797 | privateKey: pki.rsa.setPrivateKey(
|
---|
798 | state.n, state.e, d, state.p, state.q,
|
---|
799 | d.mod(state.p1), d.mod(state.q1),
|
---|
800 | state.q.modInverse(state.p)),
|
---|
801 | publicKey: pki.rsa.setPublicKey(state.n, state.e)
|
---|
802 | };
|
---|
803 | }
|
---|
804 |
|
---|
805 | // update timing
|
---|
806 | t2 = +new Date();
|
---|
807 | total += t2 - t1;
|
---|
808 | t1 = t2;
|
---|
809 | }
|
---|
810 |
|
---|
811 | return state.keys !== null;
|
---|
812 | };
|
---|
813 |
|
---|
814 | /**
|
---|
815 | * Generates an RSA public-private key pair in a single call.
|
---|
816 | *
|
---|
817 | * To generate a key-pair in steps (to allow for progress updates and to
|
---|
818 | * prevent blocking or warnings in slow browsers) then use the key-pair
|
---|
819 | * generation state functions.
|
---|
820 | *
|
---|
821 | * To generate a key-pair asynchronously (either through web-workers, if
|
---|
822 | * available, or by breaking up the work on the main thread), pass a
|
---|
823 | * callback function.
|
---|
824 | *
|
---|
825 | * @param [bits] the size for the private key in bits, defaults to 2048.
|
---|
826 | * @param [e] the public exponent to use, defaults to 65537.
|
---|
827 | * @param [options] options for key-pair generation, if given then 'bits'
|
---|
828 | * and 'e' must *not* be given:
|
---|
829 | * bits the size for the private key in bits, (default: 2048).
|
---|
830 | * e the public exponent to use, (default: 65537 (0x10001)).
|
---|
831 | * workerScript the worker script URL.
|
---|
832 | * workers the number of web workers (if supported) to use,
|
---|
833 | * (default: 2).
|
---|
834 | * workLoad the size of the work load, ie: number of possible prime
|
---|
835 | * numbers for each web worker to check per work assignment,
|
---|
836 | * (default: 100).
|
---|
837 | * prng a custom crypto-secure pseudo-random number generator to use,
|
---|
838 | * that must define "getBytesSync". Disables use of native APIs.
|
---|
839 | * algorithm the algorithm to use (default: 'PRIMEINC').
|
---|
840 | * @param [callback(err, keypair)] called once the operation completes.
|
---|
841 | *
|
---|
842 | * @return an object with privateKey and publicKey properties.
|
---|
843 | */
|
---|
844 | pki.rsa.generateKeyPair = function(bits, e, options, callback) {
|
---|
845 | // (bits), (options), (callback)
|
---|
846 | if(arguments.length === 1) {
|
---|
847 | if(typeof bits === 'object') {
|
---|
848 | options = bits;
|
---|
849 | bits = undefined;
|
---|
850 | } else if(typeof bits === 'function') {
|
---|
851 | callback = bits;
|
---|
852 | bits = undefined;
|
---|
853 | }
|
---|
854 | } else if(arguments.length === 2) {
|
---|
855 | // (bits, e), (bits, options), (bits, callback), (options, callback)
|
---|
856 | if(typeof bits === 'number') {
|
---|
857 | if(typeof e === 'function') {
|
---|
858 | callback = e;
|
---|
859 | e = undefined;
|
---|
860 | } else if(typeof e !== 'number') {
|
---|
861 | options = e;
|
---|
862 | e = undefined;
|
---|
863 | }
|
---|
864 | } else {
|
---|
865 | options = bits;
|
---|
866 | callback = e;
|
---|
867 | bits = undefined;
|
---|
868 | e = undefined;
|
---|
869 | }
|
---|
870 | } else if(arguments.length === 3) {
|
---|
871 | // (bits, e, options), (bits, e, callback), (bits, options, callback)
|
---|
872 | if(typeof e === 'number') {
|
---|
873 | if(typeof options === 'function') {
|
---|
874 | callback = options;
|
---|
875 | options = undefined;
|
---|
876 | }
|
---|
877 | } else {
|
---|
878 | callback = options;
|
---|
879 | options = e;
|
---|
880 | e = undefined;
|
---|
881 | }
|
---|
882 | }
|
---|
883 | options = options || {};
|
---|
884 | if(bits === undefined) {
|
---|
885 | bits = options.bits || 2048;
|
---|
886 | }
|
---|
887 | if(e === undefined) {
|
---|
888 | e = options.e || 0x10001;
|
---|
889 | }
|
---|
890 |
|
---|
891 | // use native code if permitted, available, and parameters are acceptable
|
---|
892 | if(!forge.options.usePureJavaScript && !options.prng &&
|
---|
893 | bits >= 256 && bits <= 16384 && (e === 0x10001 || e === 3)) {
|
---|
894 | if(callback) {
|
---|
895 | // try native async
|
---|
896 | if(_detectNodeCrypto('generateKeyPair')) {
|
---|
897 | return _crypto.generateKeyPair('rsa', {
|
---|
898 | modulusLength: bits,
|
---|
899 | publicExponent: e,
|
---|
900 | publicKeyEncoding: {
|
---|
901 | type: 'spki',
|
---|
902 | format: 'pem'
|
---|
903 | },
|
---|
904 | privateKeyEncoding: {
|
---|
905 | type: 'pkcs8',
|
---|
906 | format: 'pem'
|
---|
907 | }
|
---|
908 | }, function(err, pub, priv) {
|
---|
909 | if(err) {
|
---|
910 | return callback(err);
|
---|
911 | }
|
---|
912 | callback(null, {
|
---|
913 | privateKey: pki.privateKeyFromPem(priv),
|
---|
914 | publicKey: pki.publicKeyFromPem(pub)
|
---|
915 | });
|
---|
916 | });
|
---|
917 | }
|
---|
918 | if(_detectSubtleCrypto('generateKey') &&
|
---|
919 | _detectSubtleCrypto('exportKey')) {
|
---|
920 | // use standard native generateKey
|
---|
921 | return util.globalScope.crypto.subtle.generateKey({
|
---|
922 | name: 'RSASSA-PKCS1-v1_5',
|
---|
923 | modulusLength: bits,
|
---|
924 | publicExponent: _intToUint8Array(e),
|
---|
925 | hash: {name: 'SHA-256'}
|
---|
926 | }, true /* key can be exported*/, ['sign', 'verify'])
|
---|
927 | .then(function(pair) {
|
---|
928 | return util.globalScope.crypto.subtle.exportKey(
|
---|
929 | 'pkcs8', pair.privateKey);
|
---|
