[6a3a178] | 1 | 'use strict';
|
---|
| 2 |
|
---|
| 3 | // (C) 1995-2013 Jean-loup Gailly and Mark Adler
|
---|
| 4 | // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
|
---|
| 5 | //
|
---|
| 6 | // This software is provided 'as-is', without any express or implied
|
---|
| 7 | // warranty. In no event will the authors be held liable for any damages
|
---|
| 8 | // arising from the use of this software.
|
---|
| 9 | //
|
---|
| 10 | // Permission is granted to anyone to use this software for any purpose,
|
---|
| 11 | // including commercial applications, and to alter it and redistribute it
|
---|
| 12 | // freely, subject to the following restrictions:
|
---|
| 13 | //
|
---|
| 14 | // 1. The origin of this software must not be misrepresented; you must not
|
---|
| 15 | // claim that you wrote the original software. If you use this software
|
---|
| 16 | // in a product, an acknowledgment in the product documentation would be
|
---|
| 17 | // appreciated but is not required.
|
---|
| 18 | // 2. Altered source versions must be plainly marked as such, and must not be
|
---|
| 19 | // misrepresented as being the original software.
|
---|
| 20 | // 3. This notice may not be removed or altered from any source distribution.
|
---|
| 21 |
|
---|
| 22 | /* eslint-disable space-unary-ops */
|
---|
| 23 |
|
---|
| 24 | var utils = require('../utils/common');
|
---|
| 25 |
|
---|
| 26 | /* Public constants ==========================================================*/
|
---|
| 27 | /* ===========================================================================*/
|
---|
| 28 |
|
---|
| 29 |
|
---|
| 30 | //var Z_FILTERED = 1;
|
---|
| 31 | //var Z_HUFFMAN_ONLY = 2;
|
---|
| 32 | //var Z_RLE = 3;
|
---|
| 33 | var Z_FIXED = 4;
|
---|
| 34 | //var Z_DEFAULT_STRATEGY = 0;
|
---|
| 35 |
|
---|
| 36 | /* Possible values of the data_type field (though see inflate()) */
|
---|
| 37 | var Z_BINARY = 0;
|
---|
| 38 | var Z_TEXT = 1;
|
---|
| 39 | //var Z_ASCII = 1; // = Z_TEXT
|
---|
| 40 | var Z_UNKNOWN = 2;
|
---|
| 41 |
|
---|
| 42 | /*============================================================================*/
|
---|
| 43 |
|
---|
| 44 |
|
---|
| 45 | function zero(buf) { var len = buf.length; while (--len >= 0) { buf[len] = 0; } }
|
---|
| 46 |
|
---|
| 47 | // From zutil.h
|
---|
| 48 |
|
---|
| 49 | var STORED_BLOCK = 0;
|
---|
| 50 | var STATIC_TREES = 1;
|
---|
| 51 | var DYN_TREES = 2;
|
---|
| 52 | /* The three kinds of block type */
|
---|
| 53 |
|
---|
| 54 | var MIN_MATCH = 3;
|
---|
| 55 | var MAX_MATCH = 258;
|
---|
| 56 | /* The minimum and maximum match lengths */
|
---|
| 57 |
|
---|
| 58 | // From deflate.h
|
---|
| 59 | /* ===========================================================================
|
---|
| 60 | * Internal compression state.
