[6a3a178] | 1 | /**
|
---|
| 2 | * A Javascript implementation of Transport Layer Security (TLS).
|
---|
| 3 | *
|
---|
| 4 | * @author Dave Longley
|
---|
| 5 | *
|
---|
| 6 | * Copyright (c) 2009-2014 Digital Bazaar, Inc.
|
---|
| 7 | *
|
---|
| 8 | * The TLS Handshake Protocol involves the following steps:
|
---|
| 9 | *
|
---|
| 10 | * - Exchange hello messages to agree on algorithms, exchange random values,
|
---|
| 11 | * and check for session resumption.
|
---|
| 12 | *
|
---|
| 13 | * - Exchange the necessary cryptographic parameters to allow the client and
|
---|
| 14 | * server to agree on a premaster secret.
|
---|
| 15 | *
|
---|
| 16 | * - Exchange certificates and cryptographic information to allow the client
|
---|
| 17 | * and server to authenticate themselves.
|
---|
| 18 | *
|
---|
| 19 | * - Generate a master secret from the premaster secret and exchanged random
|
---|
| 20 | * values.
|
---|
| 21 | *
|
---|
| 22 | * - Provide security parameters to the record layer.
|
---|
| 23 | *
|
---|
| 24 | * - Allow the client and server to verify that their peer has calculated the
|
---|
| 25 | * same security parameters and that the handshake occurred without tampering
|
---|
| 26 | * by an attacker.
|
---|
| 27 | *
|
---|
| 28 | * Up to 4 different messages may be sent during a key exchange. The server
|
---|
| 29 | * certificate, the server key exchange, the client certificate, and the
|
---|
| 30 | * client key exchange.
|
---|
| 31 | *
|
---|
| 32 | * A typical handshake (from the client's perspective).
|
---|
| 33 | *
|
---|
| 34 | * 1. Client sends ClientHello.
|
---|
| 35 | * 2. Client receives ServerHello.
|
---|
| 36 | * 3. Client receives optional Certificate.
|
---|
| 37 | * 4. Client receives optional ServerKeyExchange.
|
---|
| 38 | * 5. Client receives ServerHelloDone.
|
---|
| 39 | * 6. Client sends optional Certificate.
|
---|
| 40 | * 7. Client sends ClientKeyExchange.
|
---|
| 41 | * 8. Client sends optional CertificateVerify.
|
---|
| 42 | * 9. Client sends ChangeCipherSpec.
|
---|
| 43 | * 10. Client sends Finished.
|
---|
| 44 | * 11. Client receives ChangeCipherSpec.
|
---|
| 45 | * 12. Client receives Finished.
|
---|
| 46 | * 13. Client sends/receives application data.
|
---|
| 47 | *
|
---|
| 48 | * To reuse an existing session:
|
---|
| 49 | *
|
---|
| 50 | * 1. Client sends ClientHello with session ID for reuse.
|
---|
| 51 | * 2. Client receives ServerHello with same session ID if reusing.
|
---|
| 52 | * 3. Client receives ChangeCipherSpec message if reusing.
|
---|
| 53 | * 4. Client receives Finished.
|
---|
| 54 | * 5. Client sends ChangeCipherSpec.
|
---|
| 55 | * 6. Client sends Finished.
|
---|
| 56 | *
|
---|
| 57 | * Note: Client ignores HelloRequest if in the middle of a handshake.
|
---|
| 58 | *
|
---|
| 59 | * Record Layer:
|
---|
| 60 | *
|
---|
| 61 | * The record layer fragments information blocks into TLSPlaintext records
|
---|
| 62 | * carrying data in chunks of 2^14 bytes or less. Client message boundaries are
|
---|
| 63 | * not preserved in the record layer (i.e., multiple client messages of the
|
---|
| 64 | * same ContentType MAY be coalesced into a single TLSPlaintext record, or a
|
---|
| 65 | * single message MAY be fragmented across several records).
|
---|
| 66 | *
|
---|
| 67 | * struct {
|
---|
| 68 | * uint8 major;
|
---|
| 69 | * uint8 minor;
|
---|
| 70 | * } ProtocolVersion;
|
---|
| 71 | *
|
---|
| 72 | * struct {
|
---|
| 73 | * ContentType type;
|
---|
| 74 | * ProtocolVersion version;
|
---|
| 75 | * uint16 length;
|
---|
| 76 | * opaque fragment[TLSPlaintext.length];
|
---|
| 77 | * } TLSPlaintext;
|
---|
| 78 | *
|
---|
| 79 | * type:
|
---|
| 80 | * The higher-level protocol used to process the enclosed fragment.
|
---|
| 81 | *
|
---|
| 82 | * version:
|
---|
| 83 | * The version of the protocol being employed. TLS Version 1.2 uses version
|
---|
| 84 | * {3, 3}. TLS Version 1.0 uses version {3, 1}. Note that a client that
|
---|
| 85 | * supports multiple versions of TLS may not know what version will be
|
---|
| 86 | * employed before it receives the ServerHello.
|
---|
| 87 | *
|
---|
| 88 | * length:
|
---|
| 89 | * The length (in bytes) of the following TLSPlaintext.fragment. The length
|
---|
| 90 | * MUST NOT exceed 2^14 = 16384 bytes.
|
---|
| 91 | *
|
---|
| 92 | * fragment:
|
---|
| 93 | * The application data. This data is transparent and treated as an
|
---|
| 94 | * independent block to be dealt with by the higher-level protocol specified
|
---|
| 95 | * by the type field.
|
---|
| 96 | *
|
---|
| 97 | * Implementations MUST NOT send zero-length fragments of Handshake, Alert, or
|
---|
| 98 | * ChangeCipherSpec content types. Zero-length fragments of Application data
|
---|
| 99 | * MAY be sent as they are potentially useful as a traffic analysis
|
---|
| 100 | * countermeasure.
|
---|
| 101 | *
|
---|
| 102 | * Note: Data of different TLS record layer content types MAY be interleaved.
|
---|
| 103 | * Application data is generally of lower precedence for transmission than
|
---|
| 104 | * other content types. However, records MUST be delivered to the network in
|
---|
| 105 | * the same order as they are protected by the record layer. Recipients MUST
|
---|
| 106 | * receive and process interleaved application layer traffic during handshakes
|
---|
| 107 | * subsequent to the first one on a connection.
|
---|
| 108 | *
|
---|
| 109 | * struct {
|
---|
| 110 | * ContentType type; // same as TLSPlaintext.type
|
---|
| 111 | * ProtocolVersion version;// same as TLSPlaintext.version
|
---|
| 112 | * uint16 length;
|
---|
| 113 | * opaque fragment[TLSCompressed.length];
|
---|
| 114 | * } TLSCompressed;
|
---|
| 115 | *
|
---|
| 116 | * length:
|
---|
| 117 | * The length (in bytes) of the following TLSCompressed.fragment.
|
---|
| 118 | * The length MUST NOT exceed 2^14 + 1024.
|
---|
| 119 | *
|
---|
| 120 | * fragment:
|
---|
| 121 | * The compressed form of TLSPlaintext.fragment.
|
---|
| 122 | *
|
---|
| 123 | * Note: A CompressionMethod.null operation is an identity operation; no fields
|
---|
| 124 | * are altered. In this implementation, since no compression is supported,
|
---|
| 125 | * uncompressed records are always the same as compressed records.
|
---|
| 126 | *
|
---|
| 127 | * Encryption Information:
|
---|
| 128 | *
|
---|
| 129 | * The encryption and MAC functions translate a TLSCompressed structure into a
|
---|
| 130 | * TLSCiphertext. The decryption functions reverse the process. The MAC of the
|
---|
| 131 | * record also includes a sequence number so that missing, extra, or repeated
|
---|
| 132 | * messages are detectable.
|
---|
| 133 | *
|
---|
| 134 | * struct {
|
---|
| 135 | * ContentType type;
|
---|
| 136 | * ProtocolVersion version;
|
---|
| 137 | * uint16 length;
|
---|
| 138 | * select (SecurityParameters.cipher_type) {
|
---|
| 139 | * case stream: GenericStreamCipher;
|
---|
| 140 | * case block: GenericBlockCipher;
|
---|
| 141 | * case aead: GenericAEADCipher;
|
---|
| 142 | * } fragment;
|
---|
| 143 | * } TLSCiphertext;
|
---|
| 144 | *
|
---|
| 145 | * type:
|
---|
| 146 | * The type field is identical to TLSCompressed.type.
|
---|
| 147 | *
|
---|
| 148 | * version:
|
---|
| 149 | * The version field is identical to TLSCompressed.version.
|
---|
| 150 | *
|
---|
| 151 | * length:
|
---|
| 152 | * The length (in bytes) of the following TLSCiphertext.fragment.
|
---|
| 153 | * The length MUST NOT exceed 2^14 + 2048.
|
---|
| 154 | *
|
---|
| 155 | * fragment:
|
---|
| 156 | * The encrypted form of TLSCompressed.fragment, with the MAC.
|
---|
| 157 | *
|
---|
| 158 | * Note: Only CBC Block Ciphers are supported by this implementation.
|
---|
| 159 | *
|
---|
| 160 | * The TLSCompressed.fragment structures are converted to/from block
|
---|
| 161 | * TLSCiphertext.fragment structures.
|
---|
| 162 | *
|
---|
| 163 | * struct {
|
---|
| 164 | * opaque IV[SecurityParameters.record_iv_length];
|
---|
| 165 | * block-ciphered struct {
|
---|
| 166 | * opaque content[TLSCompressed.length];
|
---|
| 167 | * opaque MAC[SecurityParameters.mac_length];
|
---|
| 168 | * uint8 padding[GenericBlockCipher.padding_length];
|
---|
| 169 | * uint8 padding_length;
|
---|
| 170 | * };
|
---|
| 171 | * } GenericBlockCipher;
|
---|
| 172 | *
|
---|
| 173 | * The MAC is generated as described in Section 6.2.3.1.
|
---|
| 174 | *
|
---|
| 175 | * IV:
|
---|
| 176 | * The Initialization Vector (IV) SHOULD be chosen at random, and MUST be
|
---|
| 177 | * unpredictable. Note that in versions of TLS prior to 1.1, there was no
|
---|
| 178 | * IV field, and the last ciphertext block of the previous record (the "CBC
|
---|
| 179 | * residue") was used as the IV. This was changed to prevent the attacks
|
---|
| 180 | * described in [CBCATT]. For block ciphers, the IV length is of length
|
---|
| 181 | * SecurityParameters.record_iv_length, which is equal to the
|
---|
| 182 | * SecurityParameters.block_size.
|
---|
| 183 | *
|
---|
| 184 | * padding:
|
---|
| 185 | * Padding that is added to force the length of the plaintext to be an
|
---|
| 186 | * integral multiple of the block cipher's block length. The padding MAY be
|
---|
| 187 | * any length up to 255 bytes, as long as it results in the
|
---|
| 188 | * TLSCiphertext.length being an integral multiple of the block length.
|
---|
| 189 | * Lengths longer than necessary might be desirable to frustrate attacks on
|
---|
| 190 | * a protocol that are based on analysis of the lengths of exchanged
|
---|
| 191 | * messages. Each uint8 in the padding data vector MUST be filled with the
|
---|
| 192 | * padding length value. The receiver MUST check this padding and MUST use
|
---|
| 193 | * the bad_record_mac alert to indicate padding errors.
|
---|
| 194 | *
|
---|
| 195 | * padding_length:
|
---|
| 196 | * The padding length MUST be such that the total size of the
|
---|
| 197 | * GenericBlockCipher structure is a multiple of the cipher's block length.
|
---|
| 198 | * Legal values range from zero to 255, inclusive. This length specifies the
|
---|
| 199 | * length of the padding field exclusive of the padding_length field itself.
|
---|
| 200 | *
|
---|
| 201 | * The encrypted data length (TLSCiphertext.length) is one more than the sum of
|
---|
| 202 | * SecurityParameters.block_length, TLSCompressed.length,
|
---|
| 203 | * SecurityParameters.mac_length, and padding_length.
|
---|
| 204 | *
|
---|
| 205 | * Example: If the block length is 8 bytes, the content length
|
---|
| 206 | * (TLSCompressed.length) is 61 bytes, and the MAC length is 20 bytes, then the
|
---|
| 207 | * length before padding is 82 bytes (this does not include the IV. Thus, the
|
---|
| 208 | * padding length modulo 8 must be equal to 6 in order to make the total length
|
---|
| 209 | * an even multiple of 8 bytes (the block length). The padding length can be
|
---|
| 210 | * 6, 14, 22, and so on, through 254. If the padding length were the minimum
|
---|
| 211 | * necessary, 6, the padding would be 6 bytes, each containing the value 6.
|
---|
| 212 | * Thus, the last 8 octets of the GenericBlockCipher before block encryption
|
---|
| 213 | * would be xx 06 06 06 06 06 06 06, where xx is the last octet of the MAC.
|
---|
| 214 | *
|
---|
| 215 | * Note: With block ciphers in CBC mode (Cipher Block Chaining), it is critical
|
---|
| 216 | * that the entire plaintext of the record be known before any ciphertext is
|
---|
| 217 | * transmitted. Otherwise, it is possible for the attacker to mount the attack
|
---|
| 218 | * described in [CBCATT].
|
---|
| 219 | *
|
---|
| 220 | * Implementation note: Canvel et al. [CBCTIME] have demonstrated a timing
|
---|
| 221 | * attack on CBC padding based on the time required to compute the MAC. In
|
---|
| 222 | * order to defend against this attack, implementations MUST ensure that
|
---|
| 223 | * record processing time is essentially the same whether or not the padding
|
---|
| 224 | * is correct. In general, the best way to do this is to compute the MAC even
|
---|
| 225 | * if the padding is incorrect, and only then reject the packet. For instance,
|
---|
| 226 | * if the pad appears to be incorrect, the implementation might assume a
|
---|
| 227 | * zero-length pad and then compute the MAC. This leaves a small timing
|
---|
| 228 | * channel, since MAC performance depends, to some extent, on the size of the
|
---|
| 229 | * data fragment, but it is not believed to be large enough to be exploitable,
|
---|
| 230 | * due to the large block size of existing MACs and the small size of the
|
---|
| 231 | * timing signal.
|
---|
| 232 | */
|
---|
| 233 | var forge = require('./forge');
|
---|
| 234 | require('./asn1');
|
---|
| 235 | require('./hmac');
|
---|
| 236 | require('./md5');
|
---|
| 237 | require('./pem');
|
---|
| 238 | require('./pki');
|
---|
| 239 | require('./random');
|
---|
| 240 | require('./sha1');
|
---|
| 241 | require('./util');
|
---|
| 242 |
|
---|
| 243 | /**
|
---|
| 244 | * Generates pseudo random bytes by mixing the result of two hash functions,
|
---|
| 245 | * MD5 and SHA-1.
|
---|
| 246 | *
|
---|
| 247 | * prf_TLS1(secret, label, seed) =
|
---|
| 248 | * P_MD5(S1, label + seed) XOR P_SHA-1(S2, label + seed);
|
---|
| 249 | *
|
---|
| 250 | * Each P_hash function functions as follows:
|
---|
| 251 | *
|
---|
| 252 | * P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +
|
---|
| 253 | * HMAC_hash(secret, A(2) + seed) +
|
---|
| 254 | * HMAC_hash(secret, A(3) + seed) + ...
|
---|
| 255 | * A() is defined as:
|
---|
| 256 | * A(0) = seed
|
---|
| 257 | * A(i) = HMAC_hash(secret, A(i-1))
|
---|
| 258 | *
|
---|
| 259 | * The '+' operator denotes concatenation.
|
---|
| 260 | *
|
---|
| 261 | * As many iterations A(N) as are needed are performed to generate enough
|
---|
| 262 | * pseudo random byte output. If an iteration creates more data than is
|
---|
| 263 | * necessary, then it is truncated.
|
---|
| 264 | *
|
---|
| 265 | * Therefore:
|
---|
| 266 | * A(1) = HMAC_hash(secret, A(0))
|
---|
| 267 | * = HMAC_hash(secret, seed)
|
---|
| 268 | * A(2) = HMAC_hash(secret, A(1))
|
---|
| 269 | * = HMAC_hash(secret, HMAC_hash(secret, seed))
|
---|
| 270 | *
|
---|
| 271 | * Therefore:
|
---|
| 272 | * P_hash(secret, seed) =
|
---|
| 273 | * HMAC_hash(secret, HMAC_hash(secret, A(0)) + seed) +
|
---|
| 274 | * HMAC_hash(secret, HMAC_hash(secret, A(1)) + seed) +
|
---|
| 275 | * ...
|
---|
| 276 | *
|
---|
| 277 | * Therefore:
|
---|
| 278 | * P_hash(secret, seed) =
|
---|
| 279 | * HMAC_hash(secret, HMAC_hash(secret, seed) + seed) +
|
---|
| 280 | * HMAC_hash(secret, HMAC_hash(secret, HMAC_hash(secret, seed)) + seed) +
|
---|
| 281 | * ...
|
---|
| 282 | *
|
---|
| 283 | * @param secret the secret to use.
|
---|
| 284 | * @param label the label to use.
|
---|
| 285 | * @param seed the seed value to use.
|
---|
| 286 | * @param length the number of bytes to generate.
|
---|
| 287 | *
|
---|
| 288 | * @return the pseudo random bytes in a byte buffer.
|
---|
| 289 | */
|
---|
| 290 | var prf_TLS1 = function(secret, label, seed, length) {
|
---|
| 291 | var rval = forge.util.createBuffer();
|
---|
| 292 |
|
---|
| 293 | /* For TLS 1.0, the secret is split in half, into two secrets of equal
|
---|
| 294 | length. If the secret has an odd length then the last byte of the first
|
---|
| 295 | half will be the same as the first byte of the second. The length of the
|
---|
| 296 | two secrets is half of the secret rounded up. */
|
---|
| 297 | var idx = (secret.length >> 1);
|
---|
| 298 | var slen = idx + (secret.length & 1);
|
---|
| 299 | var s1 = secret.substr(0, slen);
|
---|
| 300 | var s2 = secret.substr(idx, slen);
|
---|
| 301 | var ai = forge.util.createBuffer();
|
---|
| 302 | var hmac = forge.hmac.create();
|
---|
| 303 | seed = label + seed;
|
---|
| 304 |
|
---|
| 305 | // determine the number of iterations that must be performed to generate
|
---|
| 306 | // enough output bytes, md5 creates 16 byte hashes, sha1 creates 20
|
---|
| 307 | var md5itr = Math.ceil(length / 16);
|
---|
| 308 | var sha1itr = Math.ceil(length / 20);
|
---|
| 309 |
|
---|
| 310 | // do md5 iterations
|
---|
| 311 | hmac.start('MD5', s1);
|
---|
| 312 | var md5bytes = forge.util.createBuffer();
|
---|
| 313 | ai.putBytes(seed);
|
---|
| 314 | for(var i = 0; i < md5itr; ++i) {
|
---|
| 315 | // HMAC_hash(secret, A(i-1))
|
---|
| 316 | hmac.start(null, null);
|
---|
| 317 | hmac.update(ai.getBytes());
|
---|
| 318 | ai.putBuffer(hmac.digest());
|
---|
| 319 |
|
---|
| 320 | // HMAC_hash(secret, A(i) + seed)
|
---|
| 321 | hmac.start(null, null);
|
---|
| 322 | hmac.update(ai.bytes() + seed);
|
---|
| 323 | md5bytes.putBuffer(hmac.digest());
|
---|
| 324 | }
|
---|
| 325 |
|
---|
| 326 | // do sha1 iterations
|
---|
| 327 | hmac.start('SHA1', s2);
|
---|
| 328 | var sha1bytes = forge.util.createBuffer();
|
---|
| 329 | ai.clear();
|
---|
| 330 | ai.putBytes(seed);
|
---|
| 331 | for(var i = 0; i < sha1itr; ++i) {
|
---|
| 332 | // HMAC_hash(secret, A(i-1))
|
---|
| 333 | hmac.start(null, null);
|
---|
| 334 | hmac.update(ai.getBytes());
|
---|
| 335 | ai.putBuffer(hmac.digest());
|
---|
| 336 |
|
---|
| 337 | // HMAC_hash(secret, A(i) + seed)
|
---|
| 338 | hmac.start(null, null);
|
---|
| 339 | hmac.update(ai.bytes() + seed);
|
---|
| 340 | sha1bytes.putBuffer(hmac.digest());
|
---|
| 341 | }
|
---|
| 342 |
|
---|
| 343 | // XOR the md5 bytes with the sha1 bytes
|
---|
| 344 | rval.putBytes(forge.util.xorBytes(
|
---|
| 345 | md5bytes.getBytes(), sha1bytes.getBytes(), length));
|
---|
| 346 |
|
---|
| 347 | return rval;
|
---|
| 348 | };
|
---|
| 349 |
|
---|
| 350 | /**
|
---|
| 351 | * Generates pseudo random bytes using a SHA256 algorithm. For TLS 1.2.
|
---|
| 352 | *
|
---|
| 353 | * @param secret the secret to use.
|
---|
| 354 | * @param label the label to use.
|
---|
| 355 | * @param seed the seed value to use.
|
---|
| 356 | * @param length the number of bytes to generate.
|
---|
| 357 | *
|
---|
| 358 | * @return the pseudo random bytes in a byte buffer.
|
---|
| 359 | */
|
---|
| 360 | var prf_sha256 = function(secret, label, seed, length) {
|
---|
| 361 | // FIXME: implement me for TLS 1.2
|
---|
| 362 | };
|
---|
| 363 |
|
---|
| 364 | /**
|
---|
| 365 | * Gets a MAC for a record using the SHA-1 hash algorithm.
|
---|
| 366 | *
|
---|
| 367 | * @param key the mac key.
|
---|
| 368 | * @param state the sequence number (array of two 32-bit integers).
|
---|
| 369 | * @param record the record.
|
---|
| 370 | *
|
---|
| 371 | * @return the sha-1 hash (20 bytes) for the given record.
|
---|
| 372 | */
|
---|
| 373 | var hmac_sha1 = function(key, seqNum, record) {
|
---|
| 374 | /* MAC is computed like so:
|
---|
| 375 | HMAC_hash(
|
---|
| 376 | key, seqNum +
|
---|
| 377 | TLSCompressed.type +
|
---|
| 378 | TLSCompressed.version +
|
---|
| 379 | TLSCompressed.length +
|
---|
| 380 | TLSCompressed.fragment)
|
---|
| 381 | */
|
---|
| 382 | var hmac = forge.hmac.create();
|
---|
| 383 | hmac.start('SHA1', key);
|
---|
| 384 | var b = forge.util.createBuffer();
|
---|
| 385 | b.putInt32(seqNum[0]);
|
---|
| 386 | b.putInt32(seqNum[1]);
|
---|
| 387 | b.putByte(record.type);
|
---|
| 388 | b.putByte(record.version.major);
|
---|
| 389 | b.putByte(record.version.minor);
|
---|
| 390 | b.putInt16(record.length);
|
---|
| 391 | b.putBytes(record.fragment.bytes());
|
---|
| 392 | hmac.update(b.getBytes());
|
---|
| 393 | return hmac.digest().getBytes();
|
---|
| 394 | };
|
---|
| 395 |
|
---|
| 396 | /**
|
---|
| 397 | * Compresses the TLSPlaintext record into a TLSCompressed record using the
|
---|
| 398 | * deflate algorithm.
|
---|
| 399 | *
|
---|
| 400 | * @param c the TLS connection.
|
---|
| 401 | * @param record the TLSPlaintext record to compress.
|
---|
| 402 | * @param s the ConnectionState to use.
|
---|
| 403 | *
|
---|
| 404 | * @return true on success, false on failure.
|
---|
| 405 | */
|
---|
| 406 | var deflate = function(c, record, s) {
|
---|
| 407 | var rval = false;
|
---|
| 408 |
|
---|
| 409 | try {
|
---|
| 410 | var bytes = c.deflate(record.fragment.getBytes());
|
---|
| 411 | record.fragment = forge.util.createBuffer(bytes);
|
---|
| 412 | record.length = bytes.length;
|
---|
| 413 | rval = true;
|
---|
| 414 | } catch(ex) {
|
---|
| 415 | // deflate error, fail out
|
---|
| 416 | }
|
---|
| 417 |
|
---|
| 418 | return rval;
|
---|
| 419 | };
|
---|
| 420 |
|
---|
| 421 | /**
|
---|
| 422 | * Decompresses the TLSCompressed record into a TLSPlaintext record using the
|
---|
| 423 | * deflate algorithm.
|
---|
| 424 | *
|
---|
| 425 | * @param c the TLS connection.
|
---|
| 426 | * @param record the TLSCompressed record to decompress.
|
---|
| 427 | * @param s the ConnectionState to use.
|
---|
| 428 | *
|
---|
| 429 | * @return true on success, false on failure.
|
---|
| 430 | */
|
---|
| 431 | var inflate = function(c, record, s) {
|
---|
| 432 | var rval = false;
|
---|
| 433 |
|
---|
| 434 | try {
|
---|
| 435 | var bytes = c.inflate(record.fragment.getBytes());
|
---|
| 436 | record.fragment = forge.util.createBuffer(bytes);
|
---|
| 437 | record.length = bytes.length;
|
---|
| 438 | rval = true;
|
---|
| 439 | } catch(ex) {
|
---|
| 440 | // inflate error, fail out
|
---|
| 441 | }
|
---|
| 442 |
|
---|
| 443 | return rval;
|
---|
| 444 | };
|
---|
| 445 |
|
---|
| 446 | /**
|
---|
| 447 | * Reads a TLS variable-length vector from a byte buffer.
|
---|
| 448 | *
|
---|
| 449 | * Variable-length vectors are defined by specifying a subrange of legal
|
---|
| 450 | * lengths, inclusively, using the notation <floor..ceiling>. When these are
|
---|
| 451 | * encoded, the actual length precedes the vector's contents in the byte
|
---|
| 452 | * stream. The length will be in the form of a number consuming as many bytes
|
---|
| 453 | * as required to hold the vector's specified maximum (ceiling) length. A
|
---|
| 454 | * variable-length vector with an actual length field of zero is referred to
|
---|
| 455 | * as an empty vector.
|
---|
| 456 | *
|
---|
| 457 | * @param b the byte buffer.
|
---|
| 458 | * @param lenBytes the number of bytes required to store the length.
|
---|
| 459 | *
|
---|
| 460 | * @return the resulting byte buffer.
|
---|
| 461 | */
|
---|
| 462 | var readVector = function(b, lenBytes) {
|
---|
| 463 | var len = 0;
|
---|
| 464 | switch(lenBytes) {
|
---|
| 465 | case 1:
|
---|
| 466 | len = b.getByte();
|
---|
| 467 | break;
|
---|
| 468 | case 2:
|
---|
| 469 | len = b.getInt16();
|
---|
| 470 | break;
|
---|
| 471 | case 3:
|
---|
| 472 | len = b.getInt24();
|
---|
| 473 | break;
|
---|
| 474 | case 4:
|
---|
| 475 | len = b.getInt32();
|
---|
| 476 | break;
|
---|
| 477 | }
|
---|
| 478 |
|
---|
| 479 | // read vector bytes into a new buffer
|
---|
| 480 | return forge.util.createBuffer(b.getBytes(len));
|
---|
| 481 | };
|
---|
| 482 |
|
---|
| 483 | /**
|
---|
| 484 | * Writes a TLS variable-length vector to a byte buffer.
|
---|
| 485 | *
|
---|
| 486 | * @param b the byte buffer.
|
---|
| 487 | * @param lenBytes the number of bytes required to store the length.
|
---|
| 488 | * @param v the byte buffer vector.
|
---|
| 489 | */
|
---|
| 490 | var writeVector = function(b, lenBytes, v) {
|
---|
| 491 | // encode length at the start of the vector, where the number of bytes for
|
---|
| 492 | // the length is the maximum number of bytes it would take to encode the
|
---|
| 493 | // vector's ceiling
|
---|
| 494 | b.putInt(v.length(), lenBytes << 3);
|
---|
| 495 | b.putBuffer(v);
|
---|
| 496 | };
|
---|
| 497 |
|
---|
| 498 | /**
|
---|
| 499 | * The tls implementation.
|
---|
| 500 | */
|
---|
| 501 | var tls = {};
|
---|
| 502 |
|
---|
| 503 | /**
|
---|
| 504 | * Version: TLS 1.2 = 3.3, TLS 1.1 = 3.2, TLS 1.0 = 3.1. Both TLS 1.1 and
|
---|
| 505 | * TLS 1.2 were still too new (ie: openSSL didn't implement them) at the time
|
---|
| 506 | * of this implementation so TLS 1.0 was implemented instead.