930 | // avoiding catch(function(err) {...}) to support IE <= 8
|
---|
931 | }).then(undefined, function(err) {
|
---|
932 | callback(err);
|
---|
933 | }).then(function(pkcs8) {
|
---|
934 | if(pkcs8) {
|
---|
935 | var privateKey = pki.privateKeyFromAsn1(
|
---|
936 | asn1.fromDer(forge.util.createBuffer(pkcs8)));
|
---|
937 | callback(null, {
|
---|
938 | privateKey: privateKey,
|
---|
939 | publicKey: pki.setRsaPublicKey(privateKey.n, privateKey.e)
|
---|
940 | });
|
---|
941 | }
|
---|
942 | });
|
---|
943 | }
|
---|
944 | if(_detectSubtleMsCrypto('generateKey') &&
|
---|
945 | _detectSubtleMsCrypto('exportKey')) {
|
---|
946 | var genOp = util.globalScope.msCrypto.subtle.generateKey({
|
---|
947 | name: 'RSASSA-PKCS1-v1_5',
|
---|
948 | modulusLength: bits,
|
---|
949 | publicExponent: _intToUint8Array(e),
|
---|
950 | hash: {name: 'SHA-256'}
|
---|
951 | }, true /* key can be exported*/, ['sign', 'verify']);
|
---|
952 | genOp.oncomplete = function(e) {
|
---|
953 | var pair = e.target.result;
|
---|
954 | var exportOp = util.globalScope.msCrypto.subtle.exportKey(
|
---|
955 | 'pkcs8', pair.privateKey);
|
---|
956 | exportOp.oncomplete = function(e) {
|
---|
957 | var pkcs8 = e.target.result;
|
---|
958 | var privateKey = pki.privateKeyFromAsn1(
|
---|
959 | asn1.fromDer(forge.util.createBuffer(pkcs8)));
|
---|
960 | callback(null, {
|
---|
961 | privateKey: privateKey,
|
---|
962 | publicKey: pki.setRsaPublicKey(privateKey.n, privateKey.e)
|
---|
963 | });
|
---|
964 | };
|
---|
965 | exportOp.onerror = function(err) {
|
---|
966 | callback(err);
|
---|
967 | };
|
---|
968 | };
|
---|
969 | genOp.onerror = function(err) {
|
---|
970 | callback(err);
|
---|
971 | };
|
---|
972 | return;
|
---|
973 | }
|
---|
974 | } else {
|
---|
975 | // try native sync
|
---|
976 | if(_detectNodeCrypto('generateKeyPairSync')) {
|
---|
977 | var keypair = _crypto.generateKeyPairSync('rsa', {
|
---|
978 | modulusLength: bits,
|
---|
979 | publicExponent: e,
|
---|
980 | publicKeyEncoding: {
|
---|
981 | type: 'spki',
|
---|
982 | format: 'pem'
|
---|
983 | },
|
---|
984 | privateKeyEncoding: {
|
---|
985 | type: 'pkcs8',
|
---|
986 | format: 'pem'
|
---|
987 | }
|
---|
988 | });
|
---|
989 | return {
|
---|
990 | privateKey: pki.privateKeyFromPem(keypair.privateKey),
|
---|
991 | publicKey: pki.publicKeyFromPem(keypair.publicKey)
|
---|
992 | };
|
---|
993 | }
|
---|
994 | }
|
---|
995 | }
|
---|
996 |
|
---|
997 | // use JavaScript implementation
|
---|
998 | var state = pki.rsa.createKeyPairGenerationState(bits, e, options);
|
---|
999 | if(!callback) {
|
---|
1000 | pki.rsa.stepKeyPairGenerationState(state, 0);
|
---|
1001 | return state.keys;
|
---|
1002 | }
|
---|
1003 | _generateKeyPair(state, options, callback);
|
---|
1004 | };
|
---|
1005 |
|
---|
1006 | /**
|
---|
1007 | * Sets an RSA public key from BigIntegers modulus and exponent.
|
---|
1008 | *
|
---|
1009 | * @param n the modulus.
|
---|
1010 | * @param e the exponent.
|
---|
1011 | *
|
---|
1012 | * @return the public key.
|
---|
1013 | */
|
---|
1014 | pki.setRsaPublicKey = pki.rsa.setPublicKey = function(n, e) {
|
---|
1015 | var key = {
|
---|
1016 | n: n,
|
---|
1017 | e: e
|
---|
1018 | };
|
---|
1019 |
|
---|
1020 | /**
|
---|
1021 | * Encrypts the given data with this public key. Newer applications
|
---|
1022 | * should use the 'RSA-OAEP' decryption scheme, 'RSAES-PKCS1-V1_5' is for
|
---|
1023 | * legacy applications.
|
---|
1024 | *
|
---|
1025 | * @param data the byte string to encrypt.
|
---|
1026 | * @param scheme the encryption scheme to use:
|
---|
1027 | * 'RSAES-PKCS1-V1_5' (default),
|
---|
1028 | * 'RSA-OAEP',
|
---|
1029 | * 'RAW', 'NONE', or null to perform raw RSA encryption,
|
---|
1030 | * an object with an 'encode' property set to a function
|
---|
1031 | * with the signature 'function(data, key)' that returns
|
---|
1032 | * a binary-encoded string representing the encoded data.
|
---|
1033 | * @param schemeOptions any scheme-specific options.
|
---|
1034 | *
|
---|
1035 | * @return the encrypted byte string.
|
---|
1036 | */
|
---|
1037 | key.encrypt = function(data, scheme, schemeOptions) {
|
---|
1038 | if(typeof scheme === 'string') {
|
---|
1039 | scheme = scheme.toUpperCase();
|
---|
1040 | } else if(scheme === undefined) {
|
---|
1041 | scheme = 'RSAES-PKCS1-V1_5';
|
---|
1042 | }
|
---|
1043 |
|
---|
1044 | if(scheme === 'RSAES-PKCS1-V1_5') {
|
---|
1045 | scheme = {
|
---|
1046 | encode: function(m, key, pub) {
|
---|
1047 | return _encodePkcs1_v1_5(m, key, 0x02).getBytes();
|
---|
1048 | }
|
---|
1049 | };
|
---|
1050 | } else if(scheme === 'RSA-OAEP' || scheme === 'RSAES-OAEP') {
|
---|
1051 | scheme = {
|
---|
1052 | encode: function(m, key) {
|
---|
1053 | return forge.pkcs1.encode_rsa_oaep(key, m, schemeOptions);
|
---|
1054 | }
|
---|
1055 | };
|
---|
1056 | } else if(['RAW', 'NONE', 'NULL', null].indexOf(scheme) !== -1) {
|
---|
1057 | scheme = {encode: function(e) {return e;}};
|
---|
1058 | } else if(typeof scheme === 'string') {
|
---|
1059 | throw new Error('Unsupported encryption scheme: "' + scheme + '".');
|
---|
1060 | }
|
---|
1061 |
|
---|
1062 | // do scheme-based encoding then rsa encryption
|
---|
1063 | var e = scheme.encode(data, key, true);
|
---|
1064 | return pki.rsa.encrypt(e, key, true);
|
---|
1065 | };
|
---|
1066 |
|
---|
1067 | /**
|
---|
1068 | * Verifies the given signature against the given digest.