|
---|
| 61 | */
|
---|
| 62 |
|
---|
| 63 | var LENGTH_CODES = 29;
|
---|
| 64 | /* number of length codes, not counting the special END_BLOCK code */
|
---|
| 65 |
|
---|
| 66 | var LITERALS = 256;
|
---|
| 67 | /* number of literal bytes 0..255 */
|
---|
| 68 |
|
---|
| 69 | var L_CODES = LITERALS + 1 + LENGTH_CODES;
|
---|
| 70 | /* number of Literal or Length codes, including the END_BLOCK code */
|
---|
| 71 |
|
---|
| 72 | var D_CODES = 30;
|
---|
| 73 | /* number of distance codes */
|
---|
| 74 |
|
---|
| 75 | var BL_CODES = 19;
|
---|
| 76 | /* number of codes used to transfer the bit lengths */
|
---|
| 77 |
|
---|
| 78 | var HEAP_SIZE = 2 * L_CODES + 1;
|
---|
| 79 | /* maximum heap size */
|
---|
| 80 |
|
---|
| 81 | var MAX_BITS = 15;
|
---|
| 82 | /* All codes must not exceed MAX_BITS bits */
|
---|
| 83 |
|
---|
| 84 | var Buf_size = 16;
|
---|
| 85 | /* size of bit buffer in bi_buf */
|
---|
| 86 |
|
---|
| 87 |
|
---|
| 88 | /* ===========================================================================
|
---|
| 89 | * Constants
|
---|
| 90 | */
|
---|
| 91 |
|
---|
| 92 | var MAX_BL_BITS = 7;
|
---|
| 93 | /* Bit length codes must not exceed MAX_BL_BITS bits */
|
---|
| 94 |
|
---|
| 95 | var END_BLOCK = 256;
|
---|
| 96 | /* end of block literal code */
|
---|
| 97 |
|
---|
| 98 | var REP_3_6 = 16;
|
---|
| 99 | /* repeat previous bit length 3-6 times (2 bits of repeat count) */
|
---|
| 100 |
|
---|
| 101 | var REPZ_3_10 = 17;
|
---|
| 102 | /* repeat a zero length 3-10 times (3 bits of repeat count) */
|
---|
| 103 |
|
---|
| 104 | var REPZ_11_138 = 18;
|
---|
| 105 | /* repeat a zero length 11-138 times (7 bits of repeat count) */
|
---|
| 106 |
|
---|
| 107 | /* eslint-disable comma-spacing,array-bracket-spacing */
|
---|
| 108 | var extra_lbits = /* extra bits for each length code */
|
---|
| 109 | [0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0];
|
---|
| 110 |
|
---|
| 111 | var extra_dbits = /* extra bits for each distance code */
|
---|
| 112 | [0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13];
|
---|
| 113 |
|
---|
| 114 | var extra_blbits = /* extra bits for each bit length code */
|
---|
| 115 | [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7];
|
---|
| 116 |
|
---|
| 117 | var bl_order =
|
---|
| 118 | [16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15];
|
---|
| 119 | /* eslint-enable comma-spacing,array-bracket-spacing */
|
---|
| 120 |
|
---|
| 121 | /* The lengths of the bit length codes are sent in order of decreasing
|
---|
| 122 | * probability, to avoid transmitting the lengths for unused bit length codes.
|
---|
| 123 | */
|
---|
| 124 |
|
---|
| 125 | /* ===========================================================================
|
---|
| 126 | * Local data. These are initialized only once.
|
---|
| 127 | */
|
---|
| 128 |
|
---|
| 129 | // We pre-fill arrays with 0 to avoid uninitialized gaps
|
---|
| 130 |
|
---|
| 131 | var DIST_CODE_LEN = 512; /* see definition of array dist_code below */
|
---|
| 132 |
|
---|
| 133 | // !!!! Use flat array instead of structure, Freq = i*2, Len = i*2+1
|
---|
| 134 | var static_ltree = new Array((L_CODES + 2) * 2);
|
---|
| 135 | zero(static_ltree);
|
---|
| 136 | /* The static literal tree. Since the bit lengths are imposed, there is no
|
---|
| 137 | * need for the L_CODES extra codes used during heap construction. However
|
---|
| 138 | * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
|
---|
| 139 | * below).
|
---|
| 140 | */
|
---|
| 141 |
|
---|
| 142 | var static_dtree = new Array(D_CODES * 2);
|
---|
| 143 | zero(static_dtree);
|
---|
| 144 | /* The static distance tree. (Actually a trivial tree since all codes use
|
---|
| 145 | * 5 bits.)
|
---|
| 146 | */
|
---|
| 147 |
|
---|
| 148 | var _dist_code = new Array(DIST_CODE_LEN);
|
---|
| 149 | zero(_dist_code);
|
---|
| 150 | /* Distance codes. The first 256 values correspond to the distances
|
---|
| 151 | * 3 .. 258, the last 256 values correspond to the top 8 bits of
|
---|
| 152 | * the 15 bit distances.