|
---|
| 507 | */
|
---|
| 508 | tls.Versions = {
|
---|
| 509 | TLS_1_0: {major: 3, minor: 1},
|
---|
| 510 | TLS_1_1: {major: 3, minor: 2},
|
---|
| 511 | TLS_1_2: {major: 3, minor: 3}
|
---|
| 512 | };
|
---|
| 513 | tls.SupportedVersions = [
|
---|
| 514 | tls.Versions.TLS_1_1,
|
---|
| 515 | tls.Versions.TLS_1_0
|
---|
| 516 | ];
|
---|
| 517 | tls.Version = tls.SupportedVersions[0];
|
---|
| 518 |
|
---|
| 519 | /**
|
---|
| 520 | * Maximum fragment size. True maximum is 16384, but we fragment before that
|
---|
| 521 | * to allow for unusual small increases during compression.
|
---|
| 522 | */
|
---|
| 523 | tls.MaxFragment = 16384 - 1024;
|
---|
| 524 |
|
---|
| 525 | /**
|
---|
| 526 | * Whether this entity is considered the "client" or "server".
|
---|
| 527 | * enum { server, client } ConnectionEnd;
|
---|
| 528 | */
|
---|
| 529 | tls.ConnectionEnd = {
|
---|
| 530 | server: 0,
|
---|
| 531 | client: 1
|
---|
| 532 | };
|
---|
| 533 |
|
---|
| 534 | /**
|
---|
| 535 | * Pseudo-random function algorithm used to generate keys from the master
|
---|
| 536 | * secret.
|
---|
| 537 | * enum { tls_prf_sha256 } PRFAlgorithm;
|
---|
| 538 | */
|
---|
| 539 | tls.PRFAlgorithm = {
|
---|
| 540 | tls_prf_sha256: 0
|
---|
| 541 | };
|
---|
| 542 |
|
---|
| 543 | /**
|
---|
| 544 | * Bulk encryption algorithms.
|
---|
| 545 | * enum { null, rc4, des3, aes } BulkCipherAlgorithm;
|
---|
| 546 | */
|
---|
| 547 | tls.BulkCipherAlgorithm = {
|
---|
| 548 | none: null,
|
---|
| 549 | rc4: 0,
|
---|
| 550 | des3: 1,
|
---|
| 551 | aes: 2
|
---|
| 552 | };
|
---|
| 553 |
|
---|
| 554 | /**
|
---|
| 555 | * Cipher types.
|
---|
| 556 | * enum { stream, block, aead } CipherType;
|
---|
| 557 | */
|
---|
| 558 | tls.CipherType = {
|
---|
| 559 | stream: 0,
|
---|
| 560 | block: 1,
|
---|
| 561 | aead: 2
|
---|
| 562 | };
|
---|
| 563 |
|
---|
| 564 | /**
|
---|
| 565 | * MAC (Message Authentication Code) algorithms.
|
---|
| 566 | * enum { null, hmac_md5, hmac_sha1, hmac_sha256,
|
---|
| 567 | * hmac_sha384, hmac_sha512} MACAlgorithm;
|
---|
| 568 | */
|
---|
| 569 | tls.MACAlgorithm = {
|
---|
| 570 | none: null,
|
---|
| 571 | hmac_md5: 0,
|
---|
| 572 | hmac_sha1: 1,
|
---|
| 573 | hmac_sha256: 2,
|
---|
| 574 | hmac_sha384: 3,
|
---|
| 575 | hmac_sha512: 4
|
---|
| 576 | };
|
---|
| 577 |
|
---|
| 578 | /**
|
---|
| 579 | * Compression algorithms.
|
---|
| 580 | * enum { null(0), deflate(1), (255) } CompressionMethod;
|
---|
| 581 | */
|
---|
| 582 | tls.CompressionMethod = {
|
---|
| 583 | none: 0,
|
---|
| 584 | deflate: 1
|
---|
| 585 | };
|
---|
| 586 |
|
---|
| 587 | /**
|
---|
| 588 | * TLS record content types.
|
---|
| 589 | * enum {
|
---|
| 590 | * change_cipher_spec(20), alert(21), handshake(22),
|
---|
| 591 | * application_data(23), (255)
|
---|
| 592 | * } ContentType;
|
---|
| 593 | */
|
---|
| 594 | tls.ContentType = {
|
---|
| 595 | change_cipher_spec: 20,
|
---|
| 596 | alert: 21,
|
---|
| 597 | handshake: 22,
|
---|
| 598 | application_data: 23,
|
---|
| 599 | heartbeat: 24
|
---|
| 600 | };
|
---|
| 601 |
|
---|
| 602 | /**
|
---|
| 603 | * TLS handshake types.
|
---|
| 604 | * enum {
|
---|
| 605 | * hello_request(0), client_hello(1), server_hello(2),
|
---|
| 606 | * certificate(11), server_key_exchange (12),
|
---|
| 607 | * certificate_request(13), server_hello_done(14),
|
---|
| 608 | * certificate_verify(15), client_key_exchange(16),
|
---|
| 609 | * finished(20), (255)
|
---|
| 610 | * } HandshakeType;
|
---|
| 611 | */
|
---|
| 612 | tls.HandshakeType = {
|
---|
| 613 | hello_request: 0,
|
---|
| 614 | client_hello: 1,
|
---|
| 615 | server_hello: 2,
|
---|
| 616 | certificate: 11,
|
---|
| 617 | server_key_exchange: 12,
|
---|
| 618 | certificate_request: 13,
|
---|
| 619 | server_hello_done: 14,
|
---|
| 620 | certificate_verify: 15,
|
---|
| 621 | client_key_exchange: 16,
|
---|
| 622 | finished: 20
|
---|
| 623 | };
|
---|
| 624 |
|
---|
| 625 | /**
|
---|
| 626 | * TLS Alert Protocol.
|
---|
| 627 | *
|
---|
| 628 | * enum { warning(1), fatal(2), (255) } AlertLevel;
|
---|
| 629 | *
|
---|
| 630 | * enum {
|
---|
| 631 | * close_notify(0),
|
---|
| 632 | * unexpected_message(10),
|
---|
| 633 | * bad_record_mac(20),
|
---|
| 634 | * decryption_failed(21),
|
---|
| 635 | * record_overflow(22),
|
---|
| 636 | * decompression_failure(30),
|
---|
| 637 | * handshake_failure(40),
|
---|
| 638 | * bad_certificate(42),
|
---|
| 639 | * unsupported_certificate(43),
|
---|
| 640 | * certificate_revoked(44),
|
---|
| 641 | * certificate_expired(45),
|
---|
| 642 | * certificate_unknown(46),
|
---|
| 643 | * illegal_parameter(47),
|
---|
| 644 | * unknown_ca(48),
|
---|
| 645 | * access_denied(49),
|
---|
| 646 | * decode_error(50),
|
---|
| 647 | * decrypt_error(51),
|
---|
| 648 | * export_restriction(60),
|
---|
| 649 | * protocol_version(70),
|
---|
| 650 | * insufficient_security(71),
|
---|
| 651 | * internal_error(80),
|
---|
| 652 | * user_canceled(90),
|
---|
| 653 | * no_renegotiation(100),
|
---|
| 654 | * (255)
|
---|
| 655 | * } AlertDescription;
|
---|
| 656 | *
|
---|
| 657 | * struct {
|
---|
| 658 | * AlertLevel level;
|
---|
| 659 | * AlertDescription description;
|
---|
| 660 | * } Alert;
|
---|
| 661 | */
|
---|
| 662 | tls.Alert = {};
|
---|
| 663 | tls.Alert.Level = {
|
---|
| 664 | warning: 1,
|
---|
| 665 | fatal: 2
|
---|
| 666 | };
|
---|
| 667 | tls.Alert.Description = {
|
---|
| 668 | close_notify: 0,
|
---|
| 669 | unexpected_message: 10,
|
---|
| 670 | bad_record_mac: 20,
|
---|
| 671 | decryption_failed: 21,
|
---|
| 672 | record_overflow: 22,
|
---|
| 673 | decompression_failure: 30,
|
---|
| 674 | handshake_failure: 40,
|
---|
| 675 | bad_certificate: 42,
|
---|
| 676 | unsupported_certificate: 43,
|
---|
| 677 | certificate_revoked: 44,
|
---|
| 678 | certificate_expired: 45,
|
---|
| 679 | certificate_unknown: 46,
|
---|
| 680 | illegal_parameter: 47,
|
---|
| 681 | unknown_ca: 48,
|
---|
| 682 | access_denied: 49,
|
---|
| 683 | decode_error: 50,
|
---|
| 684 | decrypt_error: 51,
|
---|
| 685 | export_restriction: 60,
|
---|
| 686 | protocol_version: 70,
|
---|
| 687 | insufficient_security: 71,
|
---|
| 688 | internal_error: 80,
|
---|
| 689 | user_canceled: 90,
|
---|
| 690 | no_renegotiation: 100
|
---|
| 691 | };
|
---|
| 692 |
|
---|
| 693 | /**
|
---|
| 694 | * TLS Heartbeat Message types.
|
---|
| 695 | * enum {
|
---|
| 696 | * heartbeat_request(1),
|
---|
| 697 | * heartbeat_response(2),
|
---|
| 698 | * (255)
|
---|
| 699 | * } HeartbeatMessageType;
|
---|
| 700 | */
|
---|
| 701 | tls.HeartbeatMessageType = {
|
---|
| 702 | heartbeat_request: 1,
|
---|
| 703 | heartbeat_response: 2
|
---|
| 704 | };
|
---|
| 705 |
|
---|
| 706 | /**
|
---|
| 707 | * Supported cipher suites.
|
---|
| 708 | */
|
---|
| 709 | tls.CipherSuites = {};
|
---|
| 710 |
|
---|
| 711 | /**
|
---|
| 712 | * Gets a supported cipher suite from its 2 byte ID.
|
---|
| 713 | *
|
---|
| 714 | * @param twoBytes two bytes in a string.
|
---|
| 715 | *
|
---|
| 716 | * @return the matching supported cipher suite or null.
|
---|
| 717 | */
|
---|
| 718 | tls.getCipherSuite = function(twoBytes) {
|
---|
| 719 | var rval = null;
|
---|
| 720 | for(var key in tls.CipherSuites) {
|
---|
| 721 | var cs = tls.CipherSuites[key];
|
---|
| 722 | if(cs.id[0] === twoBytes.charCodeAt(0) &&
|
---|
| 723 | cs.id[1] === twoBytes.charCodeAt(1)) {
|
---|
| 724 | rval = cs;
|
---|
| 725 | break;
|
---|
| 726 | }
|
---|
| 727 | }
|
---|
| 728 | return rval;
|
---|
| 729 | };
|
---|
| 730 |
|
---|
| 731 | /**
|
---|
| 732 | * Called when an unexpected record is encountered.
|
---|
| 733 | *
|
---|
| 734 | * @param c the connection.
|
---|
| 735 | * @param record the record.
|
---|
| 736 | */
|
---|
| 737 | tls.handleUnexpected = function(c, record) {
|
---|
| 738 | // if connection is client and closed, ignore unexpected messages
|
---|
| 739 | var ignore = (!c.open && c.entity === tls.ConnectionEnd.client);
|
---|
| 740 | if(!ignore) {
|
---|
| 741 | c.error(c, {
|
---|
| 742 | message: 'Unexpected message. Received TLS record out of order.',
|
---|
| 743 | send: true,
|
---|
| 744 | alert: {
|
---|
| 745 | level: tls.Alert.Level.fatal,
|
---|
| 746 | description: tls.Alert.Description.unexpected_message
|
---|
| 747 | }
|
---|
| 748 | });
|
---|
| 749 | }
|
---|
| 750 | };
|
---|
| 751 |
|
---|
| 752 | /**
|
---|
| 753 | * Called when a client receives a HelloRequest record.
|
---|
| 754 | *
|
---|
| 755 | * @param c the connection.
|
---|
| 756 | * @param record the record.
|
---|
| 757 | * @param length the length of the handshake message.
|
---|
| 758 | */
|
---|
| 759 | tls.handleHelloRequest = function(c, record, length) {
|
---|
| 760 | // ignore renegotiation requests from the server during a handshake, but
|
---|
| 761 | // if handshaking, send a warning alert that renegotation is denied
|
---|
| 762 | if(!c.handshaking && c.handshakes > 0) {
|
---|
| 763 | // send alert warning
|
---|
| 764 | tls.queue(c, tls.createAlert(c, {
|
---|
| 765 | level: tls.Alert.Level.warning,
|
---|
| 766 | description: tls.Alert.Description.no_renegotiation
|
---|
| 767 | }));
|
---|
| 768 | tls.flush(c);
|
---|
| 769 | }
|
---|
| 770 |
|
---|
| 771 | // continue
|
---|
| 772 | c.process();
|
---|
| 773 | };
|
---|
| 774 |
|
---|
| 775 | /**
|
---|
| 776 | * Parses a hello message from a ClientHello or ServerHello record.
|
---|
| 777 | *
|
---|
| 778 | * @param record the record to parse.
|
---|
| 779 | *
|
---|
| 780 | * @return the parsed message.
|
---|
| 781 | */
|
---|
| 782 | tls.parseHelloMessage = function(c, record, length) {
|
---|
| 783 | var msg = null;
|
---|
| 784 |
|
---|
| 785 | var client = (c.entity === tls.ConnectionEnd.client);
|
---|
| 786 |
|
---|
| 787 | // minimum of 38 bytes in message
|
---|
| 788 | if(length < 38) {
|
---|
| 789 | c.error(c, {
|
---|
| 790 | message: client ?
|
---|
| 791 | 'Invalid ServerHello message. Message too short.' :
|
---|
| 792 | 'Invalid ClientHello message. Message too short.',
|
---|
| 793 | send: true,
|
---|
| 794 | alert: {
|
---|
| 795 | level: tls.Alert.Level.fatal,
|
---|
| 796 | description: tls.Alert.Description.illegal_parameter
|
---|
| 797 | }
|
---|
| 798 | });
|
---|
| 799 | } else {
|
---|
| 800 | // use 'remaining' to calculate # of remaining bytes in the message
|
---|
| 801 | var b = record.fragment;
|
---|
| 802 | var remaining = b.length();
|
---|
| 803 | msg = {
|
---|
| 804 | version: {
|
---|
| 805 | major: b.getByte(),
|
---|
| 806 | minor: b.getByte()
|
---|
| 807 | },
|
---|
| 808 | random: forge.util.createBuffer(b.getBytes(32)),
|
---|
| 809 | session_id: readVector(b, 1),
|
---|
| 810 | extensions: []
|
---|
| 811 | };
|
---|
| 812 | if(client) {
|
---|
| 813 | msg.cipher_suite = b.getBytes(2);
|
---|
| 814 | msg.compression_method = b.getByte();
|
---|
| 815 | } else {
|
---|
| 816 | msg.cipher_suites = readVector(b, 2);
|
---|
| 817 | msg.compression_methods = readVector(b, 1);
|
---|
| 818 | }
|
---|
| 819 |
|
---|
| 820 | // read extensions if there are any bytes left in the message
|
---|
| 821 | remaining = length - (remaining - b.length());
|
---|
| 822 | if(remaining > 0) {
|
---|
| 823 | // parse extensions
|
---|
| 824 | var exts = readVector(b, 2);
|
---|
| 825 | while(exts.length() > 0) {
|
---|
| 826 | msg.extensions.push({
|
---|
| 827 | type: [exts.getByte(), exts.getByte()],
|
---|
| 828 | data: readVector(exts, 2)
|
---|
| 829 | });
|
---|
| 830 | }
|
---|
| 831 |
|
---|
| 832 | // TODO: make extension support modular
|
---|
| 833 | if(!client) {
|
---|
| 834 | for(var i = 0; i < msg.extensions.length; ++i) {
|
---|
| 835 | var ext = msg.extensions[i];
|
---|
| 836 |
|
---|
| 837 | // support SNI extension
|
---|
| 838 | if(ext.type[0] === 0x00 && ext.type[1] === 0x00) {
|
---|
| 839 | // get server name list
|
---|
| 840 | var snl = readVector(ext.data, 2);
|
---|
| 841 | while(snl.length() > 0) {
|
---|
| 842 | // read server name type
|
---|
| 843 | var snType = snl.getByte();
|
---|
| 844 |
|
---|
| 845 | // only HostName type (0x00) is known, break out if
|
---|
| 846 | // another type is detected
|
---|
| 847 | if(snType !== 0x00) {
|
---|
| 848 | break;
|
---|
| 849 | }
|
---|
| 850 |
|
---|
| 851 | // add host name to server name list
|
---|
| 852 | c.session.extensions.server_name.serverNameList.push(
|
---|
| 853 | readVector(snl, 2).getBytes());
|
---|
| 854 | }
|
---|
| 855 | }
|
---|
| 856 | }
|
---|
| 857 | }
|
---|
| 858 | }
|
---|
| 859 |
|
---|
| 860 | // version already set, do not allow version change
|
---|
| 861 | if(c.session.version) {
|
---|
| 862 | if(msg.version.major !== c.session.version.major ||
|
---|
| 863 | msg.version.minor !== c.session.version.minor) {
|
---|
| 864 | return c.error(c, {
|
---|
| 865 | message: 'TLS version change is disallowed during renegotiation.',
|
---|
| 866 | send: true,
|
---|
| 867 | alert: {
|
---|
| 868 | level: tls.Alert.Level.fatal,
|
---|
| 869 | description: tls.Alert.Description.protocol_version
|
---|
| 870 | }
|
---|
| 871 | });
|
---|
| 872 | }
|
---|
| 873 | }
|
---|
| 874 |
|
---|
| 875 | // get the chosen (ServerHello) cipher suite
|
---|
| 876 | if(client) {
|
---|
| 877 | // FIXME: should be checking configured acceptable cipher suites
|
---|
| 878 | c.session.cipherSuite = tls.getCipherSuite(msg.cipher_suite);
|
---|
| 879 | } else {
|
---|
| 880 | // get a supported preferred (ClientHello) cipher suite
|
---|
| 881 | // choose the first supported cipher suite
|
---|
| 882 | var tmp = forge.util.createBuffer(msg.cipher_suites.bytes());
|
---|
| 883 | while(tmp.length() > 0) {
|
---|
| 884 | // FIXME: should be checking configured acceptable suites
|
---|
| 885 | // cipher suites take up 2 bytes
|
---|
| 886 | c.session.cipherSuite = tls.getCipherSuite(tmp.getBytes(2));
|
---|
| 887 | if(c.session.cipherSuite !== null) {
|
---|
| 888 | break;
|
---|
| 889 | }
|
---|
| 890 | }
|
---|
| 891 | }
|
---|
| 892 |
|
---|
| 893 | // cipher suite not supported
|
---|
| 894 | if(c.session.cipherSuite === null) {
|
---|
| 895 | return c.error(c, {
|
---|
| 896 | message: 'No cipher suites in common.',
|
---|
| 897 | send: true,
|
---|
| 898 | alert: {
|
---|
| 899 | level: tls.Alert.Level.fatal,
|
---|
| 900 | description: tls.Alert.Description.handshake_failure
|
---|
| 901 | },
|
---|
| 902 | cipherSuite: forge.util.bytesToHex(msg.cipher_suite)
|
---|
| 903 | });
|
---|
| 904 | }
|
---|
| 905 |
|
---|
| 906 | // TODO: handle compression methods
|
---|
| 907 | if(client) {
|
---|
| 908 | c.session.compressionMethod = msg.compression_method;
|
---|
| 909 | } else {
|
---|
| 910 | // no compression
|
---|
| 911 | c.session.compressionMethod = tls.CompressionMethod.none;
|
---|
| 912 | }
|
---|
| 913 | }
|
---|
| 914 |
|
---|
| 915 | return msg;
|
---|
| 916 | };
|
---|
| 917 |
|
---|
| 918 | /**
|
---|
| 919 | * Creates security parameters for the given connection based on the given
|
---|
| 920 | * hello message.
|
---|
| 921 | *
|
---|
| 922 | * @param c the TLS connection.
|
---|
| 923 | * @param msg the hello message.
|
---|
| 924 | */
|
---|
| 925 | tls.createSecurityParameters = function(c, msg) {
|
---|
| 926 | /* Note: security params are from TLS 1.2, some values like prf_algorithm
|
---|
| 927 | are ignored for TLS 1.0/1.1 and the builtin as specified in the spec is
|
---|
| 928 | used. */
|
---|
| 929 |
|
---|
| 930 | // TODO: handle other options from server when more supported
|
---|
| 931 |
|
---|
| 932 | // get client and server randoms
|
---|
| 933 | var client = (c.entity === tls.ConnectionEnd.client);
|
---|
| 934 | var msgRandom = msg.random.bytes();
|
---|
| 935 | var cRandom = client ? c.session.sp.client_random : msgRandom;
|
---|
| 936 | var sRandom = client ? msgRandom : tls.createRandom().getBytes();
|
---|
| 937 |
|
---|
| 938 | // create new security parameters
|
---|
| 939 | c.session.sp = {
|
---|
| 940 | entity: c.entity,
|
---|
| 941 | prf_algorithm: tls.PRFAlgorithm.tls_prf_sha256,
|
---|
| 942 | bulk_cipher_algorithm: null,
|
---|
| 943 | cipher_type: null,
|
---|
| 944 | enc_key_length: null,
|
---|
| 945 | block_length: null,
|
---|
| 946 | fixed_iv_length: null,
|
---|
| 947 | record_iv_length: null,
|
---|
| 948 | mac_algorithm: null,
|
---|
| 949 | mac_length: null,
|
---|
| 950 | mac_key_length: null,
|
---|
| 951 | compression_algorithm: c.session.compressionMethod,
|
---|
| 952 | pre_master_secret: null,
|
---|
| 953 | master_secret: null,
|
---|
| 954 | client_random: cRandom,
|
---|
| 955 | server_random: sRandom
|
---|
| 956 | };
|
---|
| 957 | };
|
---|
| 958 |
|
---|
| 959 | /**
|
---|
| 960 | * Called when a client receives a ServerHello record.
|
---|
| 961 | *
|
---|
| 962 | * When a ServerHello message will be sent:
|
---|
| 963 | * The server will send this message in response to a client hello message
|
---|
| 964 | * when it was able to find an acceptable set of algorithms. If it cannot
|
---|
| 965 | * find such a match, it will respond with a handshake failure alert.
|
---|
| 966 | *
|
---|
| 967 | * uint24 length;
|
---|
| 968 | * struct {
|
---|
| 969 | * ProtocolVersion server_version;
|
---|
| 970 | * Random random;
|
---|
| 971 | * SessionID session_id;
|
---|
| 972 | * CipherSuite cipher_suite;
|
---|
| 973 | * CompressionMethod compression_method;
|
---|
| 974 | * select(extensions_present) {
|
---|
| 975 | * case false:
|
---|
| 976 | * struct {};
|
---|
| 977 | * case true:
|
---|
| 978 | * Extension extensions<0..2^16-1>;
|
---|
| 979 | * };
|
---|
| 980 | * } ServerHello;
|
---|
| 981 | *
|
---|
| 982 | * @param c the connection.
|
---|
| 983 | * @param record the record.
|
---|
| 984 | * @param length the length of the handshake message.
|
---|
| 985 | */
|
---|
| 986 | tls.handleServerHello = function(c, record, length) {
|
---|
| 987 | var msg = tls.parseHelloMessage(c, record, length);
|
---|
| 988 | if(c.fail) {
|
---|
| 989 | return;
|
---|
| 990 | }
|
---|
| 991 |
|
---|
| 992 | // ensure server version is compatible
|
---|
| 993 | if(msg.version.minor <= c.version.minor) {
|
---|
| 994 | c.version.minor = msg.version.minor;
|
---|
| 995 | } else {
|
---|
| 996 | return c.error(c, {
|
---|
| 997 | message: 'Incompatible TLS version.',
|
---|
| 998 | send: true,
|
---|
| 999 | alert: {
|
---|
| 1000 | level: tls.Alert.Level.fatal,
|
---|
| 1001 | description: tls.Alert.Description.protocol_version
|
---|
| 1002 | }
|
---|
| 1003 | });
|
---|
| 1004 | }
|
---|
| 1005 |
|
---|
| 1006 | // indicate session version has been set
|
---|
| 1007 | c.session.version = c.version;
|
---|
| 1008 |
|
---|
| 1009 | // get the session ID from the message
|
---|
| 1010 | var sessionId = msg.session_id.bytes();
|
---|
| 1011 |
|
---|
| 1012 | // if the session ID is not blank and matches the cached one, resume
|
---|
| 1013 | // the session
|
---|
| 1014 | if(sessionId.length > 0 && sessionId === c.session.id) {
|
---|
| 1015 | // resuming session, expect a ChangeCipherSpec next
|
---|
| 1016 | c.expect = SCC;
|
---|
| 1017 | c.session.resuming = true;
|
---|
| 1018 |
|
---|
| 1019 | // get new server random
|
---|
| 1020 | c.session.sp.server_random = msg.random.bytes();
|
---|
| 1021 | } else {
|
---|
| 1022 | // not resuming, expect a server Certificate message next
|
---|
| 1023 | c.expect = SCE;
|
---|
| 1024 | c.session.resuming = false;
|
---|
| 1025 |
|
---|
| 1026 | // create new security parameters
|
---|
| 1027 | tls.createSecurityParameters(c, msg);
|
---|
| 1028 | }
|
---|
| 1029 |
|
---|
| 1030 | // set new session ID
|
---|
| 1031 | c.session.id = sessionId;
|
---|
| 1032 |
|
---|
| 1033 | // continue
|
---|
| 1034 | c.process();
|
---|
| 1035 | };
|
---|
| 1036 |
|
---|
| 1037 | /**
|
---|
| 1038 | * Called when a server receives a ClientHello record.
|
---|
| 1039 | *
|
---|
| 1040 | * When a ClientHello message will be sent:
|
---|
| 1041 | * When a client first connects to a server it is required to send the
|
---|
| 1042 | * client hello as its first message. The client can also send a client
|
---|
| 1043 | * hello in response to a hello request or on its own initiative in order
|
---|
| 1044 | * to renegotiate the security parameters in an existing connection.
|
---|
| 1045 | *
|
---|
| 1046 | * @param c the connection.
|
---|
| 1047 | * @param record the record.
|
---|
| 1048 | * @param length the length of the handshake message.