|
---|
1069 | *
|
---|
1070 | * PKCS#1 supports multiple (currently two) signature schemes:
|
---|
1071 | * RSASSA-PKCS1-V1_5 and RSASSA-PSS.
|
---|
1072 | *
|
---|
1073 | * By default this implementation uses the "old scheme", i.e.
|
---|
1074 | * RSASSA-PKCS1-V1_5, in which case once RSA-decrypted, the
|
---|
1075 | * signature is an OCTET STRING that holds a DigestInfo.
|
---|
1076 | *
|
---|
1077 | * DigestInfo ::= SEQUENCE {
|
---|
1078 | * digestAlgorithm DigestAlgorithmIdentifier,
|
---|
1079 | * digest Digest
|
---|
1080 | * }
|
---|
1081 | * DigestAlgorithmIdentifier ::= AlgorithmIdentifier
|
---|
1082 | * Digest ::= OCTET STRING
|
---|
1083 | *
|
---|
1084 | * To perform PSS signature verification, provide an instance
|
---|
1085 | * of Forge PSS object as the scheme parameter.
|
---|
1086 | *
|
---|
1087 | * @param digest the message digest hash to compare against the signature,
|
---|
1088 | * as a binary-encoded string.
|
---|
1089 | * @param signature the signature to verify, as a binary-encoded string.
|
---|
1090 | * @param scheme signature verification scheme to use:
|
---|
1091 | * 'RSASSA-PKCS1-V1_5' or undefined for RSASSA PKCS#1 v1.5,
|
---|
1092 | * a Forge PSS object for RSASSA-PSS,
|
---|
1093 | * 'NONE' or null for none, DigestInfo will not be expected, but
|
---|
1094 | * PKCS#1 v1.5 padding will still be used.
|
---|
1095 | *
|
---|
1096 | * @return true if the signature was verified, false if not.
|
---|
1097 | */
|
---|
1098 | key.verify = function(digest, signature, scheme) {
|
---|
1099 | if(typeof scheme === 'string') {
|
---|
1100 | scheme = scheme.toUpperCase();
|
---|
1101 | } else if(scheme === undefined) {
|
---|
1102 | scheme = 'RSASSA-PKCS1-V1_5';
|
---|
1103 | }
|
---|
1104 |
|
---|
1105 | if(scheme === 'RSASSA-PKCS1-V1_5') {
|
---|
1106 | scheme = {
|
---|
1107 | verify: function(digest, d) {
|
---|
1108 | // remove padding
|
---|
1109 | d = _decodePkcs1_v1_5(d, key, true);
|
---|
1110 | // d is ASN.1 BER-encoded DigestInfo
|
---|
1111 | var obj = asn1.fromDer(d);
|
---|
1112 | // compare the given digest to the decrypted one
|
---|
1113 | return digest === obj.value[1].value;
|
---|
1114 | }
|
---|
1115 | };
|
---|
1116 | } else if(scheme === 'NONE' || scheme === 'NULL' || scheme === null) {
|
---|
1117 | scheme = {
|
---|
1118 | verify: function(digest, d) {
|
---|
1119 | // remove padding
|
---|
1120 | d = _decodePkcs1_v1_5(d, key, true);
|
---|
1121 | return digest === d;
|
---|
1122 | }
|
---|
1123 | };
|
---|
1124 | }
|
---|
1125 |
|
---|
1126 | // do rsa decryption w/o any decoding, then verify -- which does decoding
|
---|
1127 | var d = pki.rsa.decrypt(signature, key, true, false);
|
---|
1128 | return scheme.verify(digest, d, key.n.bitLength());
|
---|
1129 | };
|
---|
1130 |
|
---|
1131 | return key;
|
---|
1132 | };
|
---|
1133 |
|
---|
1134 | /**
|
---|
1135 | * Sets an RSA private key from BigIntegers modulus, exponent, primes,
|
---|
1136 | * prime exponents, and modular multiplicative inverse.
|
---|
1137 | *
|
---|
1138 | * @param n the modulus.
|
---|
1139 | * @param e the public exponent.
|
---|
1140 | * @param d the private exponent ((inverse of e) mod n).
|
---|
1141 | * @param p the first prime.
|
---|
1142 | * @param q the second prime.
|
---|
1143 | * @param dP exponent1 (d mod (p-1)).
|
---|
1144 | * @param dQ exponent2 (d mod (q-1)).
|
---|
1145 | * @param qInv ((inverse of q) mod p)
|
---|
1146 | *
|
---|
1147 | * @return the private key.
|
---|
1148 | */
|
---|
1149 | pki.setRsaPrivateKey = pki.rsa.setPrivateKey = function(
|
---|
1150 | n, e, d, p, q, dP, dQ, qInv) {
|
---|
1151 | var key = {
|
---|
1152 | n: n,
|
---|
1153 | e: e,
|
---|
1154 | d: d,
|
---|
1155 | p: p,
|
---|
1156 | q: q,
|
---|
1157 | dP: dP,
|
---|
1158 | dQ: dQ,
|
---|
1159 | qInv: qInv
|
---|
1160 | };
|
---|
1161 |
|
---|
1162 | /**
|
---|
1163 | * Decrypts the given data with this private key. The decryption scheme
|
---|
1164 | * must match the one used to encrypt the data.
|
---|
1165 | *
|
---|
1166 | * @param data the byte string to decrypt.
|
---|
1167 | * @param scheme the decryption scheme to use:
|
---|
1168 | * 'RSAES-PKCS1-V1_5' (default),
|
---|
1169 | * 'RSA-OAEP',
|
---|
1170 | * 'RAW', 'NONE', or null to perform raw RSA decryption.
|
---|
1171 | * @param schemeOptions any scheme-specific options.
|
---|
1172 | *
|
---|
1173 | * @return the decrypted byte string.
|
---|
1174 | */
|
---|
1175 | key.decrypt = function(data, scheme, schemeOptions) {
|
---|
1176 | if(typeof scheme === 'string') {
|
---|
1177 | scheme = scheme.toUpperCase();
|
---|
1178 | } else if(scheme === undefined) {
|
---|
1179 | scheme = 'RSAES-PKCS1-V1_5';
|
---|
1180 | }
|
---|
1181 |
|
---|
1182 | // do rsa decryption w/o any decoding
|
---|
1183 | var d = pki.rsa.decrypt(data, key, false, false);
|
---|
1184 |
|
---|
1185 | if(scheme === 'RSAES-PKCS1-V1_5') {
|
---|
1186 | scheme = {decode: _decodePkcs1_v1_5};
|
---|
1187 | } else if(scheme === 'RSA-OAEP' || scheme === 'RSAES-OAEP') {
|
---|
1188 | scheme = {
|
---|
1189 | decode: function(d, key) {
|
---|
1190 | return forge.pkcs1.decode_rsa_oaep(key, d, schemeOptions);
|
---|
1191 | }
|
---|
1192 | };
|
---|
1193 | } else if(['RAW', 'NONE', 'NULL', null].indexOf(scheme) !== -1) {
|
---|
1194 | scheme = {decode: function(d) {return d;}};
|
---|
1195 | } else {
|
---|
1196 | throw new Error('Unsupported encryption scheme: "' + scheme + '".');
|
---|
1197 | }
|
---|
1198 |
|
---|
1199 | // decode according to scheme
|
---|
1200 | return scheme.decode(d, key, false);
|
---|
1201 | };
|
---|
1202 |
|
---|
1203 | /**
|
---|
1204 | * Signs the given digest, producing a signature.