|
---|
| 153 | */
|
---|
| 154 |
|
---|
| 155 | var _length_code = new Array(MAX_MATCH - MIN_MATCH + 1);
|
---|
| 156 | zero(_length_code);
|
---|
| 157 | /* length code for each normalized match length (0 == MIN_MATCH) */
|
---|
| 158 |
|
---|
| 159 | var base_length = new Array(LENGTH_CODES);
|
---|
| 160 | zero(base_length);
|
---|
| 161 | /* First normalized length for each code (0 = MIN_MATCH) */
|
---|
| 162 |
|
---|
| 163 | var base_dist = new Array(D_CODES);
|
---|
| 164 | zero(base_dist);
|
---|
| 165 | /* First normalized distance for each code (0 = distance of 1) */
|
---|
| 166 |
|
---|
| 167 |
|
---|
| 168 | function StaticTreeDesc(static_tree, extra_bits, extra_base, elems, max_length) {
|
---|
| 169 |
|
---|
| 170 | this.static_tree = static_tree; /* static tree or NULL */
|
---|
| 171 | this.extra_bits = extra_bits; /* extra bits for each code or NULL */
|
---|
| 172 | this.extra_base = extra_base; /* base index for extra_bits */
|
---|
| 173 | this.elems = elems; /* max number of elements in the tree */
|
---|
| 174 | this.max_length = max_length; /* max bit length for the codes */
|
---|
| 175 |
|
---|
| 176 | // show if `static_tree` has data or dummy - needed for monomorphic objects
|
---|
| 177 | this.has_stree = static_tree && static_tree.length;
|
---|
| 178 | }
|
---|
| 179 |
|
---|
| 180 |
|
---|
| 181 | var static_l_desc;
|
---|
| 182 | var static_d_desc;
|
---|
| 183 | var static_bl_desc;
|
---|
| 184 |
|
---|
| 185 |
|
---|
| 186 | function TreeDesc(dyn_tree, stat_desc) {
|
---|
| 187 | this.dyn_tree = dyn_tree; /* the dynamic tree */
|
---|
| 188 | this.max_code = 0; /* largest code with non zero frequency */
|
---|
| 189 | this.stat_desc = stat_desc; /* the corresponding static tree */
|
---|
| 190 | }
|
---|
| 191 |
|
---|
| 192 |
|
---|
| 193 |
|
---|
| 194 | function d_code(dist) {
|
---|
| 195 | return dist < 256 ? _dist_code[dist] : _dist_code[256 + (dist >>> 7)];
|
---|
| 196 | }
|
---|
| 197 |
|
---|
| 198 |
|
---|
| 199 | /* ===========================================================================
|
---|
| 200 | * Output a short LSB first on the stream.
|
---|
| 201 | * IN assertion: there is enough room in pendingBuf.
|
---|
| 202 | */
|
---|
| 203 | function put_short(s, w) {
|
---|
| 204 | // put_byte(s, (uch)((w) & 0xff));
|
---|
| 205 | // put_byte(s, (uch)((ush)(w) >> 8));
|
---|
| 206 | s.pending_buf[s.pending++] = (w) & 0xff;
|
---|
| 207 | s.pending_buf[s.pending++] = (w >>> 8) & 0xff;
|
---|
| 208 | }
|
---|
| 209 |
|
---|
| 210 |
|
---|
| 211 | /* ===========================================================================
|
---|
| 212 | * Send a value on a given number of bits.
|
---|
| 213 | * IN assertion: length <= 16 and value fits in length bits.
|
---|
| 214 | */
|
---|
| 215 | function send_bits(s, value, length) {
|
---|
| 216 | if (s.bi_valid > (Buf_size - length)) {
|
---|
| 217 | s.bi_buf |= (value << s.bi_valid) & 0xffff;
|
---|
| 218 | put_short(s, s.bi_buf);
|
---|
| 219 | s.bi_buf = value >> (Buf_size - s.bi_valid);
|
---|
| 220 | s.bi_valid += length - Buf_size;
|
---|
| 221 | } else {
|
---|
| 222 | s.bi_buf |= (value << s.bi_valid) & 0xffff;
|
---|
| 223 | s.bi_valid += length;
|
---|
| 224 | }
|
---|
| 225 | }
|
---|
| 226 |
|
---|
| 227 |
|
---|
| 228 | function send_code(s, c, tree) {
|
---|
| 229 | send_bits(s, tree[c * 2]/*.Code*/, tree[c * 2 + 1]/*.Len*/);
|
---|
| 230 | }
|
---|
| 231 |
|
---|
| 232 |
|
---|
| 233 | /* ===========================================================================
|
---|
| 234 | * Reverse the first len bits of a code, using straightforward code (a faster
|
---|
| 235 | * method would use a table)
|
---|
| 236 | * IN assertion: 1 <= len <= 15
|
---|
| 237 | */
|
---|
| 238 | function bi_reverse(code, len) {
|
---|
| 239 | var res = 0;
|
---|
| 240 | do {
|
---|
| 241 | res |= code & 1;
|
---|
| 242 | code >>>= 1;
|
---|
| 243 | res <<= 1;
|
---|
| 244 | } while (--len > 0);
|
---|
| 245 | return res >>> 1;
|
---|
| 246 | }
|
---|
| 247 |
|
---|
| 248 |
|
---|
| 249 | /* ===========================================================================
|
---|
| 250 | * Flush the bit buffer, keeping at most 7 bits in it.