|
---|
| 1049 | */
|
---|
| 1050 | tls.handleClientHello = function(c, record, length) {
|
---|
| 1051 | var msg = tls.parseHelloMessage(c, record, length);
|
---|
| 1052 | if(c.fail) {
|
---|
| 1053 | return;
|
---|
| 1054 | }
|
---|
| 1055 |
|
---|
| 1056 | // get the session ID from the message
|
---|
| 1057 | var sessionId = msg.session_id.bytes();
|
---|
| 1058 |
|
---|
| 1059 | // see if the given session ID is in the cache
|
---|
| 1060 | var session = null;
|
---|
| 1061 | if(c.sessionCache) {
|
---|
| 1062 | session = c.sessionCache.getSession(sessionId);
|
---|
| 1063 | if(session === null) {
|
---|
| 1064 | // session ID not found
|
---|
| 1065 | sessionId = '';
|
---|
| 1066 | } else if(session.version.major !== msg.version.major ||
|
---|
| 1067 | session.version.minor > msg.version.minor) {
|
---|
| 1068 | // if session version is incompatible with client version, do not resume
|
---|
| 1069 | session = null;
|
---|
| 1070 | sessionId = '';
|
---|
| 1071 | }
|
---|
| 1072 | }
|
---|
| 1073 |
|
---|
| 1074 | // no session found to resume, generate a new session ID
|
---|
| 1075 | if(sessionId.length === 0) {
|
---|
| 1076 | sessionId = forge.random.getBytes(32);
|
---|
| 1077 | }
|
---|
| 1078 |
|
---|
| 1079 | // update session
|
---|
| 1080 | c.session.id = sessionId;
|
---|
| 1081 | c.session.clientHelloVersion = msg.version;
|
---|
| 1082 | c.session.sp = {};
|
---|
| 1083 | if(session) {
|
---|
| 1084 | // use version and security parameters from resumed session
|
---|
| 1085 | c.version = c.session.version = session.version;
|
---|
| 1086 | c.session.sp = session.sp;
|
---|
| 1087 | } else {
|
---|
| 1088 | // use highest compatible minor version
|
---|
| 1089 | var version;
|
---|
| 1090 | for(var i = 1; i < tls.SupportedVersions.length; ++i) {
|
---|
| 1091 | version = tls.SupportedVersions[i];
|
---|
| 1092 | if(version.minor <= msg.version.minor) {
|
---|
| 1093 | break;
|
---|
| 1094 | }
|
---|
| 1095 | }
|
---|
| 1096 | c.version = {major: version.major, minor: version.minor};
|
---|
| 1097 | c.session.version = c.version;
|
---|
| 1098 | }
|
---|
| 1099 |
|
---|
| 1100 | // if a session is set, resume it
|
---|
| 1101 | if(session !== null) {
|
---|
| 1102 | // resuming session, expect a ChangeCipherSpec next
|
---|
| 1103 | c.expect = CCC;
|
---|
| 1104 | c.session.resuming = true;
|
---|
| 1105 |
|
---|
| 1106 | // get new client random
|
---|
| 1107 | c.session.sp.client_random = msg.random.bytes();
|
---|
| 1108 | } else {
|
---|
| 1109 | // not resuming, expect a Certificate or ClientKeyExchange
|
---|
| 1110 | c.expect = (c.verifyClient !== false) ? CCE : CKE;
|
---|
| 1111 | c.session.resuming = false;
|
---|
| 1112 |
|
---|
| 1113 | // create new security parameters
|
---|
| 1114 | tls.createSecurityParameters(c, msg);
|
---|
| 1115 | }
|
---|
| 1116 |
|
---|
| 1117 | // connection now open
|
---|
| 1118 | c.open = true;
|
---|
| 1119 |
|
---|
| 1120 | // queue server hello
|
---|
| 1121 | tls.queue(c, tls.createRecord(c, {
|
---|
| 1122 | type: tls.ContentType.handshake,
|
---|
| 1123 | data: tls.createServerHello(c)
|
---|
| 1124 | }));
|
---|
| 1125 |
|
---|
| 1126 | if(c.session.resuming) {
|
---|
| 1127 | // queue change cipher spec message
|
---|
| 1128 | tls.queue(c, tls.createRecord(c, {
|
---|
| 1129 | type: tls.ContentType.change_cipher_spec,
|
---|
| 1130 | data: tls.createChangeCipherSpec()
|
---|
| 1131 | }));
|
---|
| 1132 |
|
---|
| 1133 | // create pending state
|
---|
| 1134 | c.state.pending = tls.createConnectionState(c);
|
---|
| 1135 |
|
---|
| 1136 | // change current write state to pending write state
|
---|
| 1137 | c.state.current.write = c.state.pending.write;
|
---|
| 1138 |
|
---|
| 1139 | // queue finished
|
---|
| 1140 | tls.queue(c, tls.createRecord(c, {
|
---|
| 1141 | type: tls.ContentType.handshake,
|
---|
| 1142 | data: tls.createFinished(c)
|
---|
| 1143 | }));
|
---|
| 1144 | } else {
|
---|
| 1145 | // queue server certificate
|
---|
| 1146 | tls.queue(c, tls.createRecord(c, {
|
---|
| 1147 | type: tls.ContentType.handshake,
|
---|
| 1148 | data: tls.createCertificate(c)
|
---|
| 1149 | }));
|
---|
| 1150 |
|
---|
| 1151 | if(!c.fail) {
|
---|
| 1152 | // queue server key exchange
|
---|
| 1153 | tls.queue(c, tls.createRecord(c, {
|
---|
| 1154 | type: tls.ContentType.handshake,
|
---|
| 1155 | data: tls.createServerKeyExchange(c)
|
---|
| 1156 | }));
|
---|
| 1157 |
|
---|
| 1158 | // request client certificate if set
|
---|
| 1159 | if(c.verifyClient !== false) {
|
---|
| 1160 | // queue certificate request
|
---|
| 1161 | tls.queue(c, tls.createRecord(c, {
|
---|
| 1162 | type: tls.ContentType.handshake,
|
---|
| 1163 | data: tls.createCertificateRequest(c)
|
---|
| 1164 | }));
|
---|
| 1165 | }
|
---|
| 1166 |
|
---|
| 1167 | // queue server hello done
|
---|
| 1168 | tls.queue(c, tls.createRecord(c, {
|
---|
| 1169 | type: tls.ContentType.handshake,
|
---|
| 1170 | data: tls.createServerHelloDone(c)
|
---|
| 1171 | }));
|
---|
| 1172 | }
|
---|
| 1173 | }
|
---|
| 1174 |
|
---|
| 1175 | // send records
|
---|
| 1176 | tls.flush(c);
|
---|
| 1177 |
|
---|
| 1178 | // continue
|
---|
| 1179 | c.process();
|
---|
| 1180 | };
|
---|
| 1181 |
|
---|
| 1182 | /**
|
---|
| 1183 | * Called when a client receives a Certificate record.
|
---|
| 1184 | *
|
---|
| 1185 | * When this message will be sent:
|
---|
| 1186 | * The server must send a certificate whenever the agreed-upon key exchange
|
---|
| 1187 | * method is not an anonymous one. This message will always immediately
|
---|
| 1188 | * follow the server hello message.
|
---|
| 1189 | *
|
---|
| 1190 | * Meaning of this message:
|
---|
| 1191 | * The certificate type must be appropriate for the selected cipher suite's
|
---|
| 1192 | * key exchange algorithm, and is generally an X.509v3 certificate. It must
|
---|
| 1193 | * contain a key which matches the key exchange method, as follows. Unless
|
---|
| 1194 | * otherwise specified, the signing algorithm for the certificate must be
|
---|
| 1195 | * the same as the algorithm for the certificate key. Unless otherwise
|
---|
| 1196 | * specified, the public key may be of any length.
|
---|
| 1197 | *
|
---|
| 1198 | * opaque ASN.1Cert<1..2^24-1>;
|
---|
| 1199 | * struct {
|
---|
| 1200 | * ASN.1Cert certificate_list<1..2^24-1>;
|
---|
| 1201 | * } Certificate;
|
---|
| 1202 | *
|
---|
| 1203 | * @param c the connection.
|
---|
| 1204 | * @param record the record.
|
---|
| 1205 | * @param length the length of the handshake message.
|
---|
| 1206 | */
|
---|
| 1207 | tls.handleCertificate = function(c, record, length) {
|
---|
| 1208 | // minimum of 3 bytes in message
|
---|
| 1209 | if(length < 3) {
|
---|
| 1210 | return c.error(c, {
|
---|
| 1211 | message: 'Invalid Certificate message. Message too short.',
|
---|
| 1212 | send: true,
|
---|
| 1213 | alert: {
|
---|
| 1214 | level: tls.Alert.Level.fatal,
|
---|
| 1215 | description: tls.Alert.Description.illegal_parameter
|
---|
| 1216 | }
|
---|
| 1217 | });
|
---|
| 1218 | }
|
---|
| 1219 |
|
---|
| 1220 | var b = record.fragment;
|
---|
| 1221 | var msg = {
|
---|
| 1222 | certificate_list: readVector(b, 3)
|
---|
| 1223 | };
|
---|
| 1224 |
|
---|
| 1225 | /* The sender's certificate will be first in the list (chain), each
|
---|
| 1226 | subsequent one that follows will certify the previous one, but root
|
---|
| 1227 | certificates (self-signed) that specify the certificate authority may
|
---|
| 1228 | be omitted under the assumption that clients must already possess it. */
|
---|
| 1229 | var cert, asn1;
|
---|
| 1230 | var certs = [];
|
---|
| 1231 | try {
|
---|
| 1232 | while(msg.certificate_list.length() > 0) {
|
---|
| 1233 | // each entry in msg.certificate_list is a vector with 3 len bytes
|
---|
| 1234 | cert = readVector(msg.certificate_list, 3);
|
---|
| 1235 | asn1 = forge.asn1.fromDer(cert);
|
---|
| 1236 | cert = forge.pki.certificateFromAsn1(asn1, true);
|
---|
| 1237 | certs.push(cert);
|
---|
| 1238 | }
|
---|
| 1239 | } catch(ex) {
|
---|
| 1240 | return c.error(c, {
|
---|
| 1241 | message: 'Could not parse certificate list.',
|
---|
| 1242 | cause: ex,
|
---|
| 1243 | send: true,
|
---|
| 1244 | alert: {
|
---|
| 1245 | level: tls.Alert.Level.fatal,
|
---|
| 1246 | description: tls.Alert.Description.bad_certificate
|
---|
| 1247 | }
|
---|
| 1248 | });
|
---|
| 1249 | }
|
---|
| 1250 |
|
---|
| 1251 | // ensure at least 1 certificate was provided if in client-mode
|
---|
| 1252 | // or if verifyClient was set to true to require a certificate
|
---|
| 1253 | // (as opposed to 'optional')
|
---|
| 1254 | var client = (c.entity === tls.ConnectionEnd.client);
|
---|
| 1255 | if((client || c.verifyClient === true) && certs.length === 0) {
|
---|
| 1256 | // error, no certificate
|
---|
| 1257 | c.error(c, {
|
---|
| 1258 | message: client ?
|
---|
| 1259 | 'No server certificate provided.' :
|
---|
| 1260 | 'No client certificate provided.',
|
---|
| 1261 | send: true,
|
---|
| 1262 | alert: {
|
---|
| 1263 | level: tls.Alert.Level.fatal,
|
---|
| 1264 | description: tls.Alert.Description.illegal_parameter
|
---|
| 1265 | }
|
---|
| 1266 | });
|
---|
| 1267 | } else if(certs.length === 0) {
|
---|
| 1268 | // no certs to verify
|
---|
| 1269 | // expect a ServerKeyExchange or ClientKeyExchange message next
|
---|
| 1270 | c.expect = client ? SKE : CKE;
|
---|
| 1271 | } else {
|
---|
| 1272 | // save certificate in session
|
---|
| 1273 | if(client) {
|
---|
| 1274 | c.session.serverCertificate = certs[0];
|
---|
| 1275 | } else {
|
---|
| 1276 | c.session.clientCertificate = certs[0];
|
---|
| 1277 | }
|
---|
| 1278 |
|
---|
| 1279 | if(tls.verifyCertificateChain(c, certs)) {
|
---|
| 1280 | // expect a ServerKeyExchange or ClientKeyExchange message next
|
---|
| 1281 | c.expect = client ? SKE : CKE;
|
---|
| 1282 | }
|
---|
| 1283 | }
|
---|
| 1284 |
|
---|
| 1285 | // continue
|
---|
| 1286 | c.process();
|
---|
| 1287 | };
|
---|
| 1288 |
|
---|
| 1289 | /**
|
---|
| 1290 | * Called when a client receives a ServerKeyExchange record.
|
---|
| 1291 | *
|
---|
| 1292 | * When this message will be sent:
|
---|
| 1293 | * This message will be sent immediately after the server certificate
|
---|
| 1294 | * message (or the server hello message, if this is an anonymous
|
---|
| 1295 | * negotiation).
|
---|
| 1296 | *
|
---|
| 1297 | * The server key exchange message is sent by the server only when the
|
---|
| 1298 | * server certificate message (if sent) does not contain enough data to
|
---|
| 1299 | * allow the client to exchange a premaster secret.
|
---|
| 1300 | *
|
---|
| 1301 | * Meaning of this message:
|
---|
| 1302 | * This message conveys cryptographic information to allow the client to
|
---|
| 1303 | * communicate the premaster secret: either an RSA public key to encrypt
|
---|
| 1304 | * the premaster secret with, or a Diffie-Hellman public key with which the
|
---|
| 1305 | * client can complete a key exchange (with the result being the premaster
|
---|
| 1306 | * secret.)
|
---|
| 1307 | *
|
---|
| 1308 | * enum {
|
---|
| 1309 | * dhe_dss, dhe_rsa, dh_anon, rsa, dh_dss, dh_rsa
|
---|
| 1310 | * } KeyExchangeAlgorithm;
|
---|
| 1311 | *
|
---|
| 1312 | * struct {
|
---|
| 1313 | * opaque dh_p<1..2^16-1>;
|
---|
| 1314 | * opaque dh_g<1..2^16-1>;
|
---|
| 1315 | * opaque dh_Ys<1..2^16-1>;
|
---|
| 1316 | * } ServerDHParams;
|
---|
| 1317 | *
|
---|
| 1318 | * struct {
|
---|
| 1319 | * select(KeyExchangeAlgorithm) {
|
---|
| 1320 | * case dh_anon:
|
---|
| 1321 | * ServerDHParams params;
|
---|
| 1322 | * case dhe_dss:
|
---|
| 1323 | * case dhe_rsa:
|
---|
| 1324 | * ServerDHParams params;
|
---|
| 1325 | * digitally-signed struct {
|
---|
| 1326 | * opaque client_random[32];
|
---|
| 1327 | * opaque server_random[32];
|
---|
| 1328 | * ServerDHParams params;
|
---|
| 1329 | * } signed_params;
|
---|
| 1330 | * case rsa:
|
---|
| 1331 | * case dh_dss:
|
---|
| 1332 | * case dh_rsa:
|
---|
| 1333 | * struct {};
|
---|
| 1334 | * };
|
---|
| 1335 | * } ServerKeyExchange;
|
---|
| 1336 | *
|
---|
| 1337 | * @param c the connection.
|
---|
| 1338 | * @param record the record.
|
---|
| 1339 | * @param length the length of the handshake message.
|
---|
| 1340 | */
|
---|
| 1341 | tls.handleServerKeyExchange = function(c, record, length) {
|
---|
| 1342 | // this implementation only supports RSA, no Diffie-Hellman support
|
---|
| 1343 | // so any length > 0 is invalid
|
---|
| 1344 | if(length > 0) {
|
---|
| 1345 | return c.error(c, {
|
---|
| 1346 | message: 'Invalid key parameters. Only RSA is supported.',
|
---|
| 1347 | send: true,
|
---|
| 1348 | alert: {
|
---|
| 1349 | level: tls.Alert.Level.fatal,
|
---|
| 1350 | description: tls.Alert.Description.unsupported_certificate
|
---|
| 1351 | }
|
---|
| 1352 | });
|
---|
| 1353 | }
|
---|
| 1354 |
|
---|
| 1355 | // expect an optional CertificateRequest message next
|
---|
| 1356 | c.expect = SCR;
|
---|
| 1357 |
|
---|
| 1358 | // continue
|
---|
| 1359 | c.process();
|
---|
| 1360 | };
|
---|
| 1361 |
|
---|
| 1362 | /**
|
---|
| 1363 | * Called when a client receives a ClientKeyExchange record.
|
---|
| 1364 | *
|
---|
| 1365 | * @param c the connection.
|
---|
| 1366 | * @param record the record.
|
---|
| 1367 | * @param length the length of the handshake message.
|
---|
| 1368 | */
|
---|
| 1369 | tls.handleClientKeyExchange = function(c, record, length) {
|
---|
| 1370 | // this implementation only supports RSA, no Diffie-Hellman support
|
---|
| 1371 | // so any length < 48 is invalid
|
---|
| 1372 | if(length < 48) {
|
---|
| 1373 | return c.error(c, {
|
---|
| 1374 | message: 'Invalid key parameters. Only RSA is supported.',
|
---|
| 1375 | send: true,
|
---|
| 1376 | alert: {
|
---|
| 1377 | level: tls.Alert.Level.fatal,
|
---|
| 1378 | description: tls.Alert.Description.unsupported_certificate
|
---|
| 1379 | }
|
---|
| 1380 | });
|
---|
| 1381 | }
|
---|
| 1382 |
|
---|
| 1383 | var b = record.fragment;
|
---|
| 1384 | var msg = {
|
---|
| 1385 | enc_pre_master_secret: readVector(b, 2).getBytes()
|
---|
| 1386 | };
|
---|
| 1387 |
|
---|
| 1388 | // do rsa decryption
|
---|
| 1389 | var privateKey = null;
|
---|
| 1390 | if(c.getPrivateKey) {
|
---|
| 1391 | try {
|
---|
| 1392 | privateKey = c.getPrivateKey(c, c.session.serverCertificate);
|
---|
| 1393 | privateKey = forge.pki.privateKeyFromPem(privateKey);
|
---|
| 1394 | } catch(ex) {
|
---|
| 1395 | c.error(c, {
|
---|
| 1396 | message: 'Could not get private key.',
|
---|
| 1397 | cause: ex,
|
---|
| 1398 | send: true,
|
---|
| 1399 | alert: {
|
---|
| 1400 | level: tls.Alert.Level.fatal,
|
---|
| 1401 | description: tls.Alert.Description.internal_error
|
---|
| 1402 | }
|
---|
| 1403 | });
|
---|
| 1404 | }
|
---|
| 1405 | }
|
---|
| 1406 |
|
---|
| 1407 | if(privateKey === null) {
|
---|
| 1408 | return c.error(c, {
|
---|
| 1409 | message: 'No private key set.',
|
---|
| 1410 | send: true,
|
---|
| 1411 | alert: {
|
---|
| 1412 | level: tls.Alert.Level.fatal,
|
---|
| 1413 | description: tls.Alert.Description.internal_error
|
---|
| 1414 | }
|
---|
| 1415 | });
|
---|
| 1416 | }
|
---|
| 1417 |
|
---|
| 1418 | try {
|
---|
| 1419 | // decrypt 48-byte pre-master secret
|
---|
| 1420 | var sp = c.session.sp;
|
---|
| 1421 | sp.pre_master_secret = privateKey.decrypt(msg.enc_pre_master_secret);
|
---|
| 1422 |
|
---|
| 1423 | // ensure client hello version matches first 2 bytes
|
---|
| 1424 | var version = c.session.clientHelloVersion;
|
---|
| 1425 | if(version.major !== sp.pre_master_secret.charCodeAt(0) ||
|
---|
| 1426 | version.minor !== sp.pre_master_secret.charCodeAt(1)) {
|
---|
| 1427 | // error, do not send alert (see BLEI attack below)
|
---|
| 1428 | throw new Error('TLS version rollback attack detected.');
|
---|
| 1429 | }
|
---|
| 1430 | } catch(ex) {
|
---|
| 1431 | /* Note: Daniel Bleichenbacher [BLEI] can be used to attack a
|
---|
| 1432 | TLS server which is using PKCS#1 encoded RSA, so instead of
|
---|
| 1433 | failing here, we generate 48 random bytes and use that as
|
---|
| 1434 | the pre-master secret. */
|
---|
| 1435 | sp.pre_master_secret = forge.random.getBytes(48);
|
---|
| 1436 | }
|
---|
| 1437 |
|
---|
| 1438 | // expect a CertificateVerify message if a Certificate was received that
|
---|
| 1439 | // does not have fixed Diffie-Hellman params, otherwise expect
|
---|
| 1440 | // ChangeCipherSpec
|
---|
| 1441 | c.expect = CCC;
|
---|
| 1442 | if(c.session.clientCertificate !== null) {
|
---|
| 1443 | // only RSA support, so expect CertificateVerify
|
---|
| 1444 | // TODO: support Diffie-Hellman
|
---|
| 1445 | c.expect = CCV;
|
---|
| 1446 | }
|
---|
| 1447 |
|
---|
| 1448 | // continue
|
---|
| 1449 | c.process();
|
---|
| 1450 | };
|
---|
| 1451 |
|
---|
| 1452 | /**
|
---|
| 1453 | * Called when a client receives a CertificateRequest record.
|
---|
| 1454 | *
|
---|
| 1455 | * When this message will be sent:
|
---|
| 1456 | * A non-anonymous server can optionally request a certificate from the
|
---|
| 1457 | * client, if appropriate for the selected cipher suite. This message, if
|
---|
| 1458 | * sent, will immediately follow the Server Key Exchange message (if it is
|
---|
| 1459 | * sent; otherwise, the Server Certificate message).
|
---|
| 1460 | *
|
---|
| 1461 | * enum {
|
---|
| 1462 | * rsa_sign(1), dss_sign(2), rsa_fixed_dh(3), dss_fixed_dh(4),
|
---|
| 1463 | * rsa_ephemeral_dh_RESERVED(5), dss_ephemeral_dh_RESERVED(6),
|
---|
| 1464 | * fortezza_dms_RESERVED(20), (255)
|
---|
| 1465 | * } ClientCertificateType;
|
---|
| 1466 | *
|
---|
| 1467 | * opaque DistinguishedName<1..2^16-1>;
|
---|
| 1468 | *
|
---|
| 1469 | * struct {
|
---|
| 1470 | * ClientCertificateType certificate_types<1..2^8-1>;
|
---|
| 1471 | * SignatureAndHashAlgorithm supported_signature_algorithms<2^16-1>;
|
---|
| 1472 | * DistinguishedName certificate_authorities<0..2^16-1>;
|
---|
| 1473 | * } CertificateRequest;
|
---|
| 1474 | *
|
---|
| 1475 | * @param c the connection.
|
---|
| 1476 | * @param record the record.
|
---|
| 1477 | * @param length the length of the handshake message.
|
---|
| 1478 | */
|
---|
| 1479 | tls.handleCertificateRequest = function(c, record, length) {
|
---|
| 1480 | // minimum of 3 bytes in message
|
---|
| 1481 | if(length < 3) {
|
---|
| 1482 | return c.error(c, {
|
---|
| 1483 | message: 'Invalid CertificateRequest. Message too short.',
|
---|
| 1484 | send: true,
|
---|
| 1485 | alert: {
|
---|
| 1486 | level: tls.Alert.Level.fatal,
|
---|
| 1487 | description: tls.Alert.Description.illegal_parameter
|
---|
| 1488 | }
|
---|
| 1489 | });
|
---|
| 1490 | }
|
---|
| 1491 |
|
---|
| 1492 | // TODO: TLS 1.2+ has different format including
|
---|
| 1493 | // SignatureAndHashAlgorithm after cert types
|
---|
| 1494 | var b = record.fragment;
|
---|
| 1495 | var msg = {
|
---|
| 1496 | certificate_types: readVector(b, 1),
|
---|
| 1497 | certificate_authorities: readVector(b, 2)
|
---|
| 1498 | };
|
---|
| 1499 |
|
---|
| 1500 | // save certificate request in session
|
---|
| 1501 | c.session.certificateRequest = msg;
|
---|
| 1502 |
|
---|
| 1503 | // expect a ServerHelloDone message next
|
---|
| 1504 | c.expect = SHD;
|
---|
| 1505 |
|
---|
| 1506 | // continue
|
---|
| 1507 | c.process();
|
---|
| 1508 | };
|
---|
| 1509 |
|
---|
| 1510 | /**
|
---|
| 1511 | * Called when a server receives a CertificateVerify record.
|
---|
| 1512 | *
|
---|
| 1513 | * @param c the connection.
|
---|
| 1514 | * @param record the record.
|
---|
| 1515 | * @param length the length of the handshake message.
|
---|
| 1516 | */
|
---|
| 1517 | tls.handleCertificateVerify = function(c, record, length) {
|
---|
| 1518 | if(length < 2) {
|
---|
| 1519 | return c.error(c, {
|
---|
| 1520 | message: 'Invalid CertificateVerify. Message too short.',
|
---|
| 1521 | send: true,
|
---|
| 1522 | alert: {
|
---|
| 1523 | level: tls.Alert.Level.fatal,
|
---|
| 1524 | description: tls.Alert.Description.illegal_parameter
|
---|
| 1525 | }
|
---|
| 1526 | });
|
---|
| 1527 | }
|
---|
| 1528 |
|
---|
| 1529 | // rewind to get full bytes for message so it can be manually
|
---|
| 1530 | // digested below (special case for CertificateVerify messages because
|
---|
| 1531 | // they must be digested *after* handling as opposed to all others)
|
---|
| 1532 | var b = record.fragment;
|
---|
| 1533 | b.read -= 4;
|
---|
| 1534 | var msgBytes = b.bytes();
|
---|
| 1535 | b.read += 4;
|
---|
| 1536 |
|
---|
| 1537 | var msg = {
|
---|
| 1538 | signature: readVector(b, 2).getBytes()
|
---|
| 1539 | };
|
---|
| 1540 |
|
---|
| 1541 | // TODO: add support for DSA
|
---|
| 1542 |
|
---|
| 1543 | // generate data to verify
|
---|
| 1544 | var verify = forge.util.createBuffer();
|
---|
| 1545 | verify.putBuffer(c.session.md5.digest());
|
---|
| 1546 | verify.putBuffer(c.session.sha1.digest());
|
---|
| 1547 | verify = verify.getBytes();
|
---|
| 1548 |
|
---|
| 1549 | try {
|
---|
| 1550 | var cert = c.session.clientCertificate;
|
---|
| 1551 | /*b = forge.pki.rsa.decrypt(
|
---|
| 1552 | msg.signature, cert.publicKey, true, verify.length);
|
---|
| 1553 | if(b !== verify) {*/
|
---|
| 1554 | if(!cert.publicKey.verify(verify, msg.signature, 'NONE')) {
|
---|
| 1555 | throw new Error('CertificateVerify signature does not match.');
|
---|
| 1556 | }
|
---|
| 1557 |
|
---|
| 1558 | // digest message now that it has been handled
|
---|
| 1559 | c.session.md5.update(msgBytes);
|
---|
| 1560 | c.session.sha1.update(msgBytes);
|
---|
| 1561 | } catch(ex) {
|
---|
| 1562 | return c.error(c, {
|
---|
| 1563 | message: 'Bad signature in CertificateVerify.',
|
---|
| 1564 | send: true,
|
---|
| 1565 | alert: {
|
---|
| 1566 | level: tls.Alert.Level.fatal,
|
---|
| 1567 | description: tls.Alert.Description.handshake_failure
|
---|
| 1568 | }
|
---|
| 1569 | });
|
---|
| 1570 | }
|
---|
| 1571 |
|
---|
| 1572 | // expect ChangeCipherSpec
|
---|
| 1573 | c.expect = CCC;
|
---|
| 1574 |
|
---|
| 1575 | // continue
|
---|
| 1576 | c.process();
|
---|
| 1577 | };
|
---|
| 1578 |
|
---|
| 1579 | /**
|
---|
| 1580 | * Called when a client receives a ServerHelloDone record.
|
---|
| 1581 | *
|
---|
| 1582 | * When this message will be sent:
|
---|
| 1583 | * The server hello done message is sent by the server to indicate the end
|
---|
| 1584 | * of the server hello and associated messages. After sending this message
|
---|
| 1585 | * the server will wait for a client response.
|
---|
| 1586 | *
|
---|
| 1587 | * Meaning of this message:
|
---|
| 1588 | * This message means that the server is done sending messages to support
|
---|
| 1589 | * the key exchange, and the client can proceed with its phase of the key
|
---|
| 1590 | * exchange.
|
---|
| 1591 | *
|
---|
| 1592 | * Upon receipt of the server hello done message the client should verify
|
---|
| 1593 | * that the server provided a valid certificate if required and check that
|
---|
| 1594 | * the server hello parameters are acceptable.
|
---|
| 1595 | *
|
---|
| 1596 | * struct {} ServerHelloDone;
|
---|
| 1597 | *
|
---|
| 1598 | * @param c the connection.
|
---|
| 1599 | * @param record the record.
|
---|
| 1600 | * @param length the length of the handshake message.