|
---|
1205 | *
|
---|
1206 | * PKCS#1 supports multiple (currently two) signature schemes:
|
---|
1207 | * RSASSA-PKCS1-V1_5 and RSASSA-PSS.
|
---|
1208 | *
|
---|
1209 | * By default this implementation uses the "old scheme", i.e.
|
---|
1210 | * RSASSA-PKCS1-V1_5. In order to generate a PSS signature, provide
|
---|
1211 | * an instance of Forge PSS object as the scheme parameter.
|
---|
1212 | *
|
---|
1213 | * @param md the message digest object with the hash to sign.
|
---|
1214 | * @param scheme the signature scheme to use:
|
---|
1215 | * 'RSASSA-PKCS1-V1_5' or undefined for RSASSA PKCS#1 v1.5,
|
---|
1216 | * a Forge PSS object for RSASSA-PSS,
|
---|
1217 | * 'NONE' or null for none, DigestInfo will not be used but
|
---|
1218 | * PKCS#1 v1.5 padding will still be used.
|
---|
1219 | *
|
---|
1220 | * @return the signature as a byte string.
|
---|
1221 | */
|
---|
1222 | key.sign = function(md, scheme) {
|
---|
1223 | /* Note: The internal implementation of RSA operations is being
|
---|
1224 | transitioned away from a PKCS#1 v1.5 hard-coded scheme. Some legacy
|
---|
1225 | code like the use of an encoding block identifier 'bt' will eventually
|
---|
1226 | be removed. */
|
---|
1227 |
|
---|
1228 | // private key operation
|
---|
1229 | var bt = false;
|
---|
1230 |
|
---|
1231 | if(typeof scheme === 'string') {
|
---|
1232 | scheme = scheme.toUpperCase();
|
---|
1233 | }
|
---|
1234 |
|
---|
1235 | if(scheme === undefined || scheme === 'RSASSA-PKCS1-V1_5') {
|
---|
1236 | scheme = {encode: emsaPkcs1v15encode};
|
---|
1237 | bt = 0x01;
|
---|
1238 | } else if(scheme === 'NONE' || scheme === 'NULL' || scheme === null) {
|
---|
1239 | scheme = {encode: function() {return md;}};
|
---|
1240 | bt = 0x01;
|
---|
1241 | }
|
---|
1242 |
|
---|
1243 | // encode and then encrypt
|
---|
1244 | var d = scheme.encode(md, key.n.bitLength());
|
---|
1245 | return pki.rsa.encrypt(d, key, bt);
|
---|
1246 | };
|
---|
1247 |
|
---|
1248 | return key;
|
---|
1249 | };
|
---|
1250 |
|
---|
1251 | /**
|
---|
1252 | * Wraps an RSAPrivateKey ASN.1 object in an ASN.1 PrivateKeyInfo object.
|
---|
1253 | *
|
---|
1254 | * @param rsaKey the ASN.1 RSAPrivateKey.
|
---|
1255 | *
|
---|
1256 | * @return the ASN.1 PrivateKeyInfo.
|
---|
1257 | */
|
---|
1258 | pki.wrapRsaPrivateKey = function(rsaKey) {
|
---|
1259 | // PrivateKeyInfo
|
---|
1260 | return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
|
---|
1261 | // version (0)
|
---|
1262 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
|
---|
1263 | asn1.integerToDer(0).getBytes()),
|
---|
1264 | // privateKeyAlgorithm
|
---|
1265 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
|
---|
1266 | asn1.create(
|
---|
1267 | asn1.Class.UNIVERSAL, asn1.Type.OID, false,
|
---|
1268 | asn1.oidToDer(pki.oids.rsaEncryption).getBytes()),
|
---|
1269 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '')
|
---|
1270 | ]),
|
---|
1271 | // PrivateKey
|
---|
1272 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING, false,
|
---|
1273 | asn1.toDer(rsaKey).getBytes())
|
---|
1274 | ]);
|
---|
1275 | };
|
---|
1276 |
|
---|
1277 | /**
|
---|
1278 | * Converts a private key from an ASN.1 object.
|
---|
1279 | *
|
---|
1280 | * @param obj the ASN.1 representation of a PrivateKeyInfo containing an
|
---|
1281 | * RSAPrivateKey or an RSAPrivateKey.
|
---|
1282 | *
|
---|
1283 | * @return the private key.
|
---|
1284 | */
|
---|
1285 | pki.privateKeyFromAsn1 = function(obj) {
|
---|
1286 | // get PrivateKeyInfo
|
---|
1287 | var capture = {};
|
---|
1288 | var errors = [];
|
---|
1289 | if(asn1.validate(obj, privateKeyValidator, capture, errors)) {
|
---|
1290 | obj = asn1.fromDer(forge.util.createBuffer(capture.privateKey));
|
---|
1291 | }
|
---|
1292 |
|
---|
1293 | // get RSAPrivateKey
|
---|
1294 | capture = {};
|
---|
1295 | errors = [];
|
---|
1296 | if(!asn1.validate(obj, rsaPrivateKeyValidator, capture, errors)) {
|
---|
1297 | var error = new Error('Cannot read private key. ' +
|
---|
1298 | 'ASN.1 object does not contain an RSAPrivateKey.');
|
---|
1299 | error.errors = errors;
|
---|
1300 | throw error;
|
---|
1301 | }
|
---|
1302 |
|
---|
1303 | // Note: Version is currently ignored.