|
---|
| 251 | */
|
---|
| 252 | function bi_flush(s) {
|
---|
| 253 | if (s.bi_valid === 16) {
|
---|
| 254 | put_short(s, s.bi_buf);
|
---|
| 255 | s.bi_buf = 0;
|
---|
| 256 | s.bi_valid = 0;
|
---|
| 257 |
|
---|
| 258 | } else if (s.bi_valid >= 8) {
|
---|
| 259 | s.pending_buf[s.pending++] = s.bi_buf & 0xff;
|
---|
| 260 | s.bi_buf >>= 8;
|
---|
| 261 | s.bi_valid -= 8;
|
---|
| 262 | }
|
---|
| 263 | }
|
---|
| 264 |
|
---|
| 265 |
|
---|
| 266 | /* ===========================================================================
|
---|
| 267 | * Compute the optimal bit lengths for a tree and update the total bit length
|
---|
| 268 | * for the current block.
|
---|
| 269 | * IN assertion: the fields freq and dad are set, heap[heap_max] and
|
---|
| 270 | * above are the tree nodes sorted by increasing frequency.
|
---|
| 271 | * OUT assertions: the field len is set to the optimal bit length, the
|
---|
| 272 | * array bl_count contains the frequencies for each bit length.
|
---|
| 273 | * The length opt_len is updated; static_len is also updated if stree is
|
---|
| 274 | * not null.
|
---|
| 275 | */
|
---|
| 276 | function gen_bitlen(s, desc)
|
---|
| 277 | // deflate_state *s;
|
---|
| 278 | // tree_desc *desc; /* the tree descriptor */
|
---|
| 279 | {
|
---|
| 280 | var tree = desc.dyn_tree;
|
---|
| 281 | var max_code = desc.max_code;
|
---|
| 282 | var stree = desc.stat_desc.static_tree;
|
---|
| 283 | var has_stree = desc.stat_desc.has_stree;
|
---|
| 284 | var extra = desc.stat_desc.extra_bits;
|
---|
| 285 | var base = desc.stat_desc.extra_base;
|
---|
| 286 | var max_length = desc.stat_desc.max_length;
|
---|
| 287 | var h; /* heap index */
|
---|
| 288 | var n, m; /* iterate over the tree elements */
|
---|
| 289 | var bits; /* bit length */
|
---|
| 290 | var xbits; /* extra bits */
|
---|
| 291 | var f; /* frequency */
|
---|
| 292 | var overflow = 0; /* number of elements with bit length too large */
|
---|
| 293 |
|
---|
| 294 | for (bits = 0; bits <= MAX_BITS; bits++) {
|
---|
| 295 | s.bl_count[bits] = 0;
|
---|
| 296 | }
|
---|
| 297 |
|
---|
| 298 | /* In a first pass, compute the optimal bit lengths (which may
|
---|
| 299 | * overflow in the case of the bit length tree).