|
---|
| 1601 | */
|
---|
| 1602 | tls.handleServerHelloDone = function(c, record, length) {
|
---|
| 1603 | // len must be 0 bytes
|
---|
| 1604 | if(length > 0) {
|
---|
| 1605 | return c.error(c, {
|
---|
| 1606 | message: 'Invalid ServerHelloDone message. Invalid length.',
|
---|
| 1607 | send: true,
|
---|
| 1608 | alert: {
|
---|
| 1609 | level: tls.Alert.Level.fatal,
|
---|
| 1610 | description: tls.Alert.Description.record_overflow
|
---|
| 1611 | }
|
---|
| 1612 | });
|
---|
| 1613 | }
|
---|
| 1614 |
|
---|
| 1615 | if(c.serverCertificate === null) {
|
---|
| 1616 | // no server certificate was provided
|
---|
| 1617 | var error = {
|
---|
| 1618 | message: 'No server certificate provided. Not enough security.',
|
---|
| 1619 | send: true,
|
---|
| 1620 | alert: {
|
---|
| 1621 | level: tls.Alert.Level.fatal,
|
---|
| 1622 | description: tls.Alert.Description.insufficient_security
|
---|
| 1623 | }
|
---|
| 1624 | };
|
---|
| 1625 |
|
---|
| 1626 | // call application callback
|
---|
| 1627 | var depth = 0;
|
---|
| 1628 | var ret = c.verify(c, error.alert.description, depth, []);
|
---|
| 1629 | if(ret !== true) {
|
---|
| 1630 | // check for custom alert info
|
---|
| 1631 | if(ret || ret === 0) {
|
---|
| 1632 | // set custom message and alert description
|
---|
| 1633 | if(typeof ret === 'object' && !forge.util.isArray(ret)) {
|
---|
| 1634 | if(ret.message) {
|
---|
| 1635 | error.message = ret.message;
|
---|
| 1636 | }
|
---|
| 1637 | if(ret.alert) {
|
---|
| 1638 | error.alert.description = ret.alert;
|
---|
| 1639 | }
|
---|
| 1640 | } else if(typeof ret === 'number') {
|
---|
| 1641 | // set custom alert description
|
---|
| 1642 | error.alert.description = ret;
|
---|
| 1643 | }
|
---|
| 1644 | }
|
---|
| 1645 |
|
---|
| 1646 | // send error
|
---|
| 1647 | return c.error(c, error);
|
---|
| 1648 | }
|
---|
| 1649 | }
|
---|
| 1650 |
|
---|
| 1651 | // create client certificate message if requested
|
---|
| 1652 | if(c.session.certificateRequest !== null) {
|
---|
| 1653 | record = tls.createRecord(c, {
|
---|
| 1654 | type: tls.ContentType.handshake,
|
---|
| 1655 | data: tls.createCertificate(c)
|
---|
| 1656 | });
|
---|
| 1657 | tls.queue(c, record);
|
---|
| 1658 | }
|
---|
| 1659 |
|
---|
| 1660 | // create client key exchange message
|
---|
| 1661 | record = tls.createRecord(c, {
|
---|
| 1662 | type: tls.ContentType.handshake,
|
---|
| 1663 | data: tls.createClientKeyExchange(c)
|
---|
| 1664 | });
|
---|
| 1665 | tls.queue(c, record);
|
---|
| 1666 |
|
---|
| 1667 | // expect no messages until the following callback has been called
|
---|
| 1668 | c.expect = SER;
|
---|
| 1669 |
|
---|
| 1670 | // create callback to handle client signature (for client-certs)
|
---|
| 1671 | var callback = function(c, signature) {
|
---|
| 1672 | if(c.session.certificateRequest !== null &&
|
---|
| 1673 | c.session.clientCertificate !== null) {
|
---|
| 1674 | // create certificate verify message
|
---|
| 1675 | tls.queue(c, tls.createRecord(c, {
|
---|
| 1676 | type: tls.ContentType.handshake,
|
---|
| 1677 | data: tls.createCertificateVerify(c, signature)
|
---|
| 1678 | }));
|
---|
| 1679 | }
|
---|
| 1680 |
|
---|
| 1681 | // create change cipher spec message
|
---|
| 1682 | tls.queue(c, tls.createRecord(c, {
|
---|
| 1683 | type: tls.ContentType.change_cipher_spec,
|
---|
| 1684 | data: tls.createChangeCipherSpec()
|
---|
| 1685 | }));
|
---|
| 1686 |
|
---|
| 1687 | // create pending state
|
---|
| 1688 | c.state.pending = tls.createConnectionState(c);
|
---|
| 1689 |
|
---|
| 1690 | // change current write state to pending write state
|
---|
| 1691 | c.state.current.write = c.state.pending.write;
|
---|
| 1692 |
|
---|
| 1693 | // create finished message
|
---|
| 1694 | tls.queue(c, tls.createRecord(c, {
|
---|
| 1695 | type: tls.ContentType.handshake,
|
---|
| 1696 | data: tls.createFinished(c)
|
---|
| 1697 | }));
|
---|
| 1698 |
|
---|
| 1699 | // expect a server ChangeCipherSpec message next
|
---|
| 1700 | c.expect = SCC;
|
---|
| 1701 |
|
---|
| 1702 | // send records
|
---|
| 1703 | tls.flush(c);
|
---|
| 1704 |
|
---|
| 1705 | // continue
|
---|
| 1706 | c.process();
|
---|
| 1707 | };
|
---|
| 1708 |
|
---|
| 1709 | // if there is no certificate request or no client certificate, do
|
---|
| 1710 | // callback immediately
|
---|
| 1711 | if(c.session.certificateRequest === null ||
|
---|
| 1712 | c.session.clientCertificate === null) {
|
---|
| 1713 | return callback(c, null);
|
---|
| 1714 | }
|
---|
| 1715 |
|
---|
| 1716 | // otherwise get the client signature
|
---|
| 1717 | tls.getClientSignature(c, callback);
|
---|
| 1718 | };
|
---|
| 1719 |
|
---|
| 1720 | /**
|
---|
| 1721 | * Called when a ChangeCipherSpec record is received.
|
---|
| 1722 | *
|
---|
| 1723 | * @param c the connection.
|
---|
| 1724 | * @param record the record.
|
---|
| 1725 | */
|
---|
| 1726 | tls.handleChangeCipherSpec = function(c, record) {
|
---|
| 1727 | if(record.fragment.getByte() !== 0x01) {
|
---|
| 1728 | return c.error(c, {
|
---|
| 1729 | message: 'Invalid ChangeCipherSpec message received.',
|
---|
| 1730 | send: true,
|
---|
| 1731 | alert: {
|
---|
| 1732 | level: tls.Alert.Level.fatal,
|
---|
| 1733 | description: tls.Alert.Description.illegal_parameter
|
---|
| 1734 | }
|
---|
| 1735 | });
|
---|
| 1736 | }
|
---|
| 1737 |
|
---|
| 1738 | // create pending state if:
|
---|
| 1739 | // 1. Resuming session in client mode OR
|
---|
| 1740 | // 2. NOT resuming session in server mode
|
---|
| 1741 | var client = (c.entity === tls.ConnectionEnd.client);
|
---|
| 1742 | if((c.session.resuming && client) || (!c.session.resuming && !client)) {
|
---|
| 1743 | c.state.pending = tls.createConnectionState(c);
|
---|
| 1744 | }
|
---|
| 1745 |
|
---|
| 1746 | // change current read state to pending read state
|
---|
| 1747 | c.state.current.read = c.state.pending.read;
|
---|
| 1748 |
|
---|
| 1749 | // clear pending state if:
|
---|
| 1750 | // 1. NOT resuming session in client mode OR
|
---|
| 1751 | // 2. resuming a session in server mode
|
---|
| 1752 | if((!c.session.resuming && client) || (c.session.resuming && !client)) {
|
---|
| 1753 | c.state.pending = null;
|
---|
| 1754 | }
|
---|
| 1755 |
|
---|
| 1756 | // expect a Finished record next
|
---|
| 1757 | c.expect = client ? SFI : CFI;
|
---|
| 1758 |
|
---|
| 1759 | // continue
|
---|
| 1760 | c.process();
|
---|
| 1761 | };
|
---|
| 1762 |
|
---|
| 1763 | /**
|
---|
| 1764 | * Called when a Finished record is received.
|
---|
| 1765 | *
|
---|
| 1766 | * When this message will be sent:
|
---|
| 1767 | * A finished message is always sent immediately after a change
|
---|
| 1768 | * cipher spec message to verify that the key exchange and
|
---|
| 1769 | * authentication processes were successful. It is essential that a
|
---|
| 1770 | * change cipher spec message be received between the other
|
---|
| 1771 | * handshake messages and the Finished message.
|
---|
| 1772 | *
|
---|
| 1773 | * Meaning of this message:
|
---|
| 1774 | * The finished message is the first protected with the just-
|
---|
| 1775 | * negotiated algorithms, keys, and secrets. Recipients of finished
|
---|
| 1776 | * messages must verify that the contents are correct. Once a side
|
---|
| 1777 | * has sent its Finished message and received and validated the
|
---|
| 1778 | * Finished message from its peer, it may begin to send and receive
|
---|
| 1779 | * application data over the connection.
|
---|
| 1780 | *
|
---|
| 1781 | * struct {
|
---|
| 1782 | * opaque verify_data[verify_data_length];
|
---|
| 1783 | * } Finished;
|
---|
| 1784 | *
|
---|
| 1785 | * verify_data
|
---|
| 1786 | * PRF(master_secret, finished_label, Hash(handshake_messages))
|
---|
| 1787 | * [0..verify_data_length-1];
|
---|
| 1788 | *
|
---|
| 1789 | * finished_label
|
---|
| 1790 | * For Finished messages sent by the client, the string
|
---|
| 1791 | * "client finished". For Finished messages sent by the server, the
|
---|
| 1792 | * string "server finished".
|
---|
| 1793 | *
|
---|
| 1794 | * verify_data_length depends on the cipher suite. If it is not specified
|
---|
| 1795 | * by the cipher suite, then it is 12. Versions of TLS < 1.2 always used
|
---|
| 1796 | * 12 bytes.
|
---|
| 1797 | *
|
---|
| 1798 | * @param c the connection.
|
---|
| 1799 | * @param record the record.
|
---|
| 1800 | * @param length the length of the handshake message.
|
---|
| 1801 | */
|
---|
| 1802 | tls.handleFinished = function(c, record, length) {
|
---|
| 1803 | // rewind to get full bytes for message so it can be manually
|
---|
| 1804 | // digested below (special case for Finished messages because they
|
---|
| 1805 | // must be digested *after* handling as opposed to all others)
|
---|
| 1806 | var b = record.fragment;
|
---|
| 1807 | b.read -= 4;
|
---|
| 1808 | var msgBytes = b.bytes();
|
---|
| 1809 | b.read += 4;
|
---|
| 1810 |
|
---|
| 1811 | // message contains only verify_data
|
---|
| 1812 | var vd = record.fragment.getBytes();
|
---|
| 1813 |
|
---|
| 1814 | // ensure verify data is correct
|
---|
| 1815 | b = forge.util.createBuffer();
|
---|
| 1816 | b.putBuffer(c.session.md5.digest());
|
---|
| 1817 | b.putBuffer(c.session.sha1.digest());
|
---|
| 1818 |
|
---|
| 1819 | // set label based on entity type
|
---|
| 1820 | var client = (c.entity === tls.ConnectionEnd.client);
|
---|
| 1821 | var label = client ? 'server finished' : 'client finished';
|
---|
| 1822 |
|
---|
| 1823 | // TODO: determine prf function and verify length for TLS 1.2
|
---|
| 1824 | var sp = c.session.sp;
|
---|
| 1825 | var vdl = 12;
|
---|
| 1826 | var prf = prf_TLS1;
|
---|
| 1827 | b = prf(sp.master_secret, label, b.getBytes(), vdl);
|
---|
| 1828 | if(b.getBytes() !== vd) {
|
---|
| 1829 | return c.error(c, {
|
---|
| 1830 | message: 'Invalid verify_data in Finished message.',
|
---|
| 1831 | send: true,
|
---|
| 1832 | alert: {
|
---|
| 1833 | level: tls.Alert.Level.fatal,
|
---|
| 1834 | description: tls.Alert.Description.decrypt_error
|
---|
| 1835 | }
|
---|
| 1836 | });
|
---|
| 1837 | }
|
---|
| 1838 |
|
---|
| 1839 | // digest finished message now that it has been handled
|
---|
| 1840 | c.session.md5.update(msgBytes);
|
---|
| 1841 | c.session.sha1.update(msgBytes);
|
---|
| 1842 |
|
---|
| 1843 | // resuming session as client or NOT resuming session as server
|
---|
| 1844 | if((c.session.resuming && client) || (!c.session.resuming && !client)) {
|
---|
| 1845 | // create change cipher spec message
|
---|
| 1846 | tls.queue(c, tls.createRecord(c, {
|
---|
| 1847 | type: tls.ContentType.change_cipher_spec,
|
---|
| 1848 | data: tls.createChangeCipherSpec()
|
---|
| 1849 | }));
|
---|
| 1850 |
|
---|
| 1851 | // change current write state to pending write state, clear pending
|
---|
| 1852 | c.state.current.write = c.state.pending.write;
|
---|
| 1853 | c.state.pending = null;
|
---|
| 1854 |
|
---|
| 1855 | // create finished message
|
---|
| 1856 | tls.queue(c, tls.createRecord(c, {
|
---|
| 1857 | type: tls.ContentType.handshake,
|
---|
| 1858 | data: tls.createFinished(c)
|
---|
| 1859 | }));
|
---|
| 1860 | }
|
---|
| 1861 |
|
---|
| 1862 | // expect application data next
|
---|
| 1863 | c.expect = client ? SAD : CAD;
|
---|
| 1864 |
|
---|
| 1865 | // handshake complete
|
---|
| 1866 | c.handshaking = false;
|
---|
| 1867 | ++c.handshakes;
|
---|
| 1868 |
|
---|
| 1869 | // save access to peer certificate
|
---|
| 1870 | c.peerCertificate = client ?
|
---|
| 1871 | c.session.serverCertificate : c.session.clientCertificate;
|
---|
| 1872 |
|
---|
| 1873 | // send records
|
---|
| 1874 | tls.flush(c);
|
---|
| 1875 |
|
---|
| 1876 | // now connected
|
---|
| 1877 | c.isConnected = true;
|
---|
| 1878 | c.connected(c);
|
---|
| 1879 |
|
---|
| 1880 | // continue
|
---|
| 1881 | c.process();
|
---|
| 1882 | };
|
---|
| 1883 |
|
---|
| 1884 | /**
|
---|
| 1885 | * Called when an Alert record is received.
|
---|
| 1886 | *
|
---|
| 1887 | * @param c the connection.
|
---|
| 1888 | * @param record the record.
|
---|
| 1889 | */
|
---|
| 1890 | tls.handleAlert = function(c, record) {
|
---|
| 1891 | // read alert
|
---|
| 1892 | var b = record.fragment;
|
---|
| 1893 | var alert = {
|
---|
| 1894 | level: b.getByte(),
|
---|
| 1895 | description: b.getByte()
|
---|
| 1896 | };
|
---|
| 1897 |
|
---|
| 1898 | // TODO: consider using a table?
|
---|
| 1899 | // get appropriate message
|
---|
| 1900 | var msg;
|
---|
| 1901 | switch(alert.description) {
|
---|
| 1902 | case tls.Alert.Description.close_notify:
|
---|
| 1903 | msg = 'Connection closed.';
|
---|
| 1904 | break;
|
---|
| 1905 | case tls.Alert.Description.unexpected_message:
|
---|
| 1906 | msg = 'Unexpected message.';
|
---|
| 1907 | break;
|
---|
| 1908 | case tls.Alert.Description.bad_record_mac:
|
---|
| 1909 | msg = 'Bad record MAC.';
|
---|
| 1910 | break;
|
---|
| 1911 | case tls.Alert.Description.decryption_failed:
|
---|
| 1912 | msg = 'Decryption failed.';
|
---|
| 1913 | break;
|
---|
| 1914 | case tls.Alert.Description.record_overflow:
|
---|
| 1915 | msg = 'Record overflow.';
|
---|
| 1916 | break;
|
---|
| 1917 | case tls.Alert.Description.decompression_failure:
|
---|
| 1918 | msg = 'Decompression failed.';
|
---|
| 1919 | break;
|
---|
| 1920 | case tls.Alert.Description.handshake_failure:
|
---|
| 1921 | msg = 'Handshake failure.';
|
---|
| 1922 | break;
|
---|
| 1923 | case tls.Alert.Description.bad_certificate:
|
---|
| 1924 | msg = 'Bad certificate.';
|
---|
| 1925 | break;
|
---|
| 1926 | case tls.Alert.Description.unsupported_certificate:
|
---|
| 1927 | msg = 'Unsupported certificate.';
|
---|
| 1928 | break;
|
---|
| 1929 | case tls.Alert.Description.certificate_revoked:
|
---|
| 1930 | msg = 'Certificate revoked.';
|
---|
| 1931 | break;
|
---|
| 1932 | case tls.Alert.Description.certificate_expired:
|
---|
| 1933 | msg = 'Certificate expired.';
|
---|
| 1934 | break;
|
---|
| 1935 | case tls.Alert.Description.certificate_unknown:
|
---|
| 1936 | msg = 'Certificate unknown.';
|
---|
| 1937 | break;
|
---|
| 1938 | case tls.Alert.Description.illegal_parameter:
|
---|
| 1939 | msg = 'Illegal parameter.';
|
---|
| 1940 | break;
|
---|
| 1941 | case tls.Alert.Description.unknown_ca:
|
---|
| 1942 | msg = 'Unknown certificate authority.';
|
---|
| 1943 | break;
|
---|
| 1944 | case tls.Alert.Description.access_denied:
|
---|
| 1945 | msg = 'Access denied.';
|
---|
| 1946 | break;
|
---|
| 1947 | case tls.Alert.Description.decode_error:
|
---|
| 1948 | msg = 'Decode error.';
|
---|
| 1949 | break;
|
---|
| 1950 | case tls.Alert.Description.decrypt_error:
|
---|
| 1951 | msg = 'Decrypt error.';
|
---|
| 1952 | break;
|
---|
| 1953 | case tls.Alert.Description.export_restriction:
|
---|
| 1954 | msg = 'Export restriction.';
|
---|
| 1955 | break;
|
---|
| 1956 | case tls.Alert.Description.protocol_version:
|
---|
| 1957 | msg = 'Unsupported protocol version.';
|
---|
| 1958 | break;
|
---|
| 1959 | case tls.Alert.Description.insufficient_security:
|
---|
| 1960 | msg = 'Insufficient security.';
|
---|
| 1961 | break;
|
---|
| 1962 | case tls.Alert.Description.internal_error:
|
---|
| 1963 | msg = 'Internal error.';
|
---|
| 1964 | break;
|
---|
| 1965 | case tls.Alert.Description.user_canceled:
|
---|
| 1966 | msg = 'User canceled.';
|
---|
| 1967 | break;
|
---|
| 1968 | case tls.Alert.Description.no_renegotiation:
|
---|
| 1969 | msg = 'Renegotiation not supported.';
|
---|
| 1970 | break;
|
---|
| 1971 | default:
|
---|
| 1972 | msg = 'Unknown error.';
|
---|
| 1973 | break;
|
---|
| 1974 | }
|
---|
| 1975 |
|
---|
| 1976 | // close connection on close_notify, not an error
|
---|
| 1977 | if(alert.description === tls.Alert.Description.close_notify) {
|
---|
| 1978 | return c.close();
|
---|
| 1979 | }
|
---|
| 1980 |
|
---|
| 1981 | // call error handler
|
---|
| 1982 | c.error(c, {
|
---|
| 1983 | message: msg,
|
---|
| 1984 | send: false,
|
---|
| 1985 | // origin is the opposite end
|
---|
| 1986 | origin: (c.entity === tls.ConnectionEnd.client) ? 'server' : 'client',
|
---|
| 1987 | alert: alert
|
---|
| 1988 | });
|
---|
| 1989 |
|
---|
| 1990 | // continue
|
---|
| 1991 | c.process();
|
---|
| 1992 | };
|
---|
| 1993 |
|
---|
| 1994 | /**
|
---|
| 1995 | * Called when a Handshake record is received.
|
---|
| 1996 | *
|
---|
| 1997 | * @param c the connection.
|
---|
| 1998 | * @param record the record.
|
---|
| 1999 | */
|
---|
| 2000 | tls.handleHandshake = function(c, record) {
|
---|
| 2001 | // get the handshake type and message length
|
---|
| 2002 | var b = record.fragment;
|
---|
| 2003 | var type = b.getByte();
|
---|
| 2004 | var length = b.getInt24();
|
---|
| 2005 |
|
---|
| 2006 | // see if the record fragment doesn't yet contain the full message
|
---|
| 2007 | if(length > b.length()) {
|
---|
| 2008 | // cache the record, clear its fragment, and reset the buffer read
|
---|
| 2009 | // pointer before the type and length were read
|
---|
| 2010 | c.fragmented = record;
|
---|
| 2011 | record.fragment = forge.util.createBuffer();
|
---|
| 2012 | b.read -= 4;
|
---|
| 2013 |
|
---|
| 2014 | // continue
|
---|
| 2015 | return c.process();
|
---|
| 2016 | }
|
---|
| 2017 |
|
---|
| 2018 | // full message now available, clear cache, reset read pointer to
|
---|
| 2019 | // before type and length
|
---|
| 2020 | c.fragmented = null;
|
---|
| 2021 | b.read -= 4;
|
---|
| 2022 |
|
---|
| 2023 | // save the handshake bytes for digestion after handler is found
|
---|
| 2024 | // (include type and length of handshake msg)
|
---|
| 2025 | var bytes = b.bytes(length + 4);
|
---|
| 2026 |
|
---|
| 2027 | // restore read pointer
|
---|
| 2028 | b.read += 4;
|
---|
| 2029 |
|
---|
| 2030 | // handle expected message
|
---|
| 2031 | if(type in hsTable[c.entity][c.expect]) {
|
---|
| 2032 | // initialize server session
|
---|
| 2033 | if(c.entity === tls.ConnectionEnd.server && !c.open && !c.fail) {
|
---|
| 2034 | c.handshaking = true;
|
---|
| 2035 | c.session = {
|
---|
| 2036 | version: null,
|
---|
| 2037 | extensions: {
|
---|
| 2038 | server_name: {
|
---|
| 2039 | serverNameList: []
|
---|
| 2040 | }
|
---|
| 2041 | },
|
---|
| 2042 | cipherSuite: null,
|
---|
| 2043 | compressionMethod: null,
|
---|
| 2044 | serverCertificate: null,
|
---|
| 2045 | clientCertificate: null,
|
---|
| 2046 | md5: forge.md.md5.create(),
|
---|
| 2047 | sha1: forge.md.sha1.create()
|
---|
| 2048 | };
|
---|
| 2049 | }
|
---|
| 2050 |
|
---|
| 2051 | /* Update handshake messages digest. Finished and CertificateVerify
|
---|
| 2052 | messages are not digested here. They can't be digested as part of
|
---|
| 2053 | the verify_data that they contain. These messages are manually
|
---|
| 2054 | digested in their handlers. HelloRequest messages are simply never
|
---|
| 2055 | included in the handshake message digest according to spec. */
|
---|
| 2056 | if(type !== tls.HandshakeType.hello_request &&
|
---|
| 2057 | type !== tls.HandshakeType.certificate_verify &&
|
---|
| 2058 | type !== tls.HandshakeType.finished) {
|
---|
| 2059 | c.session.md5.update(bytes);
|
---|
| 2060 | c.session.sha1.update(bytes);
|
---|
| 2061 | }
|
---|
| 2062 |
|
---|
| 2063 | // handle specific handshake type record
|
---|
| 2064 | hsTable[c.entity][c.expect][type](c, record, length);
|
---|
| 2065 | } else {
|
---|
| 2066 | // unexpected record
|
---|
| 2067 | tls.handleUnexpected(c, record);
|
---|
| 2068 | }
|
---|
| 2069 | };
|
---|
| 2070 |
|
---|
| 2071 | /**
|
---|
| 2072 | * Called when an ApplicationData record is received.
|
---|
| 2073 | *
|
---|
| 2074 | * @param c the connection.
|
---|
| 2075 | * @param record the record.
|
---|
| 2076 | */
|
---|
| 2077 | tls.handleApplicationData = function(c, record) {
|
---|
| 2078 | // buffer data, notify that its ready
|
---|
| 2079 | c.data.putBuffer(record.fragment);
|
---|
| 2080 | c.dataReady(c);
|
---|
| 2081 |
|
---|
| 2082 | // continue
|
---|
| 2083 | c.process();
|
---|
| 2084 | };
|
---|
| 2085 |
|
---|
| 2086 | /**
|
---|
| 2087 | * Called when a Heartbeat record is received.
|
---|
| 2088 | *
|
---|
| 2089 | * @param c the connection.
|
---|
| 2090 | * @param record the record.
|
---|
| 2091 | */
|
---|
| 2092 | tls.handleHeartbeat = function(c, record) {
|
---|
| 2093 | // get the heartbeat type and payload
|
---|
| 2094 | var b = record.fragment;
|
---|
| 2095 | var type = b.getByte();
|
---|
| 2096 | var length = b.getInt16();
|
---|
| 2097 | var payload = b.getBytes(length);
|
---|
| 2098 |
|
---|
| 2099 | if(type === tls.HeartbeatMessageType.heartbeat_request) {
|
---|
| 2100 | // discard request during handshake or if length is too large
|
---|
| 2101 | if(c.handshaking || length > payload.length) {
|
---|
| 2102 | // continue
|
---|
| 2103 | return c.process();
|
---|
| 2104 | }
|
---|
| 2105 | // retransmit payload
|
---|
| 2106 | tls.queue(c, tls.createRecord(c, {
|
---|
| 2107 | type: tls.ContentType.heartbeat,
|
---|
| 2108 | data: tls.createHeartbeat(
|
---|
| 2109 | tls.HeartbeatMessageType.heartbeat_response, payload)
|
---|
| 2110 | }));
|
---|
| 2111 | tls.flush(c);
|
---|
| 2112 | } else if(type === tls.HeartbeatMessageType.heartbeat_response) {
|
---|
| 2113 | // check payload against expected payload, discard heartbeat if no match
|
---|
| 2114 | if(payload !== c.expectedHeartbeatPayload) {
|
---|
| 2115 | // continue
|
---|
| 2116 | return c.process();
|
---|
| 2117 | }
|
---|
| 2118 |
|
---|
| 2119 | // notify that a valid heartbeat was received
|
---|
| 2120 | if(c.heartbeatReceived) {
|
---|
| 2121 | c.heartbeatReceived(c, forge.util.createBuffer(payload));
|
---|
| 2122 | }
|
---|
| 2123 | }
|
---|
| 2124 |
|
---|
| 2125 | // continue
|
---|
| 2126 | c.process();
|
---|
| 2127 | };
|
---|
| 2128 |
|
---|
| 2129 | /**
|
---|
| 2130 | * The transistional state tables for receiving TLS records. It maps the
|
---|
| 2131 | * current TLS engine state and a received record to a function to handle the
|
---|
| 2132 | * record and update the state.
|
---|
| 2133 | *
|
---|
| 2134 | * For instance, if the current state is SHE, then the TLS engine is expecting
|
---|
| 2135 | * a ServerHello record. Once a record is received, the handler function is
|
---|
| 2136 | * looked up using the state SHE and the record's content type.
|
---|
| 2137 | *
|
---|
| 2138 | * The resulting function will either be an error handler or a record handler.
|
---|
| 2139 | * The function will take whatever action is appropriate and update the state
|
---|
| 2140 | * for the next record.
|
---|
| 2141 | *
|
---|
| 2142 | * The states are all based on possible server record types. Note that the
|
---|
| 2143 | * client will never specifically expect to receive a HelloRequest or an alert
|
---|
| 2144 | * from the server so there is no state that reflects this. These messages may
|
---|
| 2145 | * occur at any time.
|
---|
| 2146 | *
|
---|
| 2147 | * There are two tables for mapping states because there is a second tier of
|
---|
| 2148 | * types for handshake messages. Once a record with a content type of handshake
|
---|
| 2149 | * is received, the handshake record handler will look up the handshake type in
|
---|
| 2150 | * the secondary map to get its appropriate handler.