|
---|
1304 | // capture.privateKeyVersion
|
---|
1305 | // FIXME: inefficient, get a BigInteger that uses byte strings
|
---|
1306 | var n, e, d, p, q, dP, dQ, qInv;
|
---|
1307 | n = forge.util.createBuffer(capture.privateKeyModulus).toHex();
|
---|
1308 | e = forge.util.createBuffer(capture.privateKeyPublicExponent).toHex();
|
---|
1309 | d = forge.util.createBuffer(capture.privateKeyPrivateExponent).toHex();
|
---|
1310 | p = forge.util.createBuffer(capture.privateKeyPrime1).toHex();
|
---|
1311 | q = forge.util.createBuffer(capture.privateKeyPrime2).toHex();
|
---|
1312 | dP = forge.util.createBuffer(capture.privateKeyExponent1).toHex();
|
---|
1313 | dQ = forge.util.createBuffer(capture.privateKeyExponent2).toHex();
|
---|
1314 | qInv = forge.util.createBuffer(capture.privateKeyCoefficient).toHex();
|
---|
1315 |
|
---|
1316 | // set private key
|
---|
1317 | return pki.setRsaPrivateKey(
|
---|
1318 | new BigInteger(n, 16),
|
---|
1319 | new BigInteger(e, 16),
|
---|
1320 | new BigInteger(d, 16),
|
---|
1321 | new BigInteger(p, 16),
|
---|
1322 | new BigInteger(q, 16),
|
---|
1323 | new BigInteger(dP, 16),
|
---|
1324 | new BigInteger(dQ, 16),
|
---|
1325 | new BigInteger(qInv, 16));
|
---|
1326 | };
|
---|
1327 |
|
---|
1328 | /**
|
---|
1329 | * Converts a private key to an ASN.1 RSAPrivateKey.
|
---|
1330 | *
|
---|
1331 | * @param key the private key.
|
---|
1332 | *
|
---|
1333 | * @return the ASN.1 representation of an RSAPrivateKey.
|
---|
1334 | */
|
---|
1335 | pki.privateKeyToAsn1 = pki.privateKeyToRSAPrivateKey = function(key) {
|
---|
1336 | // RSAPrivateKey
|
---|
1337 | return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
|
---|
1338 | // version (0 = only 2 primes, 1 multiple primes)
|
---|
1339 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
|
---|
1340 | asn1.integerToDer(0).getBytes()),
|
---|
1341 | // modulus (n)
|
---|
1342 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
|
---|
1343 | _bnToBytes(key.n)),
|
---|
1344 | // publicExponent (e)
|
---|
1345 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
|
---|
1346 | _bnToBytes(key.e)),
|
---|
1347 | // privateExponent (d)
|
---|
1348 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
|
---|
1349 | _bnToBytes(key.d)),
|
---|
1350 | // privateKeyPrime1 (p)
|
---|
1351 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
|
---|
1352 | _bnToBytes(key.p)),
|
---|
1353 | // privateKeyPrime2 (q)
|
---|
1354 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
|
---|
1355 | _bnToBytes(key.q)),
|
---|
1356 | // privateKeyExponent1 (dP)
|
---|
1357 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
|
---|
1358 | _bnToBytes(key.dP)),
|
---|
1359 | // privateKeyExponent2 (dQ)
|
---|
1360 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
|
---|
1361 | _bnToBytes(key.dQ)),
|
---|
1362 | // coefficient (qInv)
|
---|
1363 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
|
---|
1364 | _bnToBytes(key.qInv))
|
---|
1365 | ]);
|
---|
1366 | };
|
---|
1367 |
|
---|
1368 | /**
|
---|
1369 | * Converts a public key from an ASN.1 SubjectPublicKeyInfo or RSAPublicKey.
|
---|
1370 | *
|
---|
1371 | * @param obj the asn1 representation of a SubjectPublicKeyInfo or RSAPublicKey.
|
---|
1372 | *
|
---|
1373 | * @return the public key.
|
---|
1374 | */
|
---|
1375 | pki.publicKeyFromAsn1 = function(obj) {
|
---|
1376 | // get SubjectPublicKeyInfo
|
---|
1377 | var capture = {};
|
---|
1378 | var errors = [];
|
---|
1379 | if(asn1.validate(obj, publicKeyValidator, capture, errors)) {
|
---|
1380 | // get oid
|
---|
1381 | var oid = asn1.derToOid(capture.publicKeyOid);
|
---|
1382 | if(oid !== pki.oids.rsaEncryption) {
|
---|
1383 | var error = new Error('Cannot read public key. Unknown OID.');
|
---|
1384 | error.oid = oid;
|
---|
1385 | throw error;
|
---|
1386 | }
|
---|
1387 | obj = capture.rsaPublicKey;
|
---|
1388 | }
|
---|
1389 |
|
---|
1390 | // get RSA params
|
---|
1391 | errors = [];
|
---|
1392 | if(!asn1.validate(obj, rsaPublicKeyValidator, capture, errors)) {
|
---|
1393 | var error = new Error('Cannot read public key. ' +
|
---|
1394 | 'ASN.1 object does not contain an RSAPublicKey.');
|
---|
1395 | error.errors = errors;
|
---|
1396 | throw error;
|
---|
1397 | }
|
---|
1398 |
|
---|
1399 | // FIXME: inefficient, get a BigInteger that uses byte strings
|
---|
1400 | var n = forge.util.createBuffer(capture.publicKeyModulus).toHex();
|
---|
1401 | var e = forge.util.createBuffer(capture.publicKeyExponent).toHex();
|
---|
1402 |
|
---|
1403 | // set public key
|
---|
1404 | return pki.setRsaPublicKey(
|
---|
1405 | new BigInteger(n, 16),
|
---|
1406 | new BigInteger(e, 16));
|
---|
1407 | };
|
---|
1408 |
|
---|
1409 | /**
|
---|
1410 | * Converts a public key to an ASN.1 SubjectPublicKeyInfo.
|
---|
1411 | *
|
---|
1412 | * @param key the public key.
|
---|
1413 | *
|
---|
1414 | * @return the asn1 representation of a SubjectPublicKeyInfo.
|
---|
1415 | */
|
---|
1416 | pki.publicKeyToAsn1 = pki.publicKeyToSubjectPublicKeyInfo = function(key) {
|
---|
1417 | // SubjectPublicKeyInfo
|
---|
1418 | return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
|
---|
1419 | // AlgorithmIdentifier
|
---|
1420 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
|
---|
1421 | // algorithm
|
---|
1422 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OID, false,
|
---|
1423 | asn1.oidToDer(pki.oids.rsaEncryption).getBytes()),
|
---|
1424 | // parameters (null)
|
---|
1425 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '')
|
---|
1426 | ]),
|
---|
1427 | // subjectPublicKey
|
---|
1428 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.BITSTRING, false, [
|
---|
1429 | pki.publicKeyToRSAPublicKey(key)
|
---|
1430 | ])
|
---|
1431 | ]);
|
---|
1432 | };
|
---|
1433 |
|
---|
1434 | /**
|
---|
1435 | * Converts a public key to an ASN.1 RSAPublicKey.
|
---|
1436 | *
|
---|
1437 | * @param key the public key.
|
---|
1438 | *
|
---|
1439 | * @return the asn1 representation of a RSAPublicKey.
|
---|
1440 | */
|
---|
1441 | pki.publicKeyToRSAPublicKey = function(key) {
|
---|
1442 | // RSAPublicKey
|
---|
1443 | return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
|
---|
1444 | // modulus (n)
|
---|
1445 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
|
---|
1446 | _bnToBytes(key.n)),
|
---|
1447 | // publicExponent (e)
|
---|
1448 | asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
|
---|
1449 | _bnToBytes(key.e))
|
---|
1450 | ]);
|
---|
1451 | };
|
---|
1452 |
|
---|
1453 | /**
|
---|
1454 | * Encodes a message using PKCS#1 v1.5 padding.