|
---|
| 300 | */
|
---|
| 301 | tree[s.heap[s.heap_max] * 2 + 1]/*.Len*/ = 0; /* root of the heap */
|
---|
| 302 |
|
---|
| 303 | for (h = s.heap_max + 1; h < HEAP_SIZE; h++) {
|
---|
| 304 | n = s.heap[h];
|
---|
| 305 | bits = tree[tree[n * 2 + 1]/*.Dad*/ * 2 + 1]/*.Len*/ + 1;
|
---|
| 306 | if (bits > max_length) {
|
---|
| 307 | bits = max_length;
|
---|
| 308 | overflow++;
|
---|
| 309 | }
|
---|
| 310 | tree[n * 2 + 1]/*.Len*/ = bits;
|
---|
| 311 | /* We overwrite tree[n].Dad which is no longer needed */
|
---|
| 312 |
|
---|
| 313 | if (n > max_code) { continue; } /* not a leaf node */
|
---|
| 314 |
|
---|
| 315 | s.bl_count[bits]++;
|
---|
| 316 | xbits = 0;
|
---|
| 317 | if (n >= base) {
|
---|
| 318 | xbits = extra[n - base];
|
---|
| 319 | }
|
---|
| 320 | f = tree[n * 2]/*.Freq*/;
|
---|
| 321 | s.opt_len += f * (bits + xbits);
|
---|
| 322 | if (has_stree) {
|
---|
| 323 | s.static_len += f * (stree[n * 2 + 1]/*.Len*/ + xbits);
|
---|
| 324 | }
|
---|
| 325 | }
|
---|
| 326 | if (overflow === 0) { return; }
|
---|
| 327 |
|
---|
| 328 | // Trace((stderr,"\nbit length overflow\n"));
|
---|
| 329 | /* This happens for example on obj2 and pic of the Calgary corpus */
|
---|
| 330 |
|
---|
| 331 | /* Find the first bit length which could increase: */
|
---|
| 332 | do {
|
---|
| 333 | bits = max_length - 1;
|
---|
| 334 | while (s.bl_count[bits] === 0) { bits--; }
|
---|
| 335 | s.bl_count[bits]--; /* move one leaf down the tree */
|
---|
| 336 | s.bl_count[bits + 1] += 2; /* move one overflow item as its brother */
|
---|
| 337 | s.bl_count[max_length]--;
|
---|
| 338 | /* The brother of the overflow item also moves one step up,
|
---|
| 339 | * but this does not affect bl_count[max_length]
|
---|
| 340 | */
|
---|
| 341 | overflow -= 2;
|
---|
| 342 | } while (overflow > 0);
|
---|
| 343 |
|
---|
| 344 | /* Now recompute all bit lengths, scanning in increasing frequency.
|
---|
| 345 | * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
|
---|
| 346 | * lengths instead of fixing only the wrong ones. This idea is taken
|
---|
| 347 | * from 'ar' written by Haruhiko Okumura.)
|
---|
| 348 | */
|
---|
| 349 | for (bits = max_length; bits !== 0; bits--) {
|
---|
| 350 | n = s.bl_count[bits];
|
---|
| 351 | while (n !== 0) {
|
---|
| 352 | m = s.heap[--h];
|
---|
| 353 | if (m > max_code) { continue; }
|
---|
| 354 | if (tree[m * 2 + 1]/*.Len*/ !== bits) {
|
---|
| 355 | // Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
|
---|
| 356 | s.opt_len += (bits - tree[m * 2 + 1]/*.Len*/) * tree[m * 2]/*.Freq*/;
|
---|
| 357 | tree[m * 2 + 1]/*.Len*/ = bits;
|
---|
| 358 | }
|
---|
| 359 | n--;
|
---|
| 360 | }
|
---|
| 361 | }
|
---|
| 362 | }
|
---|
| 363 |
|
---|
| 364 |
|
---|
| 365 | /* ===========================================================================
|
---|
| 366 | * Generate the codes for a given tree and bit counts (which need not be
|
---|
| 367 | * optimal).
|
---|
| 368 | * IN assertion: the array bl_count contains the bit length statistics for
|
---|
| 369 | * the given tree and the field len is set for all tree elements.
|
---|
| 370 | * OUT assertion: the field code is set for all tree elements of non
|
---|
| 371 | * zero code length.
|
---|
| 372 | */
|
---|
| 373 | function gen_codes(tree, max_code, bl_count)
|
---|
| 374 | // ct_data *tree; /* the tree to decorate */
|
---|
| 375 | // int max_code; /* largest code with non zero frequency */
|
---|
| 376 | // ushf *bl_count; /* number of codes at each bit length */
|
---|
| 377 | {
|
---|
| 378 | var next_code = new Array(MAX_BITS + 1); /* next code value for each bit length */
|
---|
| 379 | var code = 0; /* running code value */
|
---|
| 380 | var bits; /* bit index */
|
---|
| 381 | var n; /* code index */
|
---|
| 382 |
|
---|
| 383 | /* The distribution counts are first used to generate the code values
|
---|
| 384 | * without bit reversal.
|
---|
| 385 | */
|
---|
| 386 | for (bits = 1; bits <= MAX_BITS; bits++) {
|
---|
| 387 | next_code[bits] = code = (code + bl_count[bits - 1]) << 1;
|
---|
| 388 | }
|
---|
| 389 | /* Check that the bit counts in bl_count are consistent. The last code
|
---|
| 390 | * must be all ones.