|
---|
| 2151 | *
|
---|
| 2152 | * Valid message orders are as follows:
|
---|
| 2153 | *
|
---|
| 2154 | * =======================FULL HANDSHAKE======================
|
---|
| 2155 | * Client Server
|
---|
| 2156 | *
|
---|
| 2157 | * ClientHello -------->
|
---|
| 2158 | * ServerHello
|
---|
| 2159 | * Certificate*
|
---|
| 2160 | * ServerKeyExchange*
|
---|
| 2161 | * CertificateRequest*
|
---|
| 2162 | * <-------- ServerHelloDone
|
---|
| 2163 | * Certificate*
|
---|
| 2164 | * ClientKeyExchange
|
---|
| 2165 | * CertificateVerify*
|
---|
| 2166 | * [ChangeCipherSpec]
|
---|
| 2167 | * Finished -------->
|
---|
| 2168 | * [ChangeCipherSpec]
|
---|
| 2169 | * <-------- Finished
|
---|
| 2170 | * Application Data <-------> Application Data
|
---|
| 2171 | *
|
---|
| 2172 | * =====================SESSION RESUMPTION=====================
|
---|
| 2173 | * Client Server
|
---|
| 2174 | *
|
---|
| 2175 | * ClientHello -------->
|
---|
| 2176 | * ServerHello
|
---|
| 2177 | * [ChangeCipherSpec]
|
---|
| 2178 | * <-------- Finished
|
---|
| 2179 | * [ChangeCipherSpec]
|
---|
| 2180 | * Finished -------->
|
---|
| 2181 | * Application Data <-------> Application Data
|
---|
| 2182 | */
|
---|
| 2183 | // client expect states (indicate which records are expected to be received)
|
---|
| 2184 | var SHE = 0; // rcv server hello
|
---|
| 2185 | var SCE = 1; // rcv server certificate
|
---|
| 2186 | var SKE = 2; // rcv server key exchange
|
---|
| 2187 | var SCR = 3; // rcv certificate request
|
---|
| 2188 | var SHD = 4; // rcv server hello done
|
---|
| 2189 | var SCC = 5; // rcv change cipher spec
|
---|
| 2190 | var SFI = 6; // rcv finished
|
---|
| 2191 | var SAD = 7; // rcv application data
|
---|
| 2192 | var SER = 8; // not expecting any messages at this point
|
---|
| 2193 |
|
---|
| 2194 | // server expect states
|
---|
| 2195 | var CHE = 0; // rcv client hello
|
---|
| 2196 | var CCE = 1; // rcv client certificate
|
---|
| 2197 | var CKE = 2; // rcv client key exchange
|
---|
| 2198 | var CCV = 3; // rcv certificate verify
|
---|
| 2199 | var CCC = 4; // rcv change cipher spec
|
---|
| 2200 | var CFI = 5; // rcv finished
|
---|
| 2201 | var CAD = 6; // rcv application data
|
---|
| 2202 | var CER = 7; // not expecting any messages at this point
|
---|
| 2203 |
|
---|
| 2204 | // map client current expect state and content type to function
|
---|
| 2205 | var __ = tls.handleUnexpected;
|
---|
| 2206 | var R0 = tls.handleChangeCipherSpec;
|
---|
| 2207 | var R1 = tls.handleAlert;
|
---|
| 2208 | var R2 = tls.handleHandshake;
|
---|
| 2209 | var R3 = tls.handleApplicationData;
|
---|
| 2210 | var R4 = tls.handleHeartbeat;
|
---|
| 2211 | var ctTable = [];
|
---|
| 2212 | ctTable[tls.ConnectionEnd.client] = [
|
---|
| 2213 | // CC,AL,HS,AD,HB
|
---|
| 2214 | /*SHE*/[__,R1,R2,__,R4],
|
---|
| 2215 | /*SCE*/[__,R1,R2,__,R4],
|
---|
| 2216 | /*SKE*/[__,R1,R2,__,R4],
|
---|
| 2217 | /*SCR*/[__,R1,R2,__,R4],
|
---|
| 2218 | /*SHD*/[__,R1,R2,__,R4],
|
---|
| 2219 | /*SCC*/[R0,R1,__,__,R4],
|
---|
| 2220 | /*SFI*/[__,R1,R2,__,R4],
|
---|
| 2221 | /*SAD*/[__,R1,R2,R3,R4],
|
---|
| 2222 | /*SER*/[__,R1,R2,__,R4]
|
---|
| 2223 | ];
|
---|
| 2224 |
|
---|
| 2225 | // map server current expect state and content type to function
|
---|
| 2226 | ctTable[tls.ConnectionEnd.server] = [
|
---|
| 2227 | // CC,AL,HS,AD
|
---|
| 2228 | /*CHE*/[__,R1,R2,__,R4],
|
---|
| 2229 | /*CCE*/[__,R1,R2,__,R4],
|
---|
| 2230 | /*CKE*/[__,R1,R2,__,R4],
|
---|
| 2231 | /*CCV*/[__,R1,R2,__,R4],
|
---|
| 2232 | /*CCC*/[R0,R1,__,__,R4],
|
---|
| 2233 | /*CFI*/[__,R1,R2,__,R4],
|
---|
| 2234 | /*CAD*/[__,R1,R2,R3,R4],
|
---|
| 2235 | /*CER*/[__,R1,R2,__,R4]
|
---|
| 2236 | ];
|
---|
| 2237 |
|
---|
| 2238 | // map client current expect state and handshake type to function
|
---|
| 2239 | var H0 = tls.handleHelloRequest;
|
---|
| 2240 | var H1 = tls.handleServerHello;
|
---|
| 2241 | var H2 = tls.handleCertificate;
|
---|
| 2242 | var H3 = tls.handleServerKeyExchange;
|
---|
| 2243 | var H4 = tls.handleCertificateRequest;
|
---|
| 2244 | var H5 = tls.handleServerHelloDone;
|
---|
| 2245 | var H6 = tls.handleFinished;
|
---|
| 2246 | var hsTable = [];
|
---|
| 2247 | hsTable[tls.ConnectionEnd.client] = [
|
---|
| 2248 | // HR,01,SH,03,04,05,06,07,08,09,10,SC,SK,CR,HD,15,CK,17,18,19,FI
|
---|
| 2249 | /*SHE*/[__,__,H1,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__],
|
---|
| 2250 | /*SCE*/[H0,__,__,__,__,__,__,__,__,__,__,H2,H3,H4,H5,__,__,__,__,__,__],
|
---|
| 2251 | /*SKE*/[H0,__,__,__,__,__,__,__,__,__,__,__,H3,H4,H5,__,__,__,__,__,__],
|
---|
| 2252 | /*SCR*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,H4,H5,__,__,__,__,__,__],
|
---|
| 2253 | /*SHD*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,__,H5,__,__,__,__,__,__],
|
---|
| 2254 | /*SCC*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__],
|
---|
| 2255 | /*SFI*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,H6],
|
---|
| 2256 | /*SAD*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__],
|
---|
| 2257 | /*SER*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__]
|
---|
| 2258 | ];
|
---|
| 2259 |
|
---|
| 2260 | // map server current expect state and handshake type to function
|
---|
| 2261 | // Note: CAD[CH] does not map to FB because renegotation is prohibited
|
---|
| 2262 | var H7 = tls.handleClientHello;
|
---|
| 2263 | var H8 = tls.handleClientKeyExchange;
|
---|
| 2264 | var H9 = tls.handleCertificateVerify;
|
---|
| 2265 | hsTable[tls.ConnectionEnd.server] = [
|
---|
| 2266 | // 01,CH,02,03,04,05,06,07,08,09,10,CC,12,13,14,CV,CK,17,18,19,FI
|
---|
| 2267 | /*CHE*/[__,H7,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__],
|
---|
| 2268 | /*CCE*/[__,__,__,__,__,__,__,__,__,__,__,H2,__,__,__,__,__,__,__,__,__],
|
---|
| 2269 | /*CKE*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,H8,__,__,__,__],
|
---|
| 2270 | /*CCV*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,H9,__,__,__,__,__],
|
---|
| 2271 | /*CCC*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__],
|
---|
| 2272 | /*CFI*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,H6],
|
---|
| 2273 | /*CAD*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__],
|
---|
| 2274 | /*CER*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__]
|
---|
| 2275 | ];
|
---|
| 2276 |
|
---|
| 2277 | /**
|
---|
| 2278 | * Generates the master_secret and keys using the given security parameters.
|
---|
| 2279 | *
|
---|
| 2280 | * The security parameters for a TLS connection state are defined as such:
|
---|
| 2281 | *
|
---|
| 2282 | * struct {
|
---|
| 2283 | * ConnectionEnd entity;
|
---|
| 2284 | * PRFAlgorithm prf_algorithm;
|
---|
| 2285 | * BulkCipherAlgorithm bulk_cipher_algorithm;
|
---|
| 2286 | * CipherType cipher_type;
|
---|
| 2287 | * uint8 enc_key_length;
|
---|
| 2288 | * uint8 block_length;
|
---|
| 2289 | * uint8 fixed_iv_length;
|
---|
| 2290 | * uint8 record_iv_length;
|
---|
| 2291 | * MACAlgorithm mac_algorithm;
|
---|
| 2292 | * uint8 mac_length;
|
---|
| 2293 | * uint8 mac_key_length;
|
---|
| 2294 | * CompressionMethod compression_algorithm;
|
---|
| 2295 | * opaque master_secret[48];
|
---|
| 2296 | * opaque client_random[32];
|
---|
| 2297 | * opaque server_random[32];
|
---|
| 2298 | * } SecurityParameters;
|
---|
| 2299 | *
|
---|
| 2300 | * Note that this definition is from TLS 1.2. In TLS 1.0 some of these
|
---|
| 2301 | * parameters are ignored because, for instance, the PRFAlgorithm is a
|
---|
| 2302 | * builtin-fixed algorithm combining iterations of MD5 and SHA-1 in TLS 1.0.
|
---|
| 2303 | *
|
---|
| 2304 | * The Record Protocol requires an algorithm to generate keys required by the
|
---|
| 2305 | * current connection state.
|
---|
| 2306 | *
|
---|
| 2307 | * The master secret is expanded into a sequence of secure bytes, which is then
|
---|
| 2308 | * split to a client write MAC key, a server write MAC key, a client write
|
---|
| 2309 | * encryption key, and a server write encryption key. In TLS 1.0 a client write
|
---|
| 2310 | * IV and server write IV are also generated. Each of these is generated from
|
---|
| 2311 | * the byte sequence in that order. Unused values are empty. In TLS 1.2, some
|
---|
| 2312 | * AEAD ciphers may additionally require a client write IV and a server write
|
---|
| 2313 | * IV (see Section 6.2.3.3).
|
---|
| 2314 | *
|
---|
| 2315 | * When keys, MAC keys, and IVs are generated, the master secret is used as an
|
---|
| 2316 | * entropy source.
|
---|
| 2317 | *
|
---|
| 2318 | * To generate the key material, compute:
|
---|
| 2319 | *
|
---|
| 2320 | * master_secret = PRF(pre_master_secret, "master secret",
|
---|
| 2321 | * ClientHello.random + ServerHello.random)
|
---|
| 2322 | *
|
---|
| 2323 | * key_block = PRF(SecurityParameters.master_secret,
|
---|
| 2324 | * "key expansion",
|
---|
| 2325 | * SecurityParameters.server_random +
|
---|
| 2326 | * SecurityParameters.client_random);
|
---|
| 2327 | *
|
---|
| 2328 | * until enough output has been generated. Then, the key_block is
|
---|
| 2329 | * partitioned as follows:
|
---|
| 2330 | *
|
---|
| 2331 | * client_write_MAC_key[SecurityParameters.mac_key_length]
|
---|
| 2332 | * server_write_MAC_key[SecurityParameters.mac_key_length]
|
---|
| 2333 | * client_write_key[SecurityParameters.enc_key_length]
|
---|
| 2334 | * server_write_key[SecurityParameters.enc_key_length]
|
---|
| 2335 | * client_write_IV[SecurityParameters.fixed_iv_length]
|
---|
| 2336 | * server_write_IV[SecurityParameters.fixed_iv_length]
|
---|
| 2337 | *
|
---|
| 2338 | * In TLS 1.2, the client_write_IV and server_write_IV are only generated for
|
---|
| 2339 | * implicit nonce techniques as described in Section 3.2.1 of [AEAD]. This
|
---|
| 2340 | * implementation uses TLS 1.0 so IVs are generated.
|
---|
| 2341 | *
|
---|
| 2342 | * Implementation note: The currently defined cipher suite which requires the
|
---|
| 2343 | * most material is AES_256_CBC_SHA256. It requires 2 x 32 byte keys and 2 x 32
|
---|
| 2344 | * byte MAC keys, for a total 128 bytes of key material. In TLS 1.0 it also
|
---|
| 2345 | * requires 2 x 16 byte IVs, so it actually takes 160 bytes of key material.
|
---|
| 2346 | *
|
---|
| 2347 | * @param c the connection.
|
---|
| 2348 | * @param sp the security parameters to use.
|
---|
| 2349 | *
|
---|
| 2350 | * @return the security keys.
|
---|
| 2351 | */
|
---|
| 2352 | tls.generateKeys = function(c, sp) {
|
---|
| 2353 | // TLS_RSA_WITH_AES_128_CBC_SHA (required to be compliant with TLS 1.2) &
|
---|
| 2354 | // TLS_RSA_WITH_AES_256_CBC_SHA are the only cipher suites implemented
|
---|
| 2355 | // at present
|
---|
| 2356 |
|
---|
| 2357 | // TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA is required to be compliant with
|
---|
| 2358 | // TLS 1.0 but we don't care right now because AES is better and we have
|
---|
| 2359 | // an implementation for it
|
---|
| 2360 |
|
---|
| 2361 | // TODO: TLS 1.2 implementation
|
---|
| 2362 | /*
|
---|
| 2363 | // determine the PRF
|
---|
| 2364 | var prf;
|
---|
| 2365 | switch(sp.prf_algorithm) {
|
---|
| 2366 | case tls.PRFAlgorithm.tls_prf_sha256:
|
---|
| 2367 | prf = prf_sha256;
|
---|
| 2368 | break;
|
---|
| 2369 | default:
|
---|
| 2370 | // should never happen
|
---|
| 2371 | throw new Error('Invalid PRF');
|
---|
| 2372 | }
|
---|
| 2373 | */
|
---|
| 2374 |
|
---|
| 2375 | // TLS 1.0/1.1 implementation
|
---|
| 2376 | var prf = prf_TLS1;
|
---|
| 2377 |
|
---|
| 2378 | // concatenate server and client random
|
---|
| 2379 | var random = sp.client_random + sp.server_random;
|
---|
| 2380 |
|
---|
| 2381 | // only create master secret if session is new
|
---|
| 2382 | if(!c.session.resuming) {
|
---|
| 2383 | // create master secret, clean up pre-master secret
|
---|
| 2384 | sp.master_secret = prf(
|
---|
| 2385 | sp.pre_master_secret, 'master secret', random, 48).bytes();
|
---|
| 2386 | sp.pre_master_secret = null;
|
---|
| 2387 | }
|
---|
| 2388 |
|
---|
| 2389 | // generate the amount of key material needed
|
---|
| 2390 | random = sp.server_random + sp.client_random;
|
---|
| 2391 | var length = 2 * sp.mac_key_length + 2 * sp.enc_key_length;
|
---|
| 2392 |
|
---|
| 2393 | // include IV for TLS/1.0
|
---|
| 2394 | var tls10 = (c.version.major === tls.Versions.TLS_1_0.major &&
|
---|
| 2395 | c.version.minor === tls.Versions.TLS_1_0.minor);
|
---|
| 2396 | if(tls10) {
|
---|
| 2397 | length += 2 * sp.fixed_iv_length;
|
---|
| 2398 | }
|
---|
| 2399 | var km = prf(sp.master_secret, 'key expansion', random, length);
|
---|
| 2400 |
|
---|
| 2401 | // split the key material into the MAC and encryption keys
|
---|
| 2402 | var rval = {
|
---|
| 2403 | client_write_MAC_key: km.getBytes(sp.mac_key_length),
|
---|
| 2404 | server_write_MAC_key: km.getBytes(sp.mac_key_length),
|
---|
| 2405 | client_write_key: km.getBytes(sp.enc_key_length),
|
---|
| 2406 | server_write_key: km.getBytes(sp.enc_key_length)
|
---|
| 2407 | };
|
---|
| 2408 |
|
---|
| 2409 | // include TLS 1.0 IVs
|
---|
| 2410 | if(tls10) {
|
---|
| 2411 | rval.client_write_IV = km.getBytes(sp.fixed_iv_length);
|
---|
| 2412 | rval.server_write_IV = km.getBytes(sp.fixed_iv_length);
|
---|
| 2413 | }
|
---|
| 2414 |
|
---|
| 2415 | return rval;
|
---|
| 2416 | };
|
---|
| 2417 |
|
---|
| 2418 | /**
|
---|
| 2419 | * Creates a new initialized TLS connection state. A connection state has
|
---|
| 2420 | * a read mode and a write mode.
|
---|
| 2421 | *
|
---|
| 2422 | * compression state:
|
---|
| 2423 | * The current state of the compression algorithm.
|
---|
| 2424 | *
|
---|
| 2425 | * cipher state:
|
---|
| 2426 | * The current state of the encryption algorithm. This will consist of the
|
---|
| 2427 | * scheduled key for that connection. For stream ciphers, this will also
|
---|
| 2428 | * contain whatever state information is necessary to allow the stream to
|
---|
| 2429 | * continue to encrypt or decrypt data.
|
---|
| 2430 | *
|
---|
| 2431 | * MAC key:
|
---|
| 2432 | * The MAC key for the connection.
|
---|
| 2433 | *
|
---|
| 2434 | * sequence number:
|
---|
| 2435 | * Each connection state contains a sequence number, which is maintained
|
---|
| 2436 | * separately for read and write states. The sequence number MUST be set to
|
---|
| 2437 | * zero whenever a connection state is made the active state. Sequence
|
---|
| 2438 | * numbers are of type uint64 and may not exceed 2^64-1. Sequence numbers do
|
---|
| 2439 | * not wrap. If a TLS implementation would need to wrap a sequence number,
|
---|
| 2440 | * it must renegotiate instead. A sequence number is incremented after each
|
---|
| 2441 | * record: specifically, the first record transmitted under a particular
|
---|
| 2442 | * connection state MUST use sequence number 0.
|
---|
| 2443 | *
|
---|
| 2444 | * @param c the connection.
|
---|
| 2445 | *
|
---|
| 2446 | * @return the new initialized TLS connection state.
|
---|
| 2447 | */
|
---|
| 2448 | tls.createConnectionState = function(c) {
|
---|
| 2449 | var client = (c.entity === tls.ConnectionEnd.client);
|
---|
| 2450 |
|
---|
| 2451 | var createMode = function() {
|
---|
| 2452 | var mode = {
|
---|
| 2453 | // two 32-bit numbers, first is most significant
|
---|
| 2454 | sequenceNumber: [0, 0],
|
---|
| 2455 | macKey: null,
|
---|
| 2456 | macLength: 0,
|
---|
| 2457 | macFunction: null,
|
---|
| 2458 | cipherState: null,
|
---|
| 2459 | cipherFunction: function(record) {return true;},
|
---|
| 2460 | compressionState: null,
|
---|
| 2461 | compressFunction: function(record) {return true;},
|
---|
| 2462 | updateSequenceNumber: function() {
|
---|
| 2463 | if(mode.sequenceNumber[1] === 0xFFFFFFFF) {
|
---|
| 2464 | mode.sequenceNumber[1] = 0;
|
---|
| 2465 | ++mode.sequenceNumber[0];
|
---|
| 2466 | } else {
|
---|
| 2467 | ++mode.sequenceNumber[1];
|
---|
| 2468 | }
|
---|
| 2469 | }
|
---|
| 2470 | };
|
---|
| 2471 | return mode;
|
---|
| 2472 | };
|
---|
| 2473 | var state = {
|
---|
| 2474 | read: createMode(),
|
---|
| 2475 | write: createMode()
|
---|
| 2476 | };
|
---|
| 2477 |
|
---|
| 2478 | // update function in read mode will decrypt then decompress a record
|
---|
| 2479 | state.read.update = function(c, record) {
|
---|
| 2480 | if(!state.read.cipherFunction(record, state.read)) {
|
---|
| 2481 | c.error(c, {
|
---|
| 2482 | message: 'Could not decrypt record or bad MAC.',
|
---|
| 2483 | send: true,
|
---|
| 2484 | alert: {
|
---|
| 2485 | level: tls.Alert.Level.fatal,
|
---|
| 2486 | // doesn't matter if decryption failed or MAC was
|
---|
| 2487 | // invalid, return the same error so as not to reveal
|
---|
| 2488 | // which one occurred
|
---|
| 2489 | description: tls.Alert.Description.bad_record_mac
|
---|
| 2490 | }
|
---|
| 2491 | });
|
---|
| 2492 | } else if(!state.read.compressFunction(c, record, state.read)) {
|
---|
| 2493 | c.error(c, {
|
---|
| 2494 | message: 'Could not decompress record.',
|
---|
| 2495 | send: true,
|
---|
| 2496 | alert: {
|
---|
| 2497 | level: tls.Alert.Level.fatal,
|
---|
| 2498 | description: tls.Alert.Description.decompression_failure
|
---|
| 2499 | }
|
---|
| 2500 | });
|
---|
| 2501 | }
|
---|
| 2502 | return !c.fail;
|
---|
| 2503 | };
|
---|
| 2504 |
|
---|
| 2505 | // update function in write mode will compress then encrypt a record
|
---|
| 2506 | state.write.update = function(c, record) {
|
---|
| 2507 | if(!state.write.compressFunction(c, record, state.write)) {
|
---|
| 2508 | // error, but do not send alert since it would require
|
---|
| 2509 | // compression as well
|
---|
| 2510 | c.error(c, {
|
---|
| 2511 | message: 'Could not compress record.',
|
---|
| 2512 | send: false,
|
---|
| 2513 | alert: {
|
---|
| 2514 | level: tls.Alert.Level.fatal,
|
---|
| 2515 | description: tls.Alert.Description.internal_error
|
---|
| 2516 | }
|
---|
| 2517 | });
|
---|
| 2518 | } else if(!state.write.cipherFunction(record, state.write)) {
|
---|
| 2519 | // error, but do not send alert since it would require
|
---|
| 2520 | // encryption as well
|
---|
| 2521 | c.error(c, {
|
---|
| 2522 | message: 'Could not encrypt record.',
|
---|
| 2523 | send: false,
|
---|
| 2524 | alert: {
|
---|
| 2525 | level: tls.Alert.Level.fatal,
|
---|
| 2526 | description: tls.Alert.Description.internal_error
|
---|
| 2527 | }
|
---|
| 2528 | });
|
---|
| 2529 | }
|
---|
| 2530 | return !c.fail;
|
---|
| 2531 | };
|
---|
| 2532 |
|
---|
| 2533 | // handle security parameters
|
---|
| 2534 | if(c.session) {
|
---|
| 2535 | var sp = c.session.sp;
|
---|
| 2536 | c.session.cipherSuite.initSecurityParameters(sp);
|
---|
| 2537 |
|
---|
| 2538 | // generate keys
|
---|
| 2539 | sp.keys = tls.generateKeys(c, sp);
|
---|
| 2540 | state.read.macKey = client ?
|
---|
| 2541 | sp.keys.server_write_MAC_key : sp.keys.client_write_MAC_key;
|
---|
| 2542 | state.write.macKey = client ?
|
---|
| 2543 | sp.keys.client_write_MAC_key : sp.keys.server_write_MAC_key;
|
---|
| 2544 |
|
---|
| 2545 | // cipher suite setup
|
---|
| 2546 | c.session.cipherSuite.initConnectionState(state, c, sp);
|
---|
| 2547 |
|
---|
| 2548 | // compression setup
|
---|
| 2549 | switch(sp.compression_algorithm) {
|
---|
| 2550 | case tls.CompressionMethod.none:
|
---|
| 2551 | break;
|
---|
| 2552 | case tls.CompressionMethod.deflate:
|
---|
| 2553 | state.read.compressFunction = inflate;
|
---|
| 2554 | state.write.compressFunction = deflate;
|
---|
| 2555 | break;
|
---|
| 2556 | default:
|
---|
| 2557 | throw new Error('Unsupported compression algorithm.');
|
---|
| 2558 | }
|
---|
| 2559 | }
|
---|
| 2560 |
|
---|
| 2561 | return state;
|
---|
| 2562 | };
|
---|
| 2563 |
|
---|
| 2564 | /**
|
---|
| 2565 | * Creates a Random structure.
|
---|
| 2566 | *
|
---|
| 2567 | * struct {
|
---|
| 2568 | * uint32 gmt_unix_time;
|
---|
| 2569 | * opaque random_bytes[28];
|
---|
| 2570 | * } Random;
|
---|
| 2571 | *
|
---|
| 2572 | * gmt_unix_time:
|
---|
| 2573 | * The current time and date in standard UNIX 32-bit format (seconds since
|
---|
| 2574 | * the midnight starting Jan 1, 1970, UTC, ignoring leap seconds) according
|
---|
| 2575 | * to the sender's internal clock. Clocks are not required to be set
|
---|
| 2576 | * correctly by the basic TLS protocol; higher-level or application
|
---|
| 2577 | * protocols may define additional requirements. Note that, for historical
|
---|
| 2578 | * reasons, the data element is named using GMT, the predecessor of the
|
---|
| 2579 | * current worldwide time base, UTC.
|
---|
| 2580 | * random_bytes:
|
---|
| 2581 | * 28 bytes generated by a secure random number generator.
|
---|
| 2582 | *
|
---|
| 2583 | * @return the Random structure as a byte array.
|
---|
| 2584 | */
|
---|
| 2585 | tls.createRandom = function() {
|
---|
| 2586 | // get UTC milliseconds
|
---|
| 2587 | var d = new Date();
|
---|
| 2588 | var utc = +d + d.getTimezoneOffset() * 60000;
|
---|
| 2589 | var rval = forge.util.createBuffer();
|
---|
| 2590 | rval.putInt32(utc);
|
---|
| 2591 | rval.putBytes(forge.random.getBytes(28));
|
---|
| 2592 | return rval;
|
---|
| 2593 | };
|
---|
| 2594 |
|
---|
| 2595 | /**
|
---|
| 2596 | * Creates a TLS record with the given type and data.
|
---|
| 2597 | *
|
---|
| 2598 | * @param c the connection.
|
---|
| 2599 | * @param options:
|
---|
| 2600 | * type: the record type.
|
---|
| 2601 | * data: the plain text data in a byte buffer.
|
---|
| 2602 | *
|
---|
| 2603 | * @return the created record.
|
---|
| 2604 | */
|
---|
| 2605 | tls.createRecord = function(c, options) {
|
---|
| 2606 | if(!options.data) {
|
---|
| 2607 | return null;
|
---|
| 2608 | }
|
---|
| 2609 | var record = {
|
---|
| 2610 | type: options.type,
|
---|
| 2611 | version: {
|
---|
| 2612 | major: c.version.major,
|
---|
| 2613 | minor: c.version.minor
|
---|
| 2614 | },
|
---|
| 2615 | length: options.data.length(),
|
---|
| 2616 | fragment: options.data
|
---|
| 2617 | };
|
---|
| 2618 | return record;
|
---|
| 2619 | };
|
---|
| 2620 |
|
---|
| 2621 | /**
|
---|
| 2622 | * Creates a TLS alert record.
|
---|
| 2623 | *
|
---|
| 2624 | * @param c the connection.
|
---|
| 2625 | * @param alert:
|
---|
| 2626 | * level: the TLS alert level.
|
---|
| 2627 | * description: the TLS alert description.
|
---|
| 2628 | *
|
---|
| 2629 | * @return the created alert record.
|
---|
| 2630 | */
|
---|
| 2631 | tls.createAlert = function(c, alert) {
|
---|
| 2632 | var b = forge.util.createBuffer();
|
---|
| 2633 | b.putByte(alert.level);
|
---|
| 2634 | b.putByte(alert.description);
|
---|
| 2635 | return tls.createRecord(c, {
|
---|
| 2636 | type: tls.ContentType.alert,
|
---|
| 2637 | data: b
|
---|
| 2638 | });
|
---|
| 2639 | };
|
---|
| 2640 |
|
---|
| 2641 | /* The structure of a TLS handshake message.
|
---|
| 2642 | *
|
---|
| 2643 | * struct {
|
---|
| 2644 | * HandshakeType msg_type; // handshake type
|
---|
| 2645 | * uint24 length; // bytes in message
|
---|
| 2646 | * select(HandshakeType) {
|
---|
| 2647 | * case hello_request: HelloRequest;
|
---|
| 2648 | * case client_hello: ClientHello;
|
---|
| 2649 | * case server_hello: ServerHello;
|
---|
| 2650 | * case certificate: Certificate;
|
---|
| 2651 | * case server_key_exchange: ServerKeyExchange;
|
---|
| 2652 | * case certificate_request: CertificateRequest;
|
---|
| 2653 | * case server_hello_done: ServerHelloDone;
|
---|
| 2654 | * case certificate_verify: CertificateVerify;
|
---|
| 2655 | * case client_key_exchange: ClientKeyExchange;
|
---|
| 2656 | * case finished: Finished;
|
---|
| 2657 | * } body;
|
---|
| 2658 | * } Handshake;
|
---|
| 2659 | */
|
---|
| 2660 |
|
---|
| 2661 | /**
|
---|
| 2662 | * Creates a ClientHello message.
|
---|
| 2663 | *
|
---|
| 2664 | * opaque SessionID<0..32>;
|
---|
| 2665 | * enum { null(0), deflate(1), (255) } CompressionMethod;
|
---|
| 2666 | * uint8 CipherSuite[2];
|
---|
| 2667 | *
|
---|
| 2668 | * struct {
|
---|
| 2669 | * ProtocolVersion client_version;
|
---|
| 2670 | * Random random;
|
---|
| 2671 | * SessionID session_id;
|
---|
| 2672 | * CipherSuite cipher_suites<2..2^16-2>;
|
---|
| 2673 | * CompressionMethod compression_methods<1..2^8-1>;
|
---|
| 2674 | * select(extensions_present) {
|
---|
| 2675 | * case false:
|
---|
| 2676 | * struct {};
|
---|
| 2677 | * case true:
|
---|
| 2678 | * Extension extensions<0..2^16-1>;
|
---|
| 2679 | * };
|
---|
| 2680 | * } ClientHello;
|
---|
| 2681 | *
|
---|
| 2682 | * The extension format for extended client hellos and server hellos is:
|
---|
| 2683 | *
|
---|
| 2684 | * struct {
|
---|
| 2685 | * ExtensionType extension_type;
|
---|
| 2686 | * opaque extension_data<0..2^16-1>;
|
---|
| 2687 | * } Extension;
|
---|
| 2688 | *
|
---|
| 2689 | * Here:
|
---|
| 2690 | *
|
---|
| 2691 | * - "extension_type" identifies the particular extension type.