|
---|
1455 | *
|
---|
1456 | * @param m the message to encode.
|
---|
1457 | * @param key the RSA key to use.
|
---|
1458 | * @param bt the block type to use, i.e. either 0x01 (for signing) or 0x02
|
---|
1459 | * (for encryption).
|
---|
1460 | *
|
---|
1461 | * @return the padded byte buffer.
|
---|
1462 | */
|
---|
1463 | function _encodePkcs1_v1_5(m, key, bt) {
|
---|
1464 | var eb = forge.util.createBuffer();
|
---|
1465 |
|
---|
1466 | // get the length of the modulus in bytes
|
---|
1467 | var k = Math.ceil(key.n.bitLength() / 8);
|
---|
1468 |
|
---|
1469 | /* use PKCS#1 v1.5 padding */
|
---|
1470 | if(m.length > (k - 11)) {
|
---|
1471 | var error = new Error('Message is too long for PKCS#1 v1.5 padding.');
|
---|
1472 | error.length = m.length;
|
---|
1473 | error.max = k - 11;
|
---|
1474 | throw error;
|
---|
1475 | }
|
---|
1476 |
|
---|
1477 | /* A block type BT, a padding string PS, and the data D shall be
|
---|
1478 | formatted into an octet string EB, the encryption block:
|
---|
1479 |
|
---|
1480 | EB = 00 || BT || PS || 00 || D
|
---|
1481 |
|
---|
1482 | The block type BT shall be a single octet indicating the structure of
|
---|
1483 | the encryption block. For this version of the document it shall have
|
---|
1484 | value 00, 01, or 02. For a private-key operation, the block type
|
---|
1485 | shall be 00 or 01. For a public-key operation, it shall be 02.
|
---|
1486 |
|
---|
1487 | The padding string PS shall consist of k-3-||D|| octets. For block
|
---|
1488 | type 00, the octets shall have value 00; for block type 01, they
|
---|
1489 | shall have value FF; and for block type 02, they shall be
|
---|
1490 | pseudorandomly generated and nonzero. This makes the length of the
|
---|
1491 | encryption block EB equal to k. */
|
---|
1492 |
|
---|
1493 | // build the encryption block
|
---|
1494 | eb.putByte(0x00);
|
---|
1495 | eb.putByte(bt);
|
---|
1496 |
|
---|
1497 | // create the padding
|
---|
1498 | var padNum = k - 3 - m.length;
|
---|
1499 | var padByte;
|
---|
1500 | // private key op
|
---|
1501 | if(bt === 0x00 || bt === 0x01) {
|
---|
1502 | padByte = (bt === 0x00) ? 0x00 : 0xFF;
|
---|
1503 | for(var i = 0; i < padNum; ++i) {
|
---|
1504 | eb.putByte(padByte);
|
---|
1505 | }
|
---|
1506 | } else {
|
---|
1507 | // public key op
|
---|
1508 | // pad with random non-zero values
|
---|
1509 | while(padNum > 0) {
|
---|
1510 | var numZeros = 0;
|
---|
1511 | var padBytes = forge.random.getBytes(padNum);
|
---|
1512 | for(var i = 0; i < padNum; ++i) {
|
---|
1513 | padByte = padBytes.charCodeAt(i);
|
---|
1514 | if(padByte === 0) {
|
---|
1515 | ++numZeros;
|
---|
1516 | } else {
|
---|
1517 | eb.putByte(padByte);
|
---|
1518 | }
|
---|
1519 | }
|
---|
1520 | padNum = numZeros;
|
---|
1521 | }
|
---|
1522 | }
|
---|
1523 |
|
---|
1524 | // zero followed by message
|
---|
1525 | eb.putByte(0x00);
|
---|
1526 | eb.putBytes(m);
|
---|
1527 |
|
---|
1528 | return eb;
|
---|
1529 | }
|
---|
1530 |
|
---|
1531 | /**
|
---|
1532 | * Decodes a message using PKCS#1 v1.5 padding.
|
---|
1533 | *
|
---|
1534 | * @param em the message to decode.
|
---|
1535 | * @param key the RSA key to use.
|
---|
1536 | * @param pub true if the key is a public key, false if it is private.
|
---|
1537 | * @param ml the message length, if specified.
|
---|
1538 | *
|
---|
1539 | * @return the decoded bytes.
|
---|
1540 | */
|
---|
1541 | function _decodePkcs1_v1_5(em, key, pub, ml) {
|
---|
1542 | // get the length of the modulus in bytes
|
---|
1543 | var k = Math.ceil(key.n.bitLength() / 8);
|
---|
1544 |
|
---|
1545 | /* It is an error if any of the following conditions occurs:
|
---|
1546 |
|
---|
1547 | 1. The encryption block EB cannot be parsed unambiguously.
|
---|
1548 | 2. The padding string PS consists of fewer than eight octets
|
---|
1549 | or is inconsisent with the block type BT.
|
---|
1550 | 3. The decryption process is a public-key operation and the block
|
---|
1551 | type BT is not 00 or 01, or the decryption process is a
|
---|
1552 | private-key operation and the block type is not 02.
|
---|
1553 | */
|
---|
1554 |
|
---|
1555 | // parse the encryption block
|
---|
1556 | var eb = forge.util.createBuffer(em);
|
---|
1557 | var first = eb.getByte();
|
---|
1558 | var bt = eb.getByte();
|
---|
1559 | if(first !== 0x00 ||
|
---|
1560 | (pub && bt !== 0x00 && bt !== 0x01) ||
|
---|
1561 | (!pub && bt != 0x02) ||
|
---|
1562 | (pub && bt === 0x00 && typeof(ml) === 'undefined')) {
|
---|
1563 | throw new Error('Encryption block is invalid.');
|
---|
1564 | }
|
---|
1565 |
|
---|
1566 | var padNum = 0;
|
---|
1567 | if(bt === 0x00) {
|
---|
1568 | // check all padding bytes for 0x00
|
---|
1569 | padNum = k - 3 - ml;
|
---|
1570 | for(var i = 0; i < padNum; ++i) {
|
---|
1571 | if(eb.getByte() !== 0x00) {
|
---|
1572 | throw new Error('Encryption block is invalid.');
|
---|
1573 | }
|
---|
1574 | }
|
---|
1575 | } else if(bt === 0x01) {
|
---|
1576 | // find the first byte that isn't 0xFF, should be after all padding
|
---|
1577 | padNum = 0;
|
---|
1578 | while(eb.length() > 1) {
|
---|
1579 | if(eb.getByte() !== 0xFF) {
|
---|
1580 | --eb.read;
|
---|
1581 | break;
|
---|
1582 | }
|
---|
1583 | ++padNum;
|
---|
1584 | }
|
---|
1585 | } else if(bt === 0x02) {
|
---|
1586 | // look for 0x00 byte
|
---|
1587 | padNum = 0;
|
---|
1588 | while(eb.length() > 1) {
|
---|
1589 | if(eb.getByte() === 0x00) {
|
---|
1590 | --eb.read;
|
---|
1591 | break;
|
---|
1592 | }
|
---|
1593 | ++padNum;
|
---|
1594 | }
|
---|
1595 | }
|
---|
1596 |
|
---|
1597 | // zero must be 0x00 and padNum must be (k - 3 - message length)
|
---|
1598 | var zero = eb.getByte();
|
---|
1599 | if(zero !== 0x00 || padNum !== (k - 3 - eb.length())) {
|
---|
1600 | throw new Error('Encryption block is invalid.');
|
---|
1601 | }
|
---|
1602 |
|
---|
1603 | return eb.getBytes();
|
---|
1604 | }
|
---|
1605 |
|
---|
1606 | /**
|
---|
1607 | * Runs the key-generation algorithm asynchronously, either in the background
|
---|
1608 | * via Web Workers, or using the main thread and setImmediate.