|
---|
| 391 | */
|
---|
| 392 | //Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
|
---|
| 393 | // "inconsistent bit counts");
|
---|
| 394 | //Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
|
---|
| 395 |
|
---|
| 396 | for (n = 0; n <= max_code; n++) {
|
---|
| 397 | var len = tree[n * 2 + 1]/*.Len*/;
|
---|
| 398 | if (len === 0) { continue; }
|
---|
| 399 | /* Now reverse the bits */
|
---|
| 400 | tree[n * 2]/*.Code*/ = bi_reverse(next_code[len]++, len);
|
---|
| 401 |
|
---|
| 402 | //Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
|
---|
| 403 | // n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
|
---|
| 404 | }
|
---|
| 405 | }
|
---|
| 406 |
|
---|
| 407 |
|
---|
| 408 | /* ===========================================================================
|
---|
| 409 | * Initialize the various 'constant' tables.
|
---|
| 410 | */
|
---|
| 411 | function tr_static_init() {
|
---|
| 412 | var n; /* iterates over tree elements */
|
---|
| 413 | var bits; /* bit counter */
|
---|
| 414 | var length; /* length value */
|
---|
| 415 | var code; /* code value */
|
---|
| 416 | var dist; /* distance index */
|
---|
| 417 | var bl_count = new Array(MAX_BITS + 1);
|
---|
| 418 | /* number of codes at each bit length for an optimal tree */
|
---|
| 419 |
|
---|
| 420 | // do check in _tr_init()
|
---|
| 421 | //if (static_init_done) return;
|
---|
| 422 |
|
---|
| 423 | /* For some embedded targets, global variables are not initialized: */
|
---|
| 424 | /*#ifdef NO_INIT_GLOBAL_POINTERS
|
---|
| 425 | static_l_desc.static_tree = static_ltree;
|
---|
| 426 | static_l_desc.extra_bits = extra_lbits;
|
---|
| 427 | static_d_desc.static_tree = static_dtree;
|
---|
| 428 | static_d_desc.extra_bits = extra_dbits;
|
---|
| 429 | static_bl_desc.extra_bits = extra_blbits;
|
---|
| 430 | #endif*/
|
---|
| 431 |
|
---|
| 432 | /* Initialize the mapping length (0..255) -> length code (0..28) */
|
---|
| 433 | length = 0;
|
---|
| 434 | for (code = 0; code < LENGTH_CODES - 1; code++) {
|
---|
| 435 | base_length[code] = length;
|
---|
| 436 | for (n = 0; n < (1 << extra_lbits[code]); n++) {
|
---|
| 437 | _length_code[length++] = code;
|
---|
| 438 | }
|
---|
| 439 | }
|
---|
| 440 | //Assert (length == 256, "tr_static_init: length != 256");
|
---|
| 441 | /* Note that the length 255 (match length 258) can be represented
|
---|
| 442 | * in two different ways: code 284 + 5 bits or code 285, so we
|
---|
| 443 | * overwrite length_code[255] to use the best encoding:
|
---|
| 444 | */
|
---|
| 445 | _length_code[length - 1] = code;
|
---|
| 446 |
|
---|
| 447 | /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
|
---|
| 448 | dist = 0;
|
---|
| 449 | for (code = 0; code < 16; code++) {
|
---|
| 450 | base_dist[code] = dist;
|
---|
| 451 | for (n = 0; n < (1 << extra_dbits[code]); n++) {
|
---|
| 452 | _dist_code[dist++] = code;
|
---|
| 453 | }
|
---|
| 454 | }
|
---|
| 455 | //Assert (dist == 256, "tr_static_init: dist != 256");
|
---|
| 456 | dist >>= 7; /* from now on, all distances are divided by 128 */
|
---|
| 457 | for (; code < D_CODES; code++) {
|
---|
| 458 | base_dist[code] = dist << 7;
|
---|
| 459 | for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
|
---|
| 460 | _dist_code[256 + dist++] = code;
|
---|
| 461 | }
|
---|
| 462 | }
|
---|
| 463 | //Assert (dist == 256, "tr_static_init: 256+dist != 512");
|
---|