|
---|
| 2692 | * - "extension_data" contains information specific to the particular
|
---|
| 2693 | * extension type.
|
---|
| 2694 | *
|
---|
| 2695 | * The extension types defined in this document are:
|
---|
| 2696 | *
|
---|
| 2697 | * enum {
|
---|
| 2698 | * server_name(0), max_fragment_length(1),
|
---|
| 2699 | * client_certificate_url(2), trusted_ca_keys(3),
|
---|
| 2700 | * truncated_hmac(4), status_request(5), (65535)
|
---|
| 2701 | * } ExtensionType;
|
---|
| 2702 | *
|
---|
| 2703 | * @param c the connection.
|
---|
| 2704 | *
|
---|
| 2705 | * @return the ClientHello byte buffer.
|
---|
| 2706 | */
|
---|
| 2707 | tls.createClientHello = function(c) {
|
---|
| 2708 | // save hello version
|
---|
| 2709 | c.session.clientHelloVersion = {
|
---|
| 2710 | major: c.version.major,
|
---|
| 2711 | minor: c.version.minor
|
---|
| 2712 | };
|
---|
| 2713 |
|
---|
| 2714 | // create supported cipher suites
|
---|
| 2715 | var cipherSuites = forge.util.createBuffer();
|
---|
| 2716 | for(var i = 0; i < c.cipherSuites.length; ++i) {
|
---|
| 2717 | var cs = c.cipherSuites[i];
|
---|
| 2718 | cipherSuites.putByte(cs.id[0]);
|
---|
| 2719 | cipherSuites.putByte(cs.id[1]);
|
---|
| 2720 | }
|
---|
| 2721 | var cSuites = cipherSuites.length();
|
---|
| 2722 |
|
---|
| 2723 | // create supported compression methods, null always supported, but
|
---|
| 2724 | // also support deflate if connection has inflate and deflate methods
|
---|
| 2725 | var compressionMethods = forge.util.createBuffer();
|
---|
| 2726 | compressionMethods.putByte(tls.CompressionMethod.none);
|
---|
| 2727 | // FIXME: deflate support disabled until issues with raw deflate data
|
---|
| 2728 | // without zlib headers are resolved
|
---|
| 2729 | /*
|
---|
| 2730 | if(c.inflate !== null && c.deflate !== null) {
|
---|
| 2731 | compressionMethods.putByte(tls.CompressionMethod.deflate);
|
---|
| 2732 | }
|
---|
| 2733 | */
|
---|
| 2734 | var cMethods = compressionMethods.length();
|
---|
| 2735 |
|
---|
| 2736 | // create TLS SNI (server name indication) extension if virtual host
|
---|
| 2737 | // has been specified, see RFC 3546
|
---|
| 2738 | var extensions = forge.util.createBuffer();
|
---|
| 2739 | if(c.virtualHost) {
|
---|
| 2740 | // create extension struct
|
---|
| 2741 | var ext = forge.util.createBuffer();
|
---|
| 2742 | ext.putByte(0x00); // type server_name (ExtensionType is 2 bytes)
|
---|
| 2743 | ext.putByte(0x00);
|
---|
| 2744 |
|
---|
| 2745 | /* In order to provide the server name, clients MAY include an
|
---|
| 2746 | * extension of type "server_name" in the (extended) client hello.
|
---|
| 2747 | * The "extension_data" field of this extension SHALL contain
|
---|
| 2748 | * "ServerNameList" where:
|
---|
| 2749 | *
|
---|
| 2750 | * struct {
|
---|
| 2751 | * NameType name_type;
|
---|
| 2752 | * select(name_type) {
|
---|
| 2753 | * case host_name: HostName;
|
---|
| 2754 | * } name;
|
---|
| 2755 | * } ServerName;
|
---|
| 2756 | *
|
---|
| 2757 | * enum {
|
---|
| 2758 | * host_name(0), (255)
|
---|
| 2759 | * } NameType;
|
---|
| 2760 | *
|
---|
| 2761 | * opaque HostName<1..2^16-1>;
|
---|
| 2762 | *
|
---|
| 2763 | * struct {
|
---|
| 2764 | * ServerName server_name_list<1..2^16-1>
|
---|
| 2765 | * } ServerNameList;
|
---|
| 2766 | */
|
---|
| 2767 | var serverName = forge.util.createBuffer();
|
---|
| 2768 | serverName.putByte(0x00); // type host_name
|
---|
| 2769 | writeVector(serverName, 2, forge.util.createBuffer(c.virtualHost));
|
---|
| 2770 |
|
---|
| 2771 | // ServerNameList is in extension_data
|
---|
| 2772 | var snList = forge.util.createBuffer();
|
---|
| 2773 | writeVector(snList, 2, serverName);
|
---|
| 2774 | writeVector(ext, 2, snList);
|
---|
| 2775 | extensions.putBuffer(ext);
|
---|
| 2776 | }
|
---|
| 2777 | var extLength = extensions.length();
|
---|
| 2778 | if(extLength > 0) {
|
---|
| 2779 | // add extension vector length
|
---|
| 2780 | extLength += 2;
|
---|
| 2781 | }
|
---|
| 2782 |
|
---|
| 2783 | // determine length of the handshake message
|
---|
| 2784 | // cipher suites and compression methods size will need to be
|
---|
| 2785 | // updated if more get added to the list
|
---|
| 2786 | var sessionId = c.session.id;
|
---|
| 2787 | var length =
|
---|
| 2788 | sessionId.length + 1 + // session ID vector
|
---|
| 2789 | 2 + // version (major + minor)
|
---|
| 2790 | 4 + 28 + // random time and random bytes
|
---|
| 2791 | 2 + cSuites + // cipher suites vector
|
---|
| 2792 | 1 + cMethods + // compression methods vector
|
---|
| 2793 | extLength; // extensions vector
|
---|
| 2794 |
|
---|
| 2795 | // build record fragment
|
---|
| 2796 | var rval = forge.util.createBuffer();
|
---|
| 2797 | rval.putByte(tls.HandshakeType.client_hello);
|
---|
| 2798 | rval.putInt24(length); // handshake length
|
---|
| 2799 | rval.putByte(c.version.major); // major version
|
---|
| 2800 | rval.putByte(c.version.minor); // minor version
|
---|
| 2801 | rval.putBytes(c.session.sp.client_random); // random time + bytes
|
---|
| 2802 | writeVector(rval, 1, forge.util.createBuffer(sessionId));
|
---|
| 2803 | writeVector(rval, 2, cipherSuites);
|
---|
| 2804 | writeVector(rval, 1, compressionMethods);
|
---|
| 2805 | if(extLength > 0) {
|
---|
| 2806 | writeVector(rval, 2, extensions);
|
---|
| 2807 | }
|
---|
| 2808 | return rval;
|
---|
| 2809 | };
|
---|
| 2810 |
|
---|
| 2811 | /**
|
---|
| 2812 | * Creates a ServerHello message.
|
---|
| 2813 | *
|
---|
| 2814 | * @param c the connection.
|
---|
| 2815 | *
|
---|
| 2816 | * @return the ServerHello byte buffer.
|
---|
| 2817 | */
|
---|
| 2818 | tls.createServerHello = function(c) {
|
---|
| 2819 | // determine length of the handshake message
|
---|
| 2820 | var sessionId = c.session.id;
|
---|
| 2821 | var length =
|
---|
| 2822 | sessionId.length + 1 + // session ID vector
|
---|
| 2823 | 2 + // version (major + minor)
|
---|
| 2824 | 4 + 28 + // random time and random bytes
|
---|
| 2825 | 2 + // chosen cipher suite
|
---|
| 2826 | 1; // chosen compression method
|
---|
| 2827 |
|
---|
| 2828 | // build record fragment
|
---|
| 2829 | var rval = forge.util.createBuffer();
|
---|
| 2830 | rval.putByte(tls.HandshakeType.server_hello);
|
---|
| 2831 | rval.putInt24(length); // handshake length
|
---|
| 2832 | rval.putByte(c.version.major); // major version
|
---|
| 2833 | rval.putByte(c.version.minor); // minor version
|
---|
| 2834 | rval.putBytes(c.session.sp.server_random); // random time + bytes
|
---|
| 2835 | writeVector(rval, 1, forge.util.createBuffer(sessionId));
|
---|
| 2836 | rval.putByte(c.session.cipherSuite.id[0]);
|
---|
| 2837 | rval.putByte(c.session.cipherSuite.id[1]);
|
---|
| 2838 | rval.putByte(c.session.compressionMethod);
|
---|
| 2839 | return rval;
|
---|
| 2840 | };
|
---|
| 2841 |
|
---|
| 2842 | /**
|
---|
| 2843 | * Creates a Certificate message.
|
---|
| 2844 | *
|
---|
| 2845 | * When this message will be sent:
|
---|
| 2846 | * This is the first message the client can send after receiving a server
|
---|
| 2847 | * hello done message and the first message the server can send after
|
---|
| 2848 | * sending a ServerHello. This client message is only sent if the server
|
---|
| 2849 | * requests a certificate. If no suitable certificate is available, the
|
---|
| 2850 | * client should send a certificate message containing no certificates. If
|
---|
| 2851 | * client authentication is required by the server for the handshake to
|
---|
| 2852 | * continue, it may respond with a fatal handshake failure alert.
|
---|
| 2853 | *
|
---|
| 2854 | * opaque ASN.1Cert<1..2^24-1>;
|
---|
| 2855 | *
|
---|
| 2856 | * struct {
|
---|
| 2857 | * ASN.1Cert certificate_list<0..2^24-1>;
|
---|
| 2858 | * } Certificate;
|
---|
| 2859 | *
|
---|
| 2860 | * @param c the connection.
|
---|
| 2861 | *
|
---|
| 2862 | * @return the Certificate byte buffer.
|
---|
| 2863 | */
|
---|
| 2864 | tls.createCertificate = function(c) {
|
---|
| 2865 | // TODO: check certificate request to ensure types are supported
|
---|
| 2866 |
|
---|
| 2867 | // get a certificate (a certificate as a PEM string)
|
---|
| 2868 | var client = (c.entity === tls.ConnectionEnd.client);
|
---|
| 2869 | var cert = null;
|
---|
| 2870 | if(c.getCertificate) {
|
---|
| 2871 | var hint;
|
---|
| 2872 | if(client) {
|
---|
| 2873 | hint = c.session.certificateRequest;
|
---|
| 2874 | } else {
|
---|
| 2875 | hint = c.session.extensions.server_name.serverNameList;
|
---|
| 2876 | }
|
---|
| 2877 | cert = c.getCertificate(c, hint);
|
---|
| 2878 | }
|
---|
| 2879 |
|
---|
| 2880 | // buffer to hold certificate list
|
---|
| 2881 | var certList = forge.util.createBuffer();
|
---|
| 2882 | if(cert !== null) {
|
---|
| 2883 | try {
|
---|
| 2884 | // normalize cert to a chain of certificates
|
---|
| 2885 | if(!forge.util.isArray(cert)) {
|
---|
| 2886 | cert = [cert];
|
---|
| 2887 | }
|
---|
| 2888 | var asn1 = null;
|
---|
| 2889 | for(var i = 0; i < cert.length; ++i) {
|
---|
| 2890 | var msg = forge.pem.decode(cert[i])[0];
|
---|
| 2891 | if(msg.type !== 'CERTIFICATE' &&
|
---|
| 2892 | msg.type !== 'X509 CERTIFICATE' &&
|
---|
| 2893 | msg.type !== 'TRUSTED CERTIFICATE') {
|
---|
| 2894 | var error = new Error('Could not convert certificate from PEM; PEM ' +
|
---|
| 2895 | 'header type is not "CERTIFICATE", "X509 CERTIFICATE", or ' +
|
---|
| 2896 | '"TRUSTED CERTIFICATE".');
|
---|
| 2897 | error.headerType = msg.type;
|
---|
| 2898 | throw error;
|
---|
| 2899 | }
|
---|
| 2900 | if(msg.procType && msg.procType.type === 'ENCRYPTED') {
|
---|
| 2901 | throw new Error('Could not convert certificate from PEM; PEM is encrypted.');
|
---|
| 2902 | }
|
---|
| 2903 |
|
---|
| 2904 | var der = forge.util.createBuffer(msg.body);
|
---|
| 2905 | if(asn1 === null) {
|
---|
| 2906 | asn1 = forge.asn1.fromDer(der.bytes(), false);
|
---|
| 2907 | }
|
---|
| 2908 |
|
---|
| 2909 | // certificate entry is itself a vector with 3 length bytes
|
---|
| 2910 | var certBuffer = forge.util.createBuffer();
|
---|
| 2911 | writeVector(certBuffer, 3, der);
|
---|
| 2912 |
|
---|
| 2913 | // add cert vector to cert list vector
|
---|
| 2914 | certList.putBuffer(certBuffer);
|
---|
| 2915 | }
|
---|
| 2916 |
|
---|
| 2917 | // save certificate
|
---|
| 2918 | cert = forge.pki.certificateFromAsn1(asn1);
|
---|
| 2919 | if(client) {
|
---|
| 2920 | c.session.clientCertificate = cert;
|
---|
| 2921 | } else {
|
---|
| 2922 | c.session.serverCertificate = cert;
|
---|
| 2923 | }
|
---|
| 2924 | } catch(ex) {
|
---|
| 2925 | return c.error(c, {
|
---|
| 2926 | message: 'Could not send certificate list.',
|
---|
| 2927 | cause: ex,
|
---|
| 2928 | send: true,
|
---|
| 2929 | alert: {
|
---|
| 2930 | level: tls.Alert.Level.fatal,
|
---|
| 2931 | description: tls.Alert.Description.bad_certificate
|
---|
| 2932 | }
|
---|
| 2933 | });
|
---|
| 2934 | }
|
---|
| 2935 | }
|
---|
| 2936 |
|
---|
| 2937 | // determine length of the handshake message
|
---|
| 2938 | var length = 3 + certList.length(); // cert list vector
|
---|
| 2939 |
|
---|
| 2940 | // build record fragment
|
---|
| 2941 | var rval = forge.util.createBuffer();
|
---|
| 2942 | rval.putByte(tls.HandshakeType.certificate);
|
---|
| 2943 | rval.putInt24(length);
|
---|
| 2944 | writeVector(rval, 3, certList);
|
---|
| 2945 | return rval;
|
---|
| 2946 | };
|
---|
| 2947 |
|
---|
| 2948 | /**
|
---|
| 2949 | * Creates a ClientKeyExchange message.
|
---|
| 2950 | *
|
---|
| 2951 | * When this message will be sent:
|
---|
| 2952 | * This message is always sent by the client. It will immediately follow the
|
---|
| 2953 | * client certificate message, if it is sent. Otherwise it will be the first
|
---|
| 2954 | * message sent by the client after it receives the server hello done
|
---|
| 2955 | * message.
|
---|
| 2956 | *
|
---|
| 2957 | * Meaning of this message:
|
---|
| 2958 | * With this message, the premaster secret is set, either though direct
|
---|
| 2959 | * transmission of the RSA-encrypted secret, or by the transmission of
|
---|
| 2960 | * Diffie-Hellman parameters which will allow each side to agree upon the
|
---|
| 2961 | * same premaster secret. When the key exchange method is DH_RSA or DH_DSS,
|
---|
| 2962 | * client certification has been requested, and the client was able to
|
---|
| 2963 | * respond with a certificate which contained a Diffie-Hellman public key
|
---|
| 2964 | * whose parameters (group and generator) matched those specified by the
|
---|
| 2965 | * server in its certificate, this message will not contain any data.
|
---|
| 2966 | *
|
---|
| 2967 | * Meaning of this message:
|
---|
| 2968 | * If RSA is being used for key agreement and authentication, the client
|
---|
| 2969 | * generates a 48-byte premaster secret, encrypts it using the public key
|
---|
| 2970 | * from the server's certificate or the temporary RSA key provided in a
|
---|
| 2971 | * server key exchange message, and sends the result in an encrypted
|
---|
| 2972 | * premaster secret message. This structure is a variant of the client
|
---|
| 2973 | * key exchange message, not a message in itself.
|
---|
| 2974 | *
|
---|
| 2975 | * struct {
|
---|
| 2976 | * select(KeyExchangeAlgorithm) {
|
---|
| 2977 | * case rsa: EncryptedPreMasterSecret;
|
---|
| 2978 | * case diffie_hellman: ClientDiffieHellmanPublic;
|
---|
| 2979 | * } exchange_keys;
|
---|
| 2980 | * } ClientKeyExchange;
|
---|
| 2981 | *
|
---|
| 2982 | * struct {
|
---|
| 2983 | * ProtocolVersion client_version;
|
---|
| 2984 | * opaque random[46];
|
---|
| 2985 | * } PreMasterSecret;
|
---|
| 2986 | *
|
---|
| 2987 | * struct {
|
---|
| 2988 | * public-key-encrypted PreMasterSecret pre_master_secret;
|
---|
| 2989 | * } EncryptedPreMasterSecret;
|
---|
| 2990 | *
|
---|
| 2991 | * A public-key-encrypted element is encoded as a vector <0..2^16-1>.
|
---|
| 2992 | *
|
---|
| 2993 | * @param c the connection.
|
---|
| 2994 | *
|
---|
| 2995 | * @return the ClientKeyExchange byte buffer.
|
---|
| 2996 | */
|
---|
| 2997 | tls.createClientKeyExchange = function(c) {
|
---|
| 2998 | // create buffer to encrypt
|
---|
| 2999 | var b = forge.util.createBuffer();
|
---|
| 3000 |
|
---|
| 3001 | // add highest client-supported protocol to help server avoid version
|
---|
| 3002 | // rollback attacks
|
---|
| 3003 | b.putByte(c.session.clientHelloVersion.major);
|
---|
| 3004 | b.putByte(c.session.clientHelloVersion.minor);
|
---|
| 3005 |
|
---|
| 3006 | // generate and add 46 random bytes
|
---|
| 3007 | b.putBytes(forge.random.getBytes(46));
|
---|
| 3008 |
|
---|
| 3009 | // save pre-master secret
|
---|
| 3010 | var sp = c.session.sp;
|
---|
| 3011 | sp.pre_master_secret = b.getBytes();
|
---|
| 3012 |
|
---|
| 3013 | // RSA-encrypt the pre-master secret
|
---|
| 3014 | var key = c.session.serverCertificate.publicKey;
|
---|
| 3015 | b = key.encrypt(sp.pre_master_secret);
|
---|
| 3016 |
|
---|
| 3017 | /* Note: The encrypted pre-master secret will be stored in a
|
---|
| 3018 | public-key-encrypted opaque vector that has the length prefixed using
|
---|
| 3019 | 2 bytes, so include those 2 bytes in the handshake message length. This
|
---|
| 3020 | is done as a minor optimization instead of calling writeVector(). */
|
---|
| 3021 |
|
---|
| 3022 | // determine length of the handshake message
|
---|
| 3023 | var length = b.length + 2;
|
---|
| 3024 |
|
---|
| 3025 | // build record fragment
|
---|
| 3026 | var rval = forge.util.createBuffer();
|
---|
| 3027 | rval.putByte(tls.HandshakeType.client_key_exchange);
|
---|
| 3028 | rval.putInt24(length);
|
---|
| 3029 | // add vector length bytes
|
---|
| 3030 | rval.putInt16(b.length);
|
---|
| 3031 | rval.putBytes(b);
|
---|
| 3032 | return rval;
|
---|
| 3033 | };
|
---|
| 3034 |
|
---|
| 3035 | /**
|
---|
| 3036 | * Creates a ServerKeyExchange message.
|
---|
| 3037 | *
|
---|
| 3038 | * @param c the connection.
|
---|
| 3039 | *
|
---|
| 3040 | * @return the ServerKeyExchange byte buffer.
|
---|
| 3041 | */
|
---|
| 3042 | tls.createServerKeyExchange = function(c) {
|
---|
| 3043 | // this implementation only supports RSA, no Diffie-Hellman support,
|
---|
| 3044 | // so this record is empty
|
---|
| 3045 |
|
---|
| 3046 | // determine length of the handshake message
|
---|
| 3047 | var length = 0;
|
---|
| 3048 |
|
---|
| 3049 | // build record fragment
|
---|
| 3050 | var rval = forge.util.createBuffer();
|
---|
| 3051 | if(length > 0) {
|
---|
| 3052 | rval.putByte(tls.HandshakeType.server_key_exchange);
|
---|
| 3053 | rval.putInt24(length);
|
---|
| 3054 | }
|
---|
| 3055 | return rval;
|
---|
| 3056 | };
|
---|
| 3057 |
|
---|
| 3058 | /**
|
---|
| 3059 | * Gets the signed data used to verify a client-side certificate. See
|
---|
| 3060 | * tls.createCertificateVerify() for details.
|
---|
| 3061 | *
|
---|
| 3062 | * @param c the connection.
|
---|
| 3063 | * @param callback the callback to call once the signed data is ready.
|
---|
| 3064 | */
|
---|
| 3065 | tls.getClientSignature = function(c, callback) {
|
---|
| 3066 | // generate data to RSA encrypt
|
---|
| 3067 | var b = forge.util.createBuffer();
|
---|
| 3068 | b.putBuffer(c.session.md5.digest());
|
---|
| 3069 | b.putBuffer(c.session.sha1.digest());
|
---|
| 3070 | b = b.getBytes();
|
---|
| 3071 |
|
---|
| 3072 | // create default signing function as necessary
|
---|
| 3073 | c.getSignature = c.getSignature || function(c, b, callback) {
|
---|
| 3074 | // do rsa encryption, call callback
|
---|
| 3075 | var privateKey = null;
|
---|
| 3076 | if(c.getPrivateKey) {
|
---|
| 3077 | try {
|
---|
| 3078 | privateKey = c.getPrivateKey(c, c.session.clientCertificate);
|
---|
| 3079 | privateKey = forge.pki.privateKeyFromPem(privateKey);
|
---|
| 3080 | } catch(ex) {
|
---|
| 3081 | c.error(c, {
|
---|
| 3082 | message: 'Could not get private key.',
|
---|
| 3083 | cause: ex,
|
---|
| 3084 | send: true,
|
---|
| 3085 | alert: {
|
---|
| 3086 | level: tls.Alert.Level.fatal,
|
---|
| 3087 | description: tls.Alert.Description.internal_error
|
---|
| 3088 | }
|
---|
| 3089 | });
|
---|
| 3090 | }
|
---|
| 3091 | }
|
---|
| 3092 | if(privateKey === null) {
|
---|
| 3093 | c.error(c, {
|
---|
| 3094 | message: 'No private key set.',
|
---|
| 3095 | send: true,
|
---|
| 3096 | alert: {
|
---|
| 3097 | level: tls.Alert.Level.fatal,
|
---|
| 3098 | description: tls.Alert.Description.internal_error
|
---|
| 3099 | }
|
---|
| 3100 | });
|
---|
| 3101 | } else {
|
---|
| 3102 | b = privateKey.sign(b, null);
|
---|
| 3103 | }
|
---|
| 3104 | callback(c, b);
|
---|
| 3105 | };
|
---|
| 3106 |
|
---|
| 3107 | // get client signature
|
---|
| 3108 | c.getSignature(c, b, callback);
|
---|
| 3109 | };
|
---|
| 3110 |
|
---|
| 3111 | /**
|
---|
| 3112 | * Creates a CertificateVerify message.
|
---|
| 3113 | *
|
---|
| 3114 | * Meaning of this message:
|
---|
| 3115 | * This structure conveys the client's Diffie-Hellman public value
|
---|
| 3116 | * (Yc) if it was not already included in the client's certificate.
|
---|
| 3117 | * The encoding used for Yc is determined by the enumerated
|
---|
| 3118 | * PublicValueEncoding. This structure is a variant of the client
|
---|
| 3119 | * key exchange message, not a message in itself.
|
---|
| 3120 | *
|
---|
| 3121 | * When this message will be sent:
|
---|
| 3122 | * This message is used to provide explicit verification of a client
|
---|
| 3123 | * certificate. This message is only sent following a client
|
---|
| 3124 | * certificate that has signing capability (i.e. all certificates
|
---|
| 3125 | * except those containing fixed Diffie-Hellman parameters). When
|
---|
| 3126 | * sent, it will immediately follow the client key exchange message.
|
---|
| 3127 | *
|
---|
| 3128 | * struct {
|
---|
| 3129 | * Signature signature;
|
---|
| 3130 | * } CertificateVerify;
|
---|
| 3131 | *
|
---|
| 3132 | * CertificateVerify.signature.md5_hash
|
---|
| 3133 | * MD5(handshake_messages);
|
---|
| 3134 | *
|
---|
| 3135 | * Certificate.signature.sha_hash
|
---|
| 3136 | * SHA(handshake_messages);
|
---|
| 3137 | *
|
---|
| 3138 | * Here handshake_messages refers to all handshake messages sent or
|
---|
| 3139 | * received starting at client hello up to but not including this
|
---|
| 3140 | * message, including the type and length fields of the handshake
|
---|
| 3141 | * messages.
|
---|
| 3142 | *
|
---|
| 3143 | * select(SignatureAlgorithm) {
|
---|
| 3144 | * case anonymous: struct { };
|
---|
| 3145 | * case rsa:
|
---|
| 3146 | * digitally-signed struct {
|
---|
| 3147 | * opaque md5_hash[16];
|
---|
| 3148 | * opaque sha_hash[20];
|
---|
| 3149 | * };
|
---|
| 3150 | * case dsa:
|
---|
| 3151 | * digitally-signed struct {
|
---|
| 3152 | * opaque sha_hash[20];
|
---|
| 3153 | * };
|
---|
| 3154 | * } Signature;
|
---|
| 3155 | *
|
---|
| 3156 | * In digital signing, one-way hash functions are used as input for a
|
---|
| 3157 | * signing algorithm. A digitally-signed element is encoded as an opaque
|
---|
| 3158 | * vector <0..2^16-1>, where the length is specified by the signing
|
---|
| 3159 | * algorithm and key.
|
---|
| 3160 | *
|
---|
| 3161 | * In RSA signing, a 36-byte structure of two hashes (one SHA and one
|
---|
| 3162 | * MD5) is signed (encrypted with the private key). It is encoded with
|
---|
| 3163 | * PKCS #1 block type 0 or type 1 as described in [PKCS1].
|
---|
| 3164 | *
|
---|
| 3165 | * In DSS, the 20 bytes of the SHA hash are run directly through the
|
---|
| 3166 | * Digital Signing Algorithm with no additional hashing.
|
---|
| 3167 | *
|
---|
| 3168 | * @param c the connection.
|
---|
| 3169 | * @param signature the signature to include in the message.
|
---|
| 3170 | *
|
---|
| 3171 | * @return the CertificateVerify byte buffer.
|
---|
| 3172 | */
|
---|
| 3173 | tls.createCertificateVerify = function(c, signature) {
|
---|
| 3174 | /* Note: The signature will be stored in a "digitally-signed" opaque
|
---|
| 3175 | vector that has the length prefixed using 2 bytes, so include those
|
---|
| 3176 | 2 bytes in the handshake message length. This is done as a minor
|
---|
| 3177 | optimization instead of calling writeVector(). */
|
---|
| 3178 |
|
---|
| 3179 | // determine length of the handshake message
|
---|
| 3180 | var length = signature.length + 2;
|
---|
| 3181 |
|
---|
| 3182 | // build record fragment
|
---|
| 3183 | var rval = forge.util.createBuffer();
|
---|
| 3184 | rval.putByte(tls.HandshakeType.certificate_verify);
|
---|
| 3185 | rval.putInt24(length);
|
---|
| 3186 | // add vector length bytes
|
---|
| 3187 | rval.putInt16(signature.length);
|
---|
| 3188 | rval.putBytes(signature);
|
---|
| 3189 | return rval;
|
---|
| 3190 | };
|
---|
| 3191 |
|
---|
| 3192 | /**
|
---|
| 3193 | * Creates a CertificateRequest message.
|
---|
| 3194 | *
|
---|
| 3195 | * @param c the connection.
|
---|
| 3196 | *
|
---|
| 3197 | * @return the CertificateRequest byte buffer.