|
---|
1609 | *
|
---|
1610 | * @param state the key-pair generation state.
|
---|
1611 | * @param [options] options for key-pair generation:
|
---|
1612 | * workerScript the worker script URL.
|
---|
1613 | * workers the number of web workers (if supported) to use,
|
---|
1614 | * (default: 2, -1 to use estimated cores minus one).
|
---|
1615 | * workLoad the size of the work load, ie: number of possible prime
|
---|
1616 | * numbers for each web worker to check per work assignment,
|
---|
1617 | * (default: 100).
|
---|
1618 | * @param callback(err, keypair) called once the operation completes.
|
---|
1619 | */
|
---|
1620 | function _generateKeyPair(state, options, callback) {
|
---|
1621 | if(typeof options === 'function') {
|
---|
1622 | callback = options;
|
---|
1623 | options = {};
|
---|
1624 | }
|
---|
1625 | options = options || {};
|
---|
1626 |
|
---|
1627 | var opts = {
|
---|
1628 | algorithm: {
|
---|
1629 | name: options.algorithm || 'PRIMEINC',
|
---|
1630 | options: {
|
---|
1631 | workers: options.workers || 2,
|
---|
1632 | workLoad: options.workLoad || 100,
|
---|
1633 | workerScript: options.workerScript
|
---|
1634 | }
|
---|
1635 | }
|
---|
1636 | };
|
---|
1637 | if('prng' in options) {
|
---|
1638 | opts.prng = options.prng;
|
---|
1639 | }
|
---|
1640 |
|
---|
1641 | generate();
|
---|
1642 |
|
---|
1643 | function generate() {
|
---|
1644 | // find p and then q (done in series to simplify)
|
---|
1645 | getPrime(state.pBits, function(err, num) {
|
---|
1646 | if(err) {
|
---|
1647 | return callback(err);
|
---|
1648 | }
|
---|
1649 | state.p = num;
|
---|
1650 | if(state.q !== null) {
|
---|
1651 | return finish(err, state.q);
|
---|
1652 | }
|
---|
1653 | getPrime(state.qBits, finish);
|
---|
1654 | });
|
---|
1655 | }
|
---|
1656 |
|
---|
1657 | function getPrime(bits, callback) {
|
---|
1658 | forge.prime.generateProbablePrime(bits, opts, callback);
|
---|
1659 | }
|
---|
1660 |
|
---|
1661 | function finish(err, num) {
|
---|
1662 | if(err) {
|
---|
1663 | return callback(err);
|
---|
1664 | }
|
---|
1665 |
|
---|
1666 | // set q
|
---|
1667 | state.q = num;
|
---|
1668 |
|
---|
1669 | // ensure p is larger than q (swap them if not)
|
---|
1670 | if(state.p.compareTo(state.q) < 0) {
|
---|
1671 | var tmp = state.p;
|
---|
1672 | state.p = state.q;
|
---|
1673 | state.q = tmp;
|
---|
1674 | }
|
---|
1675 |
|
---|
1676 | // ensure p is coprime with e
|
---|
1677 | if(state.p.subtract(BigInteger.ONE).gcd(state.e)
|
---|
1678 | .compareTo(BigInteger.ONE) !== 0) {
|
---|
1679 | state.p = null;
|
---|
1680 | generate();
|
---|
1681 | return;
|
---|
1682 | }
|
---|
1683 |
|
---|
1684 | // ensure q is coprime with e
|
---|
1685 | if(state.q.subtract(BigInteger.ONE).gcd(state.e)
|
---|
1686 | .compareTo(BigInteger.ONE) !== 0) {
|
---|
1687 | state.q = null;
|
---|
1688 | getPrime(state.qBits, finish);
|
---|
1689 | return;
|
---|
1690 | }
|
---|
1691 |
|
---|
1692 | // compute phi: (p - 1)(q - 1) (Euler's totient function)
|
---|
1693 | state.p1 = state.p.subtract(BigInteger.ONE);
|
---|
1694 | state.q1 = state.q.subtract(BigInteger.ONE);
|
---|
1695 | state.phi = state.p1.multiply(state.q1);
|
---|
1696 |
|
---|
1697 | // ensure e and phi are coprime
|
---|
1698 | if(state.phi.gcd(state.e).compareTo(BigInteger.ONE) !== 0) {
|
---|
1699 | // phi and e aren't coprime, so generate a new p and q
|
---|
1700 | state.p = state.q = null;
|
---|
1701 | generate();
|
---|
1702 | return;
|
---|
1703 | }
|
---|
1704 |
|
---|
1705 | // create n, ensure n is has the right number of bits
|
---|
1706 | state.n = state.p.multiply(state.q);
|
---|
1707 | if(state.n.bitLength() !== state.bits) {
|
---|
1708 | // failed, get new q
|
---|
1709 | state.q = null;
|
---|
1710 | getPrime(state.qBits, finish);
|
---|
1711 | return;
|
---|
1712 | }
|
---|
1713 |
|
---|
1714 | // set keys
|
---|
1715 | var d = state.e.modInverse(state.phi);
|
---|
1716 | state.keys = {
|
---|
1717 | privateKey: pki.rsa.setPrivateKey(
|
---|
1718 | state.n, state.e, d, state.p, state.q,
|
---|
1719 | d.mod(state.p1), d.mod(state.q1),
|
---|
1720 | state.q.modInverse(state.p)),
|
---|
1721 | publicKey: pki.rsa.setPublicKey(state.n, state.e)
|
---|
1722 | };
|
---|
1723 |
|
---|
1724 | callback(null, state.keys);
|
---|
1725 | }
|
---|
1726 | }
|
---|
1727 |
|
---|
1728 | /**
|
---|
1729 | * Converts a positive BigInteger into 2's-complement big-endian bytes.