| 464 |
|
---|
| 465 | /* Construct the codes of the static literal tree */
|
---|
| 466 | for (bits = 0; bits <= MAX_BITS; bits++) {
|
---|
| 467 | bl_count[bits] = 0;
|
---|
| 468 | }
|
---|
| 469 |
|
---|
| 470 | n = 0;
|
---|
| 471 | while (n <= 143) {
|
---|
| 472 | static_ltree[n * 2 + 1]/*.Len*/ = 8;
|
---|
| 473 | n++;
|
---|
| 474 | bl_count[8]++;
|
---|
| 475 | }
|
---|
| 476 | while (n <= 255) {
|
---|
| 477 | static_ltree[n * 2 + 1]/*.Len*/ = 9;
|
---|
| 478 | n++;
|
---|
| 479 | bl_count[9]++;
|
---|
| 480 | }
|
---|
| 481 | while (n <= 279) {
|
---|
| 482 | static_ltree[n * 2 + 1]/*.Len*/ = 7;
|
---|
| 483 | n++;
|
---|
| 484 | bl_count[7]++;
|
---|
| 485 | }
|
---|
| 486 | while (n <= 287) {
|
---|
| 487 | static_ltree[n * 2 + 1]/*.Len*/ = 8;
|
---|
| 488 | n++;
|
---|
| 489 | bl_count[8]++;
|
---|
| 490 | }
|
---|
| 491 | /* Codes 286 and 287 do not exist, but we must include them in the
|
---|
| 492 | * tree construction to get a canonical Huffman tree (longest code
|
---|
| 493 | * all ones)
|
---|
| 494 | */
|
---|
| 495 | gen_codes(static_ltree, L_CODES + 1, bl_count);
|
---|
| 496 |
|
---|
| 497 | /* The static distance tree is trivial: */
|
---|
| 498 | for (n = 0; n < D_CODES; n++) {
|
---|
| 499 | static_dtree[n * 2 + 1]/*.Len*/ = 5;
|
---|
| 500 | static_dtree[n * 2]/*.Code*/ = bi_reverse(n, 5);
|
---|
| 501 | }
|
---|
| 502 |
|
---|
| 503 | // Now data ready and we can init static trees
|
---|
| 504 | static_l_desc = new StaticTreeDesc(static_ltree, extra_lbits, LITERALS + 1, L_CODES, MAX_BITS);
|
---|
| 505 | static_d_desc = new StaticTreeDesc(static_dtree, extra_dbits, 0, D_CODES, MAX_BITS);
|
---|
| 506 | static_bl_desc = new StaticTreeDesc(new Array(0), extra_blbits, 0, BL_CODES, MAX_BL_BITS);
|
---|
| 507 |
|
---|
| 508 | //static_init_done = true;
|
---|
| 509 | }
|
---|
| 510 |
|
---|
| 511 |
|
---|
| 512 | /* ===========================================================================
|
---|
| 513 | * Initialize a new block.
|
---|
| 514 | */
|
---|
| 515 | function init_block(s) {
|
---|
| 516 | var n; /* iterates over tree elements */
|
---|
| 517 |
|
---|
| 518 | /* Initialize the trees. */
|
---|
| 519 | for (n = 0; n < L_CODES; n++) { s.dyn_ltree[n * 2]/*.Freq*/ = 0; }
|
---|
| 520 | for (n = 0; n < D_CODES; n++) { s.dyn_dtree[n * 2]/*.Freq*/ = 0; }
|
---|
| 521 | for (n = 0; n < BL_CODES; n++) { s.bl_tree[n * 2]/*.Freq*/ = 0; }
|
---|
| 522 |
|
---|
| 523 | s.dyn_ltree[END_BLOCK * 2]/*.Freq*/ = 1;
|
---|
| 524 | s.opt_len = s.static_len = 0;
|
---|
| 525 | s.last_lit = s.matches = 0;
|
---|
| 526 | }
|
---|
| 527 |
|
---|
| 528 |
|
---|
| 529 | /* ===========================================================================
|
---|
| 530 | * Flush the bit buffer and align the output on a byte boundary
|
---|
| 531 | */
|
---|
| 532 | function bi_windup(s)
|
---|
| 533 | {
|
---|
| 534 | if (s.bi_valid > 8) {
|
---|
| 535 | put_short(s, s.bi_buf);
|
---|
| 536 | } else if (s.bi_valid > 0) {
|
---|
| 537 | //put_byte(s, (Byte)s->bi_buf);
|
---|
| 538 | s.pending_buf[s.pending++] = s.bi_buf;
|
---|
| 539 | }
|
---|
| 540 | s.bi_buf = 0;
|
---|
| 541 | s.bi_valid = 0;
|
---|
| 542 | }
|
---|
| 543 |
|
---|
| 544 | /* ===========================================================================
|
---|
| 545 | * Copy a stored block, storing first the length and its
|
---|
| 546 | * one's complement if requested.