|
---|
| 3198 | */
|
---|
| 3199 | tls.createCertificateRequest = function(c) {
|
---|
| 3200 | // TODO: support other certificate types
|
---|
| 3201 | var certTypes = forge.util.createBuffer();
|
---|
| 3202 |
|
---|
| 3203 | // common RSA certificate type
|
---|
| 3204 | certTypes.putByte(0x01);
|
---|
| 3205 |
|
---|
| 3206 | // add distinguished names from CA store
|
---|
| 3207 | var cAs = forge.util.createBuffer();
|
---|
| 3208 | for(var key in c.caStore.certs) {
|
---|
| 3209 | var cert = c.caStore.certs[key];
|
---|
| 3210 | var dn = forge.pki.distinguishedNameToAsn1(cert.subject);
|
---|
| 3211 | var byteBuffer = forge.asn1.toDer(dn);
|
---|
| 3212 | cAs.putInt16(byteBuffer.length());
|
---|
| 3213 | cAs.putBuffer(byteBuffer);
|
---|
| 3214 | }
|
---|
| 3215 |
|
---|
| 3216 | // TODO: TLS 1.2+ has a different format
|
---|
| 3217 |
|
---|
| 3218 | // determine length of the handshake message
|
---|
| 3219 | var length =
|
---|
| 3220 | 1 + certTypes.length() +
|
---|
| 3221 | 2 + cAs.length();
|
---|
| 3222 |
|
---|
| 3223 | // build record fragment
|
---|
| 3224 | var rval = forge.util.createBuffer();
|
---|
| 3225 | rval.putByte(tls.HandshakeType.certificate_request);
|
---|
| 3226 | rval.putInt24(length);
|
---|
| 3227 | writeVector(rval, 1, certTypes);
|
---|
| 3228 | writeVector(rval, 2, cAs);
|
---|
| 3229 | return rval;
|
---|
| 3230 | };
|
---|
| 3231 |
|
---|
| 3232 | /**
|
---|
| 3233 | * Creates a ServerHelloDone message.
|
---|
| 3234 | *
|
---|
| 3235 | * @param c the connection.
|
---|
| 3236 | *
|
---|
| 3237 | * @return the ServerHelloDone byte buffer.
|
---|
| 3238 | */
|
---|
| 3239 | tls.createServerHelloDone = function(c) {
|
---|
| 3240 | // build record fragment
|
---|
| 3241 | var rval = forge.util.createBuffer();
|
---|
| 3242 | rval.putByte(tls.HandshakeType.server_hello_done);
|
---|
| 3243 | rval.putInt24(0);
|
---|
| 3244 | return rval;
|
---|
| 3245 | };
|
---|
| 3246 |
|
---|
| 3247 | /**
|
---|
| 3248 | * Creates a ChangeCipherSpec message.
|
---|
| 3249 | *
|
---|
| 3250 | * The change cipher spec protocol exists to signal transitions in
|
---|
| 3251 | * ciphering strategies. The protocol consists of a single message,
|
---|
| 3252 | * which is encrypted and compressed under the current (not the pending)
|
---|
| 3253 | * connection state. The message consists of a single byte of value 1.
|
---|
| 3254 | *
|
---|
| 3255 | * struct {
|
---|
| 3256 | * enum { change_cipher_spec(1), (255) } type;
|
---|
| 3257 | * } ChangeCipherSpec;
|
---|
| 3258 | *
|
---|
| 3259 | * @return the ChangeCipherSpec byte buffer.
|
---|
| 3260 | */
|
---|
| 3261 | tls.createChangeCipherSpec = function() {
|
---|
| 3262 | var rval = forge.util.createBuffer();
|
---|
| 3263 | rval.putByte(0x01);
|
---|
| 3264 | return rval;
|
---|
| 3265 | };
|
---|
| 3266 |
|
---|
| 3267 | /**
|
---|
| 3268 | * Creates a Finished message.
|
---|
| 3269 | *
|
---|
| 3270 | * struct {
|
---|
| 3271 | * opaque verify_data[12];
|
---|
| 3272 | * } Finished;
|
---|
| 3273 | *
|
---|
| 3274 | * verify_data
|
---|
| 3275 | * PRF(master_secret, finished_label, MD5(handshake_messages) +
|
---|
| 3276 | * SHA-1(handshake_messages)) [0..11];
|
---|
| 3277 | *
|
---|
| 3278 | * finished_label
|
---|
| 3279 | * For Finished messages sent by the client, the string "client
|
---|
| 3280 | * finished". For Finished messages sent by the server, the
|
---|
| 3281 | * string "server finished".
|
---|
| 3282 | *
|
---|
| 3283 | * handshake_messages
|
---|
| 3284 | * All of the data from all handshake messages up to but not
|
---|
| 3285 | * including this message. This is only data visible at the
|
---|
| 3286 | * handshake layer and does not include record layer headers.
|
---|
| 3287 | * This is the concatenation of all the Handshake structures as
|
---|
| 3288 | * defined in 7.4 exchanged thus far.
|
---|
| 3289 | *
|
---|
| 3290 | * @param c the connection.
|
---|
| 3291 | *
|
---|
| 3292 | * @return the Finished byte buffer.
|
---|
| 3293 | */
|
---|
| 3294 | tls.createFinished = function(c) {
|
---|
| 3295 | // generate verify_data
|
---|
| 3296 | var b = forge.util.createBuffer();
|
---|
| 3297 | b.putBuffer(c.session.md5.digest());
|
---|
| 3298 | b.putBuffer(c.session.sha1.digest());
|
---|
| 3299 |
|
---|
| 3300 | // TODO: determine prf function and verify length for TLS 1.2
|
---|
| 3301 | var client = (c.entity === tls.ConnectionEnd.client);
|
---|
| 3302 | var sp = c.session.sp;
|
---|
| 3303 | var vdl = 12;
|
---|
| 3304 | var prf = prf_TLS1;
|
---|
| 3305 | var label = client ? 'client finished' : 'server finished';
|
---|
| 3306 | b = prf(sp.master_secret, label, b.getBytes(), vdl);
|
---|
| 3307 |
|
---|
| 3308 | // build record fragment
|
---|
| 3309 | var rval = forge.util.createBuffer();
|
---|
| 3310 | rval.putByte(tls.HandshakeType.finished);
|
---|
| 3311 | rval.putInt24(b.length());
|
---|
| 3312 | rval.putBuffer(b);
|
---|
| 3313 | return rval;
|
---|
| 3314 | };
|
---|
| 3315 |
|
---|
| 3316 | /**
|
---|
| 3317 | * Creates a HeartbeatMessage (See RFC 6520).
|
---|
| 3318 | *
|
---|
| 3319 | * struct {
|
---|
| 3320 | * HeartbeatMessageType type;
|
---|
| 3321 | * uint16 payload_length;
|
---|
| 3322 | * opaque payload[HeartbeatMessage.payload_length];
|
---|
| 3323 | * opaque padding[padding_length];
|
---|
| 3324 | * } HeartbeatMessage;
|
---|
| 3325 | *
|
---|
| 3326 | * The total length of a HeartbeatMessage MUST NOT exceed 2^14 or
|
---|
| 3327 | * max_fragment_length when negotiated as defined in [RFC6066].
|
---|
| 3328 | *
|
---|
| 3329 | * type: The message type, either heartbeat_request or heartbeat_response.
|
---|
| 3330 | *
|
---|
| 3331 | * payload_length: The length of the payload.
|
---|
| 3332 | *
|
---|
| 3333 | * payload: The payload consists of arbitrary content.
|
---|
| 3334 | *
|
---|
| 3335 | * padding: The padding is random content that MUST be ignored by the
|
---|
| 3336 | * receiver. The length of a HeartbeatMessage is TLSPlaintext.length
|
---|
| 3337 | * for TLS and DTLSPlaintext.length for DTLS. Furthermore, the
|
---|
| 3338 | * length of the type field is 1 byte, and the length of the
|
---|
| 3339 | * payload_length is 2. Therefore, the padding_length is
|
---|
| 3340 | * TLSPlaintext.length - payload_length - 3 for TLS and
|
---|
| 3341 | * DTLSPlaintext.length - payload_length - 3 for DTLS. The
|
---|
| 3342 | * padding_length MUST be at least 16.
|
---|
| 3343 | *
|
---|
| 3344 | * The sender of a HeartbeatMessage MUST use a random padding of at
|
---|
| 3345 | * least 16 bytes. The padding of a received HeartbeatMessage message
|
---|
| 3346 | * MUST be ignored.
|
---|
| 3347 | *
|
---|
| 3348 | * If the payload_length of a received HeartbeatMessage is too large,
|
---|
| 3349 | * the received HeartbeatMessage MUST be discarded silently.
|
---|
| 3350 | *
|
---|
| 3351 | * @param c the connection.
|
---|
| 3352 | * @param type the tls.HeartbeatMessageType.
|
---|
| 3353 | * @param payload the heartbeat data to send as the payload.
|
---|
| 3354 | * @param [payloadLength] the payload length to use, defaults to the
|
---|
| 3355 | * actual payload length.
|
---|
| 3356 | *
|
---|
| 3357 | * @return the HeartbeatRequest byte buffer.
|
---|
| 3358 | */
|
---|
| 3359 | tls.createHeartbeat = function(type, payload, payloadLength) {
|
---|
| 3360 | if(typeof payloadLength === 'undefined') {
|
---|
| 3361 | payloadLength = payload.length;
|
---|
| 3362 | }
|
---|
| 3363 | // build record fragment
|
---|
| 3364 | var rval = forge.util.createBuffer();
|
---|
| 3365 | rval.putByte(type); // heartbeat message type
|
---|
| 3366 | rval.putInt16(payloadLength); // payload length
|
---|
| 3367 | rval.putBytes(payload); // payload
|
---|
| 3368 | // padding
|
---|
| 3369 | var plaintextLength = rval.length();
|
---|
| 3370 | var paddingLength = Math.max(16, plaintextLength - payloadLength - 3);
|
---|
| 3371 | rval.putBytes(forge.random.getBytes(paddingLength));
|
---|
| 3372 | return rval;
|
---|
| 3373 | };
|
---|
| 3374 |
|
---|
| 3375 | /**
|
---|
| 3376 | * Fragments, compresses, encrypts, and queues a record for delivery.
|
---|
| 3377 | *
|
---|
| 3378 | * @param c the connection.
|
---|
| 3379 | * @param record the record to queue.
|
---|
| 3380 | */
|
---|
| 3381 | tls.queue = function(c, record) {
|
---|
| 3382 | // error during record creation
|
---|
| 3383 | if(!record) {
|
---|
| 3384 | return;
|
---|
| 3385 | }
|
---|
| 3386 |
|
---|
| 3387 | if(record.fragment.length() === 0) {
|
---|
| 3388 | if(record.type === tls.ContentType.handshake ||
|
---|
| 3389 | record.type === tls.ContentType.alert ||
|
---|
| 3390 | record.type === tls.ContentType.change_cipher_spec) {
|
---|
| 3391 | // Empty handshake, alert of change cipher spec messages are not allowed per the TLS specification and should not be sent.
|
---|
| 3392 | return;
|
---|
| 3393 | }
|
---|
| 3394 | }
|
---|
| 3395 |
|
---|
| 3396 | // if the record is a handshake record, update handshake hashes
|
---|
| 3397 | if(record.type === tls.ContentType.handshake) {
|
---|
| 3398 | var bytes = record.fragment.bytes();
|
---|
| 3399 | c.session.md5.update(bytes);
|
---|
| 3400 | c.session.sha1.update(bytes);
|
---|
| 3401 | bytes = null;
|
---|
| 3402 | }
|
---|
| 3403 |
|
---|
| 3404 | // handle record fragmentation
|
---|
| 3405 | var records;
|
---|
| 3406 | if(record.fragment.length() <= tls.MaxFragment) {
|
---|
| 3407 | records = [record];
|
---|
| 3408 | } else {
|
---|
| 3409 | // fragment data as long as it is too long
|
---|
| 3410 | records = [];
|
---|
| 3411 | var data = record.fragment.bytes();
|
---|
| 3412 | while(data.length > tls.MaxFragment) {
|
---|
| 3413 | records.push(tls.createRecord(c, {
|
---|
| 3414 | type: record.type,
|
---|
| 3415 | data: forge.util.createBuffer(data.slice(0, tls.MaxFragment))
|
---|
| 3416 | }));
|
---|
| 3417 | data = data.slice(tls.MaxFragment);
|
---|
| 3418 | }
|
---|
| 3419 | // add last record
|
---|
| 3420 | if(data.length > 0) {
|
---|
| 3421 | records.push(tls.createRecord(c, {
|
---|
| 3422 | type: record.type,
|
---|
| 3423 | data: forge.util.createBuffer(data)
|
---|
| 3424 | }));
|
---|
| 3425 | }
|
---|
| 3426 | }
|
---|
| 3427 |
|
---|
| 3428 | // compress and encrypt all fragmented records
|
---|
| 3429 | for(var i = 0; i < records.length && !c.fail; ++i) {
|
---|
| 3430 | // update the record using current write state
|
---|
| 3431 | var rec = records[i];
|
---|
| 3432 | var s = c.state.current.write;
|
---|
| 3433 | if(s.update(c, rec)) {
|
---|
| 3434 | // store record
|
---|
| 3435 | c.records.push(rec);
|
---|
| 3436 | }
|
---|
| 3437 | }
|
---|
| 3438 | };
|
---|
| 3439 |
|
---|
| 3440 | /**
|
---|
| 3441 | * Flushes all queued records to the output buffer and calls the
|
---|
| 3442 | * tlsDataReady() handler on the given connection.
|
---|
| 3443 | *
|
---|
| 3444 | * @param c the connection.
|
---|
| 3445 | *
|
---|
| 3446 | * @return true on success, false on failure.
|
---|
| 3447 | */
|
---|
| 3448 | tls.flush = function(c) {
|
---|
| 3449 | for(var i = 0; i < c.records.length; ++i) {
|
---|
| 3450 | var record = c.records[i];
|
---|
| 3451 |
|
---|
| 3452 | // add record header and fragment
|
---|
| 3453 | c.tlsData.putByte(record.type);
|
---|
| 3454 | c.tlsData.putByte(record.version.major);
|
---|
| 3455 | c.tlsData.putByte(record.version.minor);
|
---|
| 3456 | c.tlsData.putInt16(record.fragment.length());
|
---|
| 3457 | c.tlsData.putBuffer(c.records[i].fragment);
|
---|
| 3458 | }
|
---|
| 3459 | c.records = [];
|
---|
| 3460 | return c.tlsDataReady(c);
|
---|
| 3461 | };
|
---|
| 3462 |
|
---|
| 3463 | /**
|
---|
| 3464 | * Maps a pki.certificateError to a tls.Alert.Description.
|
---|
| 3465 | *
|
---|
| 3466 | * @param error the error to map.
|
---|
| 3467 | *
|
---|
| 3468 | * @return the alert description.
|
---|
| 3469 | */
|
---|
| 3470 | var _certErrorToAlertDesc = function(error) {
|
---|
| 3471 | switch(error) {
|
---|
| 3472 | case true:
|
---|
| 3473 | return true;
|
---|
| 3474 | case forge.pki.certificateError.bad_certificate:
|
---|
| 3475 | return tls.Alert.Description.bad_certificate;
|
---|
| 3476 | case forge.pki.certificateError.unsupported_certificate:
|
---|
| 3477 | return tls.Alert.Description.unsupported_certificate;
|
---|
| 3478 | case forge.pki.certificateError.certificate_revoked:
|
---|
| 3479 | return tls.Alert.Description.certificate_revoked;
|
---|
| 3480 | case forge.pki.certificateError.certificate_expired:
|
---|
| 3481 | return tls.Alert.Description.certificate_expired;
|
---|
| 3482 | case forge.pki.certificateError.certificate_unknown:
|
---|
| 3483 | return tls.Alert.Description.certificate_unknown;
|
---|
| 3484 | case forge.pki.certificateError.unknown_ca:
|
---|
| 3485 | return tls.Alert.Description.unknown_ca;
|
---|
| 3486 | default:
|
---|
| 3487 | return tls.Alert.Description.bad_certificate;
|
---|
| 3488 | }
|
---|
| 3489 | };
|
---|
| 3490 |
|
---|
| 3491 | /**
|
---|
| 3492 | * Maps a tls.Alert.Description to a pki.certificateError.
|
---|
| 3493 | *
|
---|
| 3494 | * @param desc the alert description.
|
---|
| 3495 | *
|
---|
| 3496 | * @return the certificate error.
|
---|
| 3497 | */
|
---|
| 3498 | var _alertDescToCertError = function(desc) {
|
---|
| 3499 | switch(desc) {
|
---|
| 3500 | case true:
|
---|
| 3501 | return true;
|
---|
| 3502 | case tls.Alert.Description.bad_certificate:
|
---|
| 3503 | return forge.pki.certificateError.bad_certificate;
|
---|
| 3504 | case tls.Alert.Description.unsupported_certificate:
|
---|
| 3505 | return forge.pki.certificateError.unsupported_certificate;
|
---|
| 3506 | case tls.Alert.Description.certificate_revoked:
|
---|
| 3507 | return forge.pki.certificateError.certificate_revoked;
|
---|
| 3508 | case tls.Alert.Description.certificate_expired:
|
---|
| 3509 | return forge.pki.certificateError.certificate_expired;
|
---|
| 3510 | case tls.Alert.Description.certificate_unknown:
|
---|
| 3511 | return forge.pki.certificateError.certificate_unknown;
|
---|
| 3512 | case tls.Alert.Description.unknown_ca:
|
---|
| 3513 | return forge.pki.certificateError.unknown_ca;
|
---|
| 3514 | default:
|
---|
| 3515 | return forge.pki.certificateError.bad_certificate;
|
---|
| 3516 | }
|
---|
| 3517 | };
|
---|
| 3518 |
|
---|
| 3519 | /**
|
---|
| 3520 | * Verifies a certificate chain against the given connection's
|
---|
| 3521 | * Certificate Authority store.
|
---|
| 3522 | *
|
---|
| 3523 | * @param c the TLS connection.
|
---|
| 3524 | * @param chain the certificate chain to verify, with the root or highest
|
---|
| 3525 | * authority at the end.
|
---|
| 3526 | *
|
---|
| 3527 | * @return true if successful, false if not.
|
---|
| 3528 | */
|
---|
| 3529 | tls.verifyCertificateChain = function(c, chain) {
|
---|
| 3530 | try {
|
---|
| 3531 | // Make a copy of c.verifyOptions so that we can modify options.verify
|
---|
| 3532 | // without modifying c.verifyOptions.
|
---|
| 3533 | var options = {};
|
---|
| 3534 | for (var key in c.verifyOptions) {
|
---|
| 3535 | options[key] = c.verifyOptions[key];
|
---|
| 3536 | }
|
---|
| 3537 |
|
---|
| 3538 | options.verify = function(vfd, depth, chain) {
|
---|
| 3539 | // convert pki.certificateError to tls alert description
|
---|
| 3540 | var desc = _certErrorToAlertDesc(vfd);
|
---|
| 3541 |
|
---|
| 3542 | // call application callback
|
---|
| 3543 | var ret = c.verify(c, vfd, depth, chain);
|
---|
| 3544 | if(ret !== true) {
|
---|
| 3545 | if(typeof ret === 'object' && !forge.util.isArray(ret)) {
|
---|
| 3546 | // throw custom error
|
---|
| 3547 | var error = new Error('The application rejected the certificate.');
|
---|
| 3548 | error.send = true;
|
---|
| 3549 | error.alert = {
|
---|
| 3550 | level: tls.Alert.Level.fatal,
|
---|
| 3551 | description: tls.Alert.Description.bad_certificate
|
---|
| 3552 | };
|
---|
| 3553 | if(ret.message) {
|
---|
| 3554 | error.message = ret.message;
|
---|
| 3555 | }
|
---|
| 3556 | if(ret.alert) {
|
---|
| 3557 | error.alert.description = ret.alert;
|
---|
| 3558 | }
|
---|
| 3559 | throw error;
|
---|
| 3560 | }
|
---|
| 3561 |
|
---|
| 3562 | // convert tls alert description to pki.certificateError
|
---|
| 3563 | if(ret !== vfd) {
|
---|
| 3564 | ret = _alertDescToCertError(ret);
|
---|
| 3565 | }
|
---|
| 3566 | }
|
---|
| 3567 |
|
---|
| 3568 | return ret;
|
---|
| 3569 | };
|
---|
| 3570 |
|
---|
| 3571 | // verify chain
|
---|
| 3572 | forge.pki.verifyCertificateChain(c.caStore, chain, options);
|
---|
| 3573 | } catch(ex) {
|
---|
| 3574 | // build tls error if not already customized
|
---|
| 3575 | var err = ex;
|
---|
| 3576 | if(typeof err !== 'object' || forge.util.isArray(err)) {
|
---|
| 3577 | err = {
|
---|
| 3578 | send: true,
|
---|
| 3579 | alert: {
|
---|
| 3580 | level: tls.Alert.Level.fatal,
|
---|
| 3581 | description: _certErrorToAlertDesc(ex)
|
---|
| 3582 | }
|
---|
| 3583 | };
|
---|
| 3584 | }
|
---|
| 3585 | if(!('send' in err)) {
|
---|
| 3586 | err.send = true;
|
---|
| 3587 | }
|
---|
| 3588 | if(!('alert' in err)) {
|
---|
| 3589 | err.alert = {
|
---|
| 3590 | level: tls.Alert.Level.fatal,
|
---|
| 3591 | description: _certErrorToAlertDesc(err.error)
|
---|
| 3592 | };
|
---|
| 3593 | }
|
---|
| 3594 |
|
---|
| 3595 | // send error
|
---|
| 3596 | c.error(c, err);
|
---|
| 3597 | }
|
---|
| 3598 |
|
---|
| 3599 | return !c.fail;
|
---|
| 3600 | };
|
---|
| 3601 |
|
---|
| 3602 | /**
|
---|
| 3603 | * Creates a new TLS session cache.
|
---|
| 3604 | *
|
---|
| 3605 | * @param cache optional map of session ID to cached session.
|
---|
| 3606 | * @param capacity the maximum size for the cache (default: 100).
|
---|
| 3607 | *
|
---|
| 3608 | * @return the new TLS session cache.
|
---|
| 3609 | */
|
---|
| 3610 | tls.createSessionCache = function(cache, capacity) {
|
---|
| 3611 | var rval = null;
|
---|
| 3612 |
|
---|
| 3613 | // assume input is already a session cache object
|
---|
| 3614 | if(cache && cache.getSession && cache.setSession && cache.order) {
|
---|
| 3615 | rval = cache;
|
---|
| 3616 | } else {
|
---|
| 3617 | // create cache
|
---|
| 3618 | rval = {};
|
---|
| 3619 | rval.cache = cache || {};
|
---|
| 3620 | rval.capacity = Math.max(capacity || 100, 1);
|
---|
| 3621 | rval.order = [];
|
---|
| 3622 |
|
---|
| 3623 | // store order for sessions, delete session overflow
|
---|
| 3624 | for(var key in cache) {
|
---|
| 3625 | if(rval.order.length <= capacity) {
|
---|
| 3626 | rval.order.push(key);
|
---|
| 3627 | } else {
|
---|
| 3628 | delete cache[key];
|
---|
| 3629 | }
|
---|
| 3630 | }
|
---|
| 3631 |
|
---|
| 3632 | // get a session from a session ID (or get any session)
|
---|
| 3633 | rval.getSession = function(sessionId) {
|
---|
| 3634 | var session = null;
|
---|
| 3635 | var key = null;
|
---|
| 3636 |
|
---|
| 3637 | // if session ID provided, use it
|
---|
| 3638 | if(sessionId) {
|
---|
| 3639 | key = forge.util.bytesToHex(sessionId);
|
---|
| 3640 | } else if(rval.order.length > 0) {
|
---|
| 3641 | // get first session from cache
|
---|
| 3642 | key = rval.order[0];
|
---|
| 3643 | }
|
---|
| 3644 |
|
---|
| 3645 | if(key !== null && key in rval.cache) {
|
---|
| 3646 | // get cached session and remove from cache
|
---|
| 3647 | session = rval.cache[key];
|
---|
| 3648 | delete rval.cache[key];
|
---|
| 3649 | for(var i in rval.order) {
|
---|
| 3650 | if(rval.order[i] === key) {
|
---|
| 3651 | rval.order.splice(i, 1);
|
---|
| 3652 | break;
|
---|
| 3653 | }
|
---|
| 3654 | }
|
---|
| 3655 | }
|
---|
| 3656 |
|
---|
| 3657 | return session;
|
---|
| 3658 | };
|
---|
| 3659 |
|
---|
| 3660 | // set a session in the cache
|
---|
| 3661 | rval.setSession = function(sessionId, session) {
|
---|
| 3662 | // remove session from cache if at capacity
|
---|
| 3663 | if(rval.order.length === rval.capacity) {
|
---|
| 3664 | var key = rval.order.shift();
|
---|
| 3665 | delete rval.cache[key];
|
---|
| 3666 | }
|
---|
| 3667 | // add session to cache
|
---|
| 3668 | var key = forge.util.bytesToHex(sessionId);
|
---|
| 3669 | rval.order.push(key);
|
---|
| 3670 | rval.cache[key] = session;
|
---|
| 3671 | };
|
---|
| 3672 | }
|
---|
| 3673 |
|
---|
| 3674 | return rval;
|
---|
| 3675 | };
|
---|
| 3676 |
|
---|
| 3677 | /**
|
---|
| 3678 | * Creates a new TLS connection.
|
---|
| 3679 | *
|
---|
| 3680 | * See public createConnection() docs for more details.
|
---|
| 3681 | *
|
---|
| 3682 | * @param options the options for this connection.
|
---|
| 3683 | *
|
---|
| 3684 | * @return the new TLS connection.
|
---|
| 3685 | */
|
---|
| 3686 | tls.createConnection = function(options) {
|
---|
| 3687 | var caStore = null;
|
---|
| 3688 | if(options.caStore) {
|
---|
| 3689 | // if CA store is an array, convert it to a CA store object
|
---|
| 3690 | if(forge.util.isArray(options.caStore)) {
|
---|
| 3691 | caStore = forge.pki.createCaStore(options.caStore);
|
---|
| 3692 | } else {
|
---|
| 3693 | caStore = options.caStore;
|
---|
| 3694 | }
|
---|
| 3695 | } else {
|
---|
| 3696 | // create empty CA store
|
---|
| 3697 | caStore = forge.pki.createCaStore();
|
---|
| 3698 | }
|
---|
| 3699 |
|
---|
| 3700 | // setup default cipher suites
|
---|
| 3701 | var cipherSuites = options.cipherSuites || null;
|
---|
| 3702 | if(cipherSuites === null) {
|
---|
| 3703 | cipherSuites = [];
|
---|
| 3704 | for(var key in tls.CipherSuites) {
|
---|
| 3705 | cipherSuites.push(tls.CipherSuites[key]);
|
---|
| 3706 | }
|
---|
| 3707 | }
|
---|
| 3708 |
|
---|
| 3709 | // set default entity
|
---|
| 3710 | var entity = (options.server || false) ?
|
---|
| 3711 | tls.ConnectionEnd.server : tls.ConnectionEnd.client;
|
---|
| 3712 |
|
---|
| 3713 | // create session cache if requested
|
---|
| 3714 | var sessionCache = options.sessionCache ?
|
---|
| 3715 | tls.createSessionCache(options.sessionCache) : null;
|
---|
| 3716 |
|
---|
| 3717 | // create TLS connection
|
---|
| 3718 | var c = {
|
---|
| 3719 | version: {major: tls.Version.major, minor: tls.Version.minor},
|
---|
| 3720 | entity: entity,
|
---|
| 3721 | sessionId: options.sessionId,
|
---|
| 3722 | caStore: caStore,
|
---|
| 3723 | sessionCache: sessionCache,
|
---|
| 3724 | cipherSuites: cipherSuites,
|
---|
| 3725 | connected: options.connected,
|
---|
| 3726 | virtualHost: options.virtualHost || null,
|
---|
| 3727 | verifyClient: options.verifyClient || false,
|
---|
| 3728 | verify: options.verify || function(cn, vfd, dpth, cts) {return vfd;},
|
---|
| 3729 | verifyOptions: options.verifyOptions || {},
|
---|
| 3730 | getCertificate: options.getCertificate || null,
|
---|
| 3731 | getPrivateKey: options.getPrivateKey || null,
|
---|
| 3732 | getSignature: options.getSignature || null,
|
---|
| 3733 | input: forge.util.createBuffer(),
|
---|
| 3734 | tlsData: forge.util.createBuffer(),
|
---|
| 3735 | data: forge.util.createBuffer(),
|
---|
| 3736 | tlsDataReady: options.tlsDataReady,
|
---|
| 3737 | dataReady: options.dataReady,
|
---|
| 3738 | heartbeatReceived: options.heartbeatReceived,
|
---|
| 3739 | closed: options.closed,
|
---|
| 3740 | error: function(c, ex) {
|
---|
| 3741 | // set origin if not set
|
---|
| 3742 | ex.origin = ex.origin ||
|
---|
| 3743 | ((c.entity === tls.ConnectionEnd.client) ? 'client' : 'server');
|
---|
| 3744 |
|
---|
| 3745 | // send TLS alert
|
---|
| 3746 | if(ex.send) {
|
---|
| 3747 | tls.queue(c, tls.createAlert(c, ex.alert));
|
---|
| 3748 | tls.flush(c);
|
---|
| 3749 | }
|
---|
| 3750 |
|
---|
| 3751 | // error is fatal by default
|
---|
| 3752 | var fatal = (ex.fatal !== false);
|
---|
| 3753 | if(fatal) {
|
---|
| 3754 | // set fail flag
|
---|
| 3755 | c.fail = true;
|
---|
| 3756 | }
|
---|
| 3757 |
|
---|
| 3758 | // call error handler first
|
---|
| 3759 | options.error(c, ex);
|
---|
| 3760 |
|
---|
| 3761 | if(fatal) {
|
---|
| 3762 | // fatal error, close connection, do not clear fail
|
---|
| 3763 | c.close(false);
|
---|
| 3764 | }
|
---|
| 3765 | },
|
---|
| 3766 | deflate: options.deflate || null,
|
---|
| 3767 | inflate: options.inflate || null
|
---|
| 3768 | };
|
---|
| 3769 |
|
---|
| 3770 | /**
|
---|
| 3771 | * Resets a closed TLS connection for reuse. Called in c.close().