|
---|
1730 | *
|
---|
1731 | * @param b the big integer to convert.
|
---|
1732 | *
|
---|
1733 | * @return the bytes.
|
---|
1734 | */
|
---|
1735 | function _bnToBytes(b) {
|
---|
1736 | // prepend 0x00 if first byte >= 0x80
|
---|
1737 | var hex = b.toString(16);
|
---|
1738 | if(hex[0] >= '8') {
|
---|
1739 | hex = '00' + hex;
|
---|
1740 | }
|
---|
1741 | var bytes = forge.util.hexToBytes(hex);
|
---|
1742 |
|
---|
1743 | // ensure integer is minimally-encoded
|
---|
1744 | if(bytes.length > 1 &&
|
---|
1745 | // leading 0x00 for positive integer
|
---|
1746 | ((bytes.charCodeAt(0) === 0 &&
|
---|
1747 | (bytes.charCodeAt(1) & 0x80) === 0) ||
|
---|
1748 | // leading 0xFF for negative integer
|
---|
1749 | (bytes.charCodeAt(0) === 0xFF &&
|
---|
1750 | (bytes.charCodeAt(1) & 0x80) === 0x80))) {
|
---|
1751 | return bytes.substr(1);
|
---|
1752 | }
|
---|
1753 | return bytes;
|
---|
1754 | }
|
---|
1755 |
|
---|
1756 | /**
|
---|
1757 | * Returns the required number of Miller-Rabin tests to generate a
|
---|
1758 | * prime with an error probability of (1/2)^80.
|
---|
1759 | *
|
---|
1760 | * See Handbook of Applied Cryptography Chapter 4, Table 4.4.
|
---|
1761 | *
|
---|
1762 | * @param bits the bit size.
|
---|
1763 | *
|
---|
1764 | * @return the required number of iterations.
|
---|
1765 | */
|
---|
1766 | function _getMillerRabinTests(bits) {
|
---|
1767 | if(bits <= 100) return 27;
|
---|
1768 | if(bits <= 150) return 18;
|
---|
1769 | if(bits <= 200) return 15;
|
---|
1770 | if(bits <= 250) return 12;
|
---|
1771 | if(bits <= 300) return 9;
|
---|
1772 | if(bits <= 350) return 8;
|
---|
1773 | if(bits <= 400) return 7;
|
---|
1774 | if(bits <= 500) return 6;
|
---|
1775 | if(bits <= 600) return 5;
|
---|
1776 | if(bits <= 800) return 4;
|
---|
1777 | if(bits <= 1250) return 3;
|
---|
1778 | return 2;
|
---|
1779 | }
|
---|
1780 |
|
---|
1781 | /**
|
---|
1782 | * Performs feature detection on the Node crypto interface.
|
---|
1783 | *
|
---|
1784 | * @param fn the feature (function) to detect.
|
---|
1785 | *
|
---|
1786 | * @return true if detected, false if not.
|
---|
1787 | */
|
---|
1788 | function _detectNodeCrypto(fn) {
|
---|
1789 | return forge.util.isNodejs && typeof _crypto[fn] === 'function';
|
---|
1790 | }
|
---|
1791 |
|
---|
1792 | /**
|
---|
1793 | * Performs feature detection on the SubtleCrypto interface.
|
---|
1794 | *
|
---|
1795 | * @param fn the feature (function) to detect.
|
---|
1796 | *
|
---|
1797 | * @return true if detected, false if not.
|
---|
1798 | */
|
---|
1799 | function _detectSubtleCrypto(fn) {
|
---|
1800 | return (typeof util.globalScope !== 'undefined' &&
|
---|
1801 | typeof util.globalScope.crypto === 'object' &&
|
---|
1802 | typeof util.globalScope.crypto.subtle === 'object' &&
|
---|
1803 | typeof util.globalScope.crypto.subtle[fn] === 'function');
|
---|
1804 | }
|
---|
1805 |
|
---|
1806 | /**
|
---|
1807 | * Performs feature detection on the deprecated Microsoft Internet Explorer
|
---|
1808 | * outdated SubtleCrypto interface. This function should only be used after
|
---|
1809 | * checking for the modern, standard SubtleCrypto interface.
|
---|
1810 | *
|
---|
1811 | * @param fn the feature (function) to detect.
|
---|
1812 | *
|
---|
1813 | * @return true if detected, false if not.
|
---|
1814 | */
|
---|
1815 | function _detectSubtleMsCrypto(fn) {
|
---|
1816 | return (typeof util.globalScope !== 'undefined' &&
|
---|
1817 | typeof util.globalScope.msCrypto === 'object' &&
|
---|
1818 | typeof util.globalScope.msCrypto.subtle === 'object' &&
|
---|
1819 | typeof util.globalScope.msCrypto.subtle[fn] === 'function');
|
---|
1820 | }
|
---|
1821 |
|
---|
1822 | function _intToUint8Array(x) {
|
---|
1823 | var bytes = forge.util.hexToBytes(x.toString(16));
|
---|
1824 | var buffer = new Uint8Array(bytes.length);
|
---|
1825 | for(var i = 0; i < bytes.length; ++i) {
|
---|
1826 | buffer[i] = bytes.charCodeAt(i);
|
---|
1827 | }
|
---|
1828 | return buffer;
|
---|
1829 | }
|
---|
1830 |
|
---|
1831 | function _privateKeyFromJwk(jwk) {
|
---|
1832 | if(jwk.kty !== 'RSA') {
|
---|
1833 | throw new Error(
|
---|
1834 | 'Unsupported key algorithm "' + jwk.kty + '"; algorithm must be "RSA".');
|
---|
1835 | }
|
---|
1836 | return pki.setRsaPrivateKey(
|
---|
1837 | _base64ToBigInt(jwk.n),
|
---|
1838 | _base64ToBigInt(jwk.e),
|
---|
1839 | _base64ToBigInt(jwk.d),
|
---|
1840 | _base64ToBigInt(jwk.p),
|
---|
1841 | _base64ToBigInt(jwk.q),
|
---|
1842 | _base64ToBigInt(jwk.dp),
|
---|
1843 | _base64ToBigInt(jwk.dq),
|
---|
1844 | _base64ToBigInt(jwk.qi));
|
---|
1845 | }
|
---|
1846 |
|
---|
1847 | function _publicKeyFromJwk(jwk) {
|
---|
1848 | if(jwk.kty !== 'RSA') {
|
---|
1849 | throw new Error('Key algorithm must be "RSA".');
|
---|
1850 | }
|
---|
1851 | return pki.setRsaPublicKey(
|
---|
1852 | _base64ToBigInt(jwk.n),
|
---|
1853 | _base64ToBigInt(jwk.e));
|
---|
1854 | }
|
---|
1855 |
|
---|
1856 | function _base64ToBigInt(b64) {
|
---|
1857 | return new BigInteger(forge.util.bytesToHex(forge.util.decode64(b64)), 16);
|
---|
1858 | }
|
---|