|
---|
| 547 | */
|
---|
| 548 | function copy_block(s, buf, len, header)
|
---|
| 549 | //DeflateState *s;
|
---|
| 550 | //charf *buf; /* the input data */
|
---|
| 551 | //unsigned len; /* its length */
|
---|
| 552 | //int header; /* true if block header must be written */
|
---|
| 553 | {
|
---|
| 554 | bi_windup(s); /* align on byte boundary */
|
---|
| 555 |
|
---|
| 556 | if (header) {
|
---|
| 557 | put_short(s, len);
|
---|
| 558 | put_short(s, ~len);
|
---|
| 559 | }
|
---|
| 560 | // while (len--) {
|
---|
| 561 | // put_byte(s, *buf++);
|
---|
| 562 | // }
|
---|
| 563 | utils.arraySet(s.pending_buf, s.window, buf, len, s.pending);
|
---|
| 564 | s.pending += len;
|
---|
| 565 | }
|
---|
| 566 |
|
---|
| 567 | /* ===========================================================================
|
---|
| 568 | * Compares to subtrees, using the tree depth as tie breaker when
|
---|
| 569 | * the subtrees have equal frequency. This minimizes the worst case length.
|
---|
| 570 | */
|
---|
| 571 | function smaller(tree, n, m, depth) {
|
---|
| 572 | var _n2 = n * 2;
|
---|
| 573 | var _m2 = m * 2;
|
---|
| 574 | return (tree[_n2]/*.Freq*/ < tree[_m2]/*.Freq*/ ||
|
---|
| 575 | (tree[_n2]/*.Freq*/ === tree[_m2]/*.Freq*/ && depth[n] <= depth[m]));
|
---|
| 576 | }
|
---|
| 577 |
|
---|
| 578 | /* ===========================================================================
|
---|
| 579 | * Restore the heap property by moving down the tree starting at node k,
|
---|
| 580 | * exchanging a node with the smallest of its two sons if necessary, stopping
|
---|
| 581 | * when the heap property is re-established (each father smaller than its
|
---|
| 582 | * two sons).
|
---|
| 583 | */
|
---|
| 584 | function pqdownheap(s, tree, k)
|
---|
| 585 | // deflate_state *s;
|
---|
| 586 | // ct_data *tree; /* the tree to restore */
|
---|
| 587 | // int k; /* node to move down */
|
---|
| 588 | {
|
---|
| 589 | var v = s.heap[k];
|
---|
| 590 | var j = k << 1; /* left son of k */
|
---|
| 591 | while (j <= s.heap_len) {
|
---|
| 592 | /* Set j to the smallest of the two sons: */
|
---|
| 593 | if (j < s.heap_len &&
|
---|
| 594 | smaller(tree, s.heap[j + 1], s.heap[j], s.depth)) {
|
---|
| 595 | j++;
|
---|
| 596 | }
|
---|
| 597 | /* Exit if v is smaller than both sons */
|
---|
| 598 | if (smaller(tree, v, s.heap[j], s.depth)) { break; }
|
---|
| 599 |
|
---|
| 600 | /* Exchange v with the smallest son */
|
---|
| 601 | s.heap[k] = s.heap[j];
|
---|
| 602 | k = j;
|
---|
| 603 |
|
---|
| 604 | /* And continue down the tree, setting j to the left son of k */
|
---|
| 605 | j <<= 1;
|
---|
| 606 | }
|
---|
| 607 | s.heap[k] = v;
|
---|
| 608 | }
|
---|
| 609 |
|
---|
| 610 |
|
---|
| 611 | // inlined manually
|
---|
| 612 | // var SMALLEST = 1;
|
---|
| 613 |
|
---|
| 614 | /* ===========================================================================
|
---|
| 615 | * Send the block data compressed using the given Huffman trees
|
---|
| 616 | */
|
---|
| 617 | function compress_block(s, ltree, dtree)
|
---|
| 618 | // deflate_state *s;
|
---|
| 619 | // const ct_data *ltree; /* literal tree */
|
---|
| 620 | // const ct_data *dtree; /* distance tree */
|
---|
| 621 | {
|
---|
| 622 | var dist; /* distance of matched string */
|
---|
| 623 | var lc; /* match length or unmatched char (if dist == 0) */
|
---|
| 624 | var lx = 0; /* running index in l_buf */
|
---|
| 625 | var code; /* the code to send */
|
---|
| 626 | var extra; /* number of extra bits to send */
|
---|
| 627 |
|
---|
| 628 | if (s.last_lit !== 0) {
|
---|
| 629 | do {
|
---|
| 630 | dist = (s.pending_buf[s.d_buf + lx * 2] << 8) | (s.pending_buf[s.d_buf + lx * 2 + 1]);
|
---|
| 631 | lc = s.pending_buf[s.l_buf + lx];