|
---|
| 3772 | *
|
---|
| 3773 | * @param clearFail true to clear the fail flag (default: true).
|
---|
| 3774 | */
|
---|
| 3775 | c.reset = function(clearFail) {
|
---|
| 3776 | c.version = {major: tls.Version.major, minor: tls.Version.minor};
|
---|
| 3777 | c.record = null;
|
---|
| 3778 | c.session = null;
|
---|
| 3779 | c.peerCertificate = null;
|
---|
| 3780 | c.state = {
|
---|
| 3781 | pending: null,
|
---|
| 3782 | current: null
|
---|
| 3783 | };
|
---|
| 3784 | c.expect = (c.entity === tls.ConnectionEnd.client) ? SHE : CHE;
|
---|
| 3785 | c.fragmented = null;
|
---|
| 3786 | c.records = [];
|
---|
| 3787 | c.open = false;
|
---|
| 3788 | c.handshakes = 0;
|
---|
| 3789 | c.handshaking = false;
|
---|
| 3790 | c.isConnected = false;
|
---|
| 3791 | c.fail = !(clearFail || typeof(clearFail) === 'undefined');
|
---|
| 3792 | c.input.clear();
|
---|
| 3793 | c.tlsData.clear();
|
---|
| 3794 | c.data.clear();
|
---|
| 3795 | c.state.current = tls.createConnectionState(c);
|
---|
| 3796 | };
|
---|
| 3797 |
|
---|
| 3798 | // do initial reset of connection
|
---|
| 3799 | c.reset();
|
---|
| 3800 |
|
---|
| 3801 | /**
|
---|
| 3802 | * Updates the current TLS engine state based on the given record.
|
---|
| 3803 | *
|
---|
| 3804 | * @param c the TLS connection.
|
---|
| 3805 | * @param record the TLS record to act on.
|
---|
| 3806 | */
|
---|
| 3807 | var _update = function(c, record) {
|
---|
| 3808 | // get record handler (align type in table by subtracting lowest)
|
---|
| 3809 | var aligned = record.type - tls.ContentType.change_cipher_spec;
|
---|
| 3810 | var handlers = ctTable[c.entity][c.expect];
|
---|
| 3811 | if(aligned in handlers) {
|
---|
| 3812 | handlers[aligned](c, record);
|
---|
| 3813 | } else {
|
---|
| 3814 | // unexpected record
|
---|
| 3815 | tls.handleUnexpected(c, record);
|
---|
| 3816 | }
|
---|
| 3817 | };
|
---|
| 3818 |
|
---|
| 3819 | /**
|
---|
| 3820 | * Reads the record header and initializes the next record on the given
|
---|
| 3821 | * connection.
|
---|
| 3822 | *
|
---|
| 3823 | * @param c the TLS connection with the next record.
|
---|
| 3824 | *
|
---|
| 3825 | * @return 0 if the input data could be processed, otherwise the
|
---|
| 3826 | * number of bytes required for data to be processed.
|
---|
| 3827 | */
|
---|
| 3828 | var _readRecordHeader = function(c) {
|
---|
| 3829 | var rval = 0;
|
---|
| 3830 |
|
---|
| 3831 | // get input buffer and its length
|
---|
| 3832 | var b = c.input;
|
---|
| 3833 | var len = b.length();
|
---|
| 3834 |
|
---|
| 3835 | // need at least 5 bytes to initialize a record
|
---|
| 3836 | if(len < 5) {
|
---|
| 3837 | rval = 5 - len;
|
---|
| 3838 | } else {
|
---|
| 3839 | // enough bytes for header
|
---|
| 3840 | // initialize record
|
---|
| 3841 | c.record = {
|
---|
| 3842 | type: b.getByte(),
|
---|
| 3843 | version: {
|
---|
| 3844 | major: b.getByte(),
|
---|
| 3845 | minor: b.getByte()
|
---|
| 3846 | },
|
---|
| 3847 | length: b.getInt16(),
|
---|
| 3848 | fragment: forge.util.createBuffer(),
|
---|
| 3849 | ready: false
|
---|
| 3850 | };
|
---|
| 3851 |
|
---|
| 3852 | // check record version
|
---|
| 3853 | var compatibleVersion = (c.record.version.major === c.version.major);
|
---|
| 3854 | if(compatibleVersion && c.session && c.session.version) {
|
---|
| 3855 | // session version already set, require same minor version
|
---|
| 3856 | compatibleVersion = (c.record.version.minor === c.version.minor);
|
---|
| 3857 | }
|
---|
| 3858 | if(!compatibleVersion) {
|
---|
| 3859 | c.error(c, {
|
---|
| 3860 | message: 'Incompatible TLS version.',
|
---|
| 3861 | send: true,
|
---|
| 3862 | alert: {
|
---|
| 3863 | level: tls.Alert.Level.fatal,
|
---|
| 3864 | description: tls.Alert.Description.protocol_version
|
---|
| 3865 | }
|
---|
| 3866 | });
|
---|
| 3867 | }
|
---|
| 3868 | }
|
---|
| 3869 |
|
---|
| 3870 | return rval;
|
---|
| 3871 | };
|
---|
| 3872 |
|
---|
| 3873 | /**
|
---|
| 3874 | * Reads the next record's contents and appends its message to any
|
---|
| 3875 | * previously fragmented message.
|
---|
| 3876 | *
|
---|
| 3877 | * @param c the TLS connection with the next record.
|
---|
| 3878 | *
|
---|
| 3879 | * @return 0 if the input data could be processed, otherwise the
|
---|
| 3880 | * number of bytes required for data to be processed.
|
---|
| 3881 | */
|
---|
| 3882 | var _readRecord = function(c) {
|
---|
| 3883 | var rval = 0;
|
---|
| 3884 |
|
---|
| 3885 | // ensure there is enough input data to get the entire record
|
---|
| 3886 | var b = c.input;
|
---|
| 3887 | var len = b.length();
|
---|
| 3888 | if(len < c.record.length) {
|
---|
| 3889 | // not enough data yet, return how much is required
|
---|
| 3890 | rval = c.record.length - len;
|
---|
| 3891 | } else {
|
---|
| 3892 | // there is enough data to parse the pending record
|
---|
| 3893 | // fill record fragment and compact input buffer
|
---|
| 3894 | c.record.fragment.putBytes(b.getBytes(c.record.length));
|
---|
| 3895 | b.compact();
|
---|
| 3896 |
|
---|
| 3897 | // update record using current read state
|
---|
| 3898 | var s = c.state.current.read;
|
---|
| 3899 | if(s.update(c, c.record)) {
|
---|
| 3900 | // see if there is a previously fragmented message that the
|
---|
| 3901 | // new record's message fragment should be appended to
|
---|
| 3902 | if(c.fragmented !== null) {
|
---|
| 3903 | // if the record type matches a previously fragmented
|
---|
| 3904 | // record, append the record fragment to it
|
---|
| 3905 | if(c.fragmented.type === c.record.type) {
|
---|
| 3906 | // concatenate record fragments
|
---|
| 3907 | c.fragmented.fragment.putBuffer(c.record.fragment);
|
---|
| 3908 | c.record = c.fragmented;
|
---|
| 3909 | } else {
|
---|
| 3910 | // error, invalid fragmented record
|
---|
| 3911 | c.error(c, {
|
---|
| 3912 | message: 'Invalid fragmented record.',
|
---|
| 3913 | send: true,
|
---|
| 3914 | alert: {
|
---|
| 3915 | level: tls.Alert.Level.fatal,
|
---|
| 3916 | description:
|
---|
| 3917 | tls.Alert.Description.unexpected_message
|
---|
| 3918 | }
|
---|
| 3919 | });
|
---|
| 3920 | }
|
---|
| 3921 | }
|
---|
| 3922 |
|
---|
| 3923 | // record is now ready
|
---|
| 3924 | c.record.ready = true;
|
---|
| 3925 | }
|
---|
| 3926 | }
|
---|
| 3927 |
|
---|
| 3928 | return rval;
|
---|
| 3929 | };
|
---|
| 3930 |
|
---|
| 3931 | /**
|
---|
| 3932 | * Performs a handshake using the TLS Handshake Protocol, as a client.
|
---|
| 3933 | *
|
---|
| 3934 | * This method should only be called if the connection is in client mode.
|
---|
| 3935 | *
|
---|
| 3936 | * @param sessionId the session ID to use, null to start a new one.
|
---|
| 3937 | */
|
---|
| 3938 | c.handshake = function(sessionId) {
|
---|
| 3939 | // error to call this in non-client mode
|
---|
| 3940 | if(c.entity !== tls.ConnectionEnd.client) {
|
---|
| 3941 | // not fatal error
|
---|
| 3942 | c.error(c, {
|
---|
| 3943 | message: 'Cannot initiate handshake as a server.',
|
---|
| 3944 | fatal: false
|
---|
| 3945 | });
|
---|
| 3946 | } else if(c.handshaking) {
|
---|
| 3947 | // handshake is already in progress, fail but not fatal error
|
---|
| 3948 | c.error(c, {
|
---|
| 3949 | message: 'Handshake already in progress.',
|
---|
| 3950 | fatal: false
|
---|
| 3951 | });
|
---|
| 3952 | } else {
|
---|
| 3953 | // clear fail flag on reuse
|
---|
| 3954 | if(c.fail && !c.open && c.handshakes === 0) {
|
---|
| 3955 | c.fail = false;
|
---|
| 3956 | }
|
---|
| 3957 |
|
---|
| 3958 | // now handshaking
|
---|
| 3959 | c.handshaking = true;
|
---|
| 3960 |
|
---|
| 3961 | // default to blank (new session)
|
---|
| 3962 | sessionId = sessionId || '';
|
---|
| 3963 |
|
---|
| 3964 | // if a session ID was specified, try to find it in the cache
|
---|
| 3965 | var session = null;
|
---|
| 3966 | if(sessionId.length > 0) {
|
---|
| 3967 | if(c.sessionCache) {
|
---|
| 3968 | session = c.sessionCache.getSession(sessionId);
|
---|
| 3969 | }
|
---|
| 3970 |
|
---|
| 3971 | // matching session not found in cache, clear session ID
|
---|
| 3972 | if(session === null) {
|
---|
| 3973 | sessionId = '';
|
---|
| 3974 | }
|
---|
| 3975 | }
|
---|
| 3976 |
|
---|
| 3977 | // no session given, grab a session from the cache, if available
|
---|
| 3978 | if(sessionId.length === 0 && c.sessionCache) {
|
---|
| 3979 | session = c.sessionCache.getSession();
|
---|
| 3980 | if(session !== null) {
|
---|
| 3981 | sessionId = session.id;
|
---|
| 3982 | }
|
---|
| 3983 | }
|
---|
| 3984 |
|
---|
| 3985 | // set up session
|
---|
| 3986 | c.session = {
|
---|
| 3987 | id: sessionId,
|
---|
| 3988 | version: null,
|
---|
| 3989 | cipherSuite: null,
|
---|
| 3990 | compressionMethod: null,
|
---|
| 3991 | serverCertificate: null,
|
---|
| 3992 | certificateRequest: null,
|
---|
| 3993 | clientCertificate: null,
|
---|
| 3994 | sp: {},
|
---|
| 3995 | md5: forge.md.md5.create(),
|
---|
| 3996 | sha1: forge.md.sha1.create()
|
---|
| 3997 | };
|
---|
| 3998 |
|
---|
| 3999 | // use existing session information
|
---|
| 4000 | if(session) {
|
---|
| 4001 | // only update version on connection, session version not yet set
|
---|
| 4002 | c.version = session.version;
|
---|
| 4003 | c.session.sp = session.sp;
|
---|
| 4004 | }
|
---|
| 4005 |
|
---|
| 4006 | // generate new client random
|
---|
| 4007 | c.session.sp.client_random = tls.createRandom().getBytes();
|
---|
| 4008 |
|
---|
| 4009 | // connection now open
|
---|
| 4010 | c.open = true;
|
---|
| 4011 |
|
---|
| 4012 | // send hello
|
---|
| 4013 | tls.queue(c, tls.createRecord(c, {
|
---|
| 4014 | type: tls.ContentType.handshake,
|
---|
| 4015 | data: tls.createClientHello(c)
|
---|
| 4016 | }));
|
---|
| 4017 | tls.flush(c);
|
---|
| 4018 | }
|
---|
| 4019 | };
|
---|
| 4020 |
|
---|
| 4021 | /**
|
---|
| 4022 | * Called when TLS protocol data has been received from somewhere and should
|
---|
| 4023 | * be processed by the TLS engine.
|
---|
| 4024 | *
|
---|
| 4025 | * @param data the TLS protocol data, as a string, to process.
|
---|
| 4026 | *
|
---|
| 4027 | * @return 0 if the data could be processed, otherwise the number of bytes
|
---|
| 4028 | * required for data to be processed.
|
---|
| 4029 | */
|
---|
| 4030 | c.process = function(data) {
|
---|
| 4031 | var rval = 0;
|
---|
| 4032 |
|
---|
| 4033 | // buffer input data
|
---|
| 4034 | if(data) {
|
---|
| 4035 | c.input.putBytes(data);
|
---|
| 4036 | }
|
---|
| 4037 |
|
---|
| 4038 | // process next record if no failure, process will be called after
|
---|
| 4039 | // each record is handled (since handling can be asynchronous)
|
---|
| 4040 | if(!c.fail) {
|
---|
| 4041 | // reset record if ready and now empty
|
---|
| 4042 | if(c.record !== null &&
|
---|
| 4043 | c.record.ready && c.record.fragment.isEmpty()) {
|
---|
| 4044 | c.record = null;
|
---|
| 4045 | }
|
---|
| 4046 |
|
---|
| 4047 | // if there is no pending record, try to read record header
|
---|
| 4048 | if(c.record === null) {
|
---|
| 4049 | rval = _readRecordHeader(c);
|
---|
| 4050 | }
|
---|
| 4051 |
|
---|
| 4052 | // read the next record (if record not yet ready)
|
---|
| 4053 | if(!c.fail && c.record !== null && !c.record.ready) {
|
---|
| 4054 | rval = _readRecord(c);
|
---|
| 4055 | }
|
---|
| 4056 |
|
---|
| 4057 | // record ready to be handled, update engine state
|
---|
| 4058 | if(!c.fail && c.record !== null && c.record.ready) {
|
---|
| 4059 | _update(c, c.record);
|
---|
| 4060 | }
|
---|
| 4061 | }
|
---|
| 4062 |
|
---|
| 4063 | return rval;
|
---|
| 4064 | };
|
---|
| 4065 |
|
---|
| 4066 | /**
|
---|
| 4067 | * Requests that application data be packaged into a TLS record. The
|
---|
| 4068 | * tlsDataReady handler will be called when the TLS record(s) have been
|
---|
| 4069 | * prepared.
|
---|
| 4070 | *
|
---|
| 4071 | * @param data the application data, as a raw 'binary' encoded string, to
|
---|
| 4072 | * be sent; to send utf-16/utf-8 string data, use the return value
|
---|
| 4073 | * of util.encodeUtf8(str).
|
---|
| 4074 | *
|
---|
| 4075 | * @return true on success, false on failure.
|
---|
| 4076 | */
|
---|
| 4077 | c.prepare = function(data) {
|
---|
| 4078 | tls.queue(c, tls.createRecord(c, {
|
---|
| 4079 | type: tls.ContentType.application_data,
|
---|
| 4080 | data: forge.util.createBuffer(data)
|
---|
| 4081 | }));
|
---|
| 4082 | return tls.flush(c);
|
---|
| 4083 | };
|
---|
| 4084 |
|
---|
| 4085 | /**
|
---|
| 4086 | * Requests that a heartbeat request be packaged into a TLS record for
|
---|
| 4087 | * transmission. The tlsDataReady handler will be called when TLS record(s)
|
---|
| 4088 | * have been prepared.
|
---|
| 4089 | *
|
---|
| 4090 | * When a heartbeat response has been received, the heartbeatReceived
|
---|
| 4091 | * handler will be called with the matching payload. This handler can
|
---|
| 4092 | * be used to clear a retransmission timer, etc.
|
---|
| 4093 | *
|
---|
| 4094 | * @param payload the heartbeat data to send as the payload in the message.
|
---|
| 4095 | * @param [payloadLength] the payload length to use, defaults to the
|
---|
| 4096 | * actual payload length.
|
---|
| 4097 | *
|
---|
| 4098 | * @return true on success, false on failure.
|
---|
| 4099 | */
|
---|
| 4100 | c.prepareHeartbeatRequest = function(payload, payloadLength) {
|
---|
| 4101 | if(payload instanceof forge.util.ByteBuffer) {
|
---|
| 4102 | payload = payload.bytes();
|
---|
| 4103 | }
|
---|
| 4104 | if(typeof payloadLength === 'undefined') {
|
---|
| 4105 | payloadLength = payload.length;
|
---|
| 4106 | }
|
---|
| 4107 | c.expectedHeartbeatPayload = payload;
|
---|
| 4108 | tls.queue(c, tls.createRecord(c, {
|
---|
| 4109 | type: tls.ContentType.heartbeat,
|
---|
| 4110 | data: tls.createHeartbeat(
|
---|
| 4111 | tls.HeartbeatMessageType.heartbeat_request, payload, payloadLength)
|
---|
| 4112 | }));
|
---|
| 4113 | return tls.flush(c);
|
---|
| 4114 | };
|
---|
| 4115 |
|
---|
| 4116 | /**
|
---|
| 4117 | * Closes the connection (sends a close_notify alert).
|
---|
| 4118 | *
|
---|
| 4119 | * @param clearFail true to clear the fail flag (default: true).
|
---|
| 4120 | */
|
---|
| 4121 | c.close = function(clearFail) {
|
---|
| 4122 | // save session if connection didn't fail
|
---|
| 4123 | if(!c.fail && c.sessionCache && c.session) {
|
---|
| 4124 | // only need to preserve session ID, version, and security params
|
---|
| 4125 | var session = {
|
---|
| 4126 | id: c.session.id,
|
---|
| 4127 | version: c.session.version,
|
---|
| 4128 | sp: c.session.sp
|
---|
| 4129 | };
|
---|
| 4130 | session.sp.keys = null;
|
---|
| 4131 | c.sessionCache.setSession(session.id, session);
|
---|
| 4132 | }
|
---|
| 4133 |
|
---|
| 4134 | if(c.open) {
|
---|
| 4135 | // connection no longer open, clear input
|
---|
| 4136 | c.open = false;
|
---|
| 4137 | c.input.clear();
|
---|
| 4138 |
|
---|
| 4139 | // if connected or handshaking, send an alert
|
---|
| 4140 | if(c.isConnected || c.handshaking) {
|
---|
| 4141 | c.isConnected = c.handshaking = false;
|
---|
| 4142 |
|
---|
| 4143 | // send close_notify alert
|
---|
| 4144 | tls.queue(c, tls.createAlert(c, {
|
---|
| 4145 | level: tls.Alert.Level.warning,
|
---|
| 4146 | description: tls.Alert.Description.close_notify
|
---|
| 4147 | }));
|
---|
| 4148 | tls.flush(c);
|
---|
| 4149 | }
|
---|
| 4150 |
|
---|
| 4151 | // call handler
|
---|
| 4152 | c.closed(c);
|
---|
| 4153 | }
|
---|
| 4154 |
|
---|
| 4155 | // reset TLS connection, do not clear fail flag
|
---|
| 4156 | c.reset(clearFail);
|
---|
| 4157 | };
|
---|
| 4158 |
|
---|
| 4159 | return c;
|
---|
| 4160 | };
|
---|
| 4161 |
|
---|
| 4162 | /* TLS API */
|
---|
| 4163 | module.exports = forge.tls = forge.tls || {};
|
---|
| 4164 |
|
---|
| 4165 | // expose non-functions
|
---|
| 4166 | for(var key in tls) {
|
---|
| 4167 | if(typeof tls[key] !== 'function') {
|
---|
| 4168 | forge.tls[key] = tls[key];
|
---|
| 4169 | }
|
---|
| 4170 | }
|
---|
| 4171 |
|
---|
| 4172 | // expose prf_tls1 for testing
|
---|
| 4173 | forge.tls.prf_tls1 = prf_TLS1;
|
---|
| 4174 |
|
---|
| 4175 | // expose sha1 hmac method
|
---|
| 4176 | forge.tls.hmac_sha1 = hmac_sha1;
|
---|
| 4177 |
|
---|
| 4178 | // expose session cache creation
|
---|
| 4179 | forge.tls.createSessionCache = tls.createSessionCache;
|
---|
| 4180 |
|
---|
| 4181 | /**
|
---|
| 4182 | * Creates a new TLS connection. This does not make any assumptions about the
|
---|
| 4183 | * transport layer that TLS is working on top of, ie: it does not assume there
|
---|
| 4184 | * is a TCP/IP connection or establish one. A TLS connection is totally
|
---|
| 4185 | * abstracted away from the layer is runs on top of, it merely establishes a
|
---|
| 4186 | * secure channel between a client" and a "server".
|
---|
| 4187 | *
|
---|
| 4188 | * A TLS connection contains 4 connection states: pending read and write, and
|
---|
| 4189 | * current read and write.
|
---|
| 4190 | *
|
---|
| 4191 | * At initialization, the current read and write states will be null. Only once
|
---|
| 4192 | * the security parameters have been set and the keys have been generated can
|
---|
| 4193 | * the pending states be converted into current states. Current states will be
|
---|
| 4194 | * updated for each record processed.
|
---|
| 4195 | *
|
---|
| 4196 | * A custom certificate verify callback may be provided to check information
|
---|
| 4197 | * like the common name on the server's certificate. It will be called for
|
---|
| 4198 | * every certificate in the chain. It has the following signature:
|
---|
| 4199 | *
|
---|
| 4200 | * variable func(c, certs, index, preVerify)
|
---|
| 4201 | * Where:
|
---|
| 4202 | * c The TLS connection
|
---|
| 4203 | * verified Set to true if certificate was verified, otherwise the alert
|
---|
| 4204 | * tls.Alert.Description for why the certificate failed.
|
---|
| 4205 | * depth The current index in the chain, where 0 is the server's cert.
|
---|
| 4206 | * certs The certificate chain, *NOTE* if the server was anonymous then
|
---|
| 4207 | * the chain will be empty.
|
---|
| 4208 | *
|
---|
| 4209 | * The function returns true on success and on failure either the appropriate
|
---|
| 4210 | * tls.Alert.Description or an object with 'alert' set to the appropriate
|
---|
| 4211 | * tls.Alert.Description and 'message' set to a custom error message. If true
|
---|
| 4212 | * is not returned then the connection will abort using, in order of
|
---|
| 4213 | * availability, first the returned alert description, second the preVerify
|
---|
| 4214 | * alert description, and lastly the default 'bad_certificate'.
|
---|
| 4215 | *
|
---|
| 4216 | * There are three callbacks that can be used to make use of client-side
|
---|
| 4217 | * certificates where each takes the TLS connection as the first parameter:
|
---|
| 4218 | *
|
---|
| 4219 | * getCertificate(conn, hint)
|
---|
| 4220 | * The second parameter is a hint as to which certificate should be
|
---|
| 4221 | * returned. If the connection entity is a client, then the hint will be
|
---|
| 4222 | * the CertificateRequest message from the server that is part of the
|
---|
| 4223 | * TLS protocol. If the connection entity is a server, then it will be
|
---|
| 4224 | * the servername list provided via an SNI extension the ClientHello, if
|
---|
| 4225 | * one was provided (empty array if not). The hint can be examined to
|
---|
| 4226 | * determine which certificate to use (advanced). Most implementations
|
---|
| 4227 | * will just return a certificate. The return value must be a
|
---|
| 4228 | * PEM-formatted certificate or an array of PEM-formatted certificates
|
---|
| 4229 | * that constitute a certificate chain, with the first in the array/chain
|
---|
| 4230 | * being the client's certificate.
|
---|
| 4231 | * getPrivateKey(conn, certificate)
|
---|
| 4232 | * The second parameter is an forge.pki X.509 certificate object that
|
---|
| 4233 | * is associated with the requested private key. The return value must
|
---|
| 4234 | * be a PEM-formatted private key.
|
---|
| 4235 | * getSignature(conn, bytes, callback)
|
---|
| 4236 | * This callback can be used instead of getPrivateKey if the private key
|
---|
| 4237 | * is not directly accessible in javascript or should not be. For
|
---|
| 4238 | * instance, a secure external web service could provide the signature
|
---|
| 4239 | * in exchange for appropriate credentials. The second parameter is a
|
---|
| 4240 | * string of bytes to be signed that are part of the TLS protocol. These
|
---|
| 4241 | * bytes are used to verify that the private key for the previously
|
---|
| 4242 | * provided client-side certificate is accessible to the client. The
|
---|
| 4243 | * callback is a function that takes 2 parameters, the TLS connection
|
---|
| 4244 | * and the RSA encrypted (signed) bytes as a string. This callback must
|
---|
| 4245 | * be called once the signature is ready.
|
---|
| 4246 | *
|
---|
| 4247 | * @param options the options for this connection:
|
---|
| 4248 | * server: true if the connection is server-side, false for client.
|
---|
| 4249 | * sessionId: a session ID to reuse, null for a new connection.
|
---|
| 4250 | * caStore: an array of certificates to trust.
|
---|
| 4251 | * sessionCache: a session cache to use.
|
---|
| 4252 | * cipherSuites: an optional array of cipher suites to use,
|
---|
| 4253 | * see tls.CipherSuites.
|
---|
| 4254 | * connected: function(conn) called when the first handshake completes.
|
---|
| 4255 | * virtualHost: the virtual server name to use in a TLS SNI extension.
|
---|
| 4256 | * verifyClient: true to require a client certificate in server mode,
|
---|
| 4257 | * 'optional' to request one, false not to (default: false).
|
---|
| 4258 | * verify: a handler used to custom verify certificates in the chain.
|
---|
| 4259 | * verifyOptions: an object with options for the certificate chain validation.
|
---|
| 4260 | * See documentation of pki.verifyCertificateChain for possible options.
|
---|
| 4261 | * verifyOptions.verify is ignored. If you wish to specify a verify handler
|
---|
| 4262 | * use the verify key.
|
---|
| 4263 | * getCertificate: an optional callback used to get a certificate or
|
---|
| 4264 | * a chain of certificates (as an array).
|
---|
| 4265 | * getPrivateKey: an optional callback used to get a private key.
|
---|
| 4266 | * getSignature: an optional callback used to get a signature.
|
---|
| 4267 | * tlsDataReady: function(conn) called when TLS protocol data has been
|
---|
| 4268 | * prepared and is ready to be used (typically sent over a socket
|
---|
| 4269 | * connection to its destination), read from conn.tlsData buffer.
|
---|
| 4270 | * dataReady: function(conn) called when application data has
|
---|
| 4271 | * been parsed from a TLS record and should be consumed by the
|
---|
| 4272 | * application, read from conn.data buffer.
|
---|
| 4273 | * closed: function(conn) called when the connection has been closed.
|
---|
| 4274 | * error: function(conn, error) called when there was an error.
|
---|
| 4275 | * deflate: function(inBytes) if provided, will deflate TLS records using
|
---|
| 4276 | * the deflate algorithm if the server supports it.
|
---|
| 4277 | * inflate: function(inBytes) if provided, will inflate TLS records using
|
---|
| 4278 | * the deflate algorithm if the server supports it.
|
---|
| 4279 | *
|
---|
| 4280 | * @return the new TLS connection.
|
---|
| 4281 | */
|
---|
| 4282 | forge.tls.createConnection = tls.createConnection;
|
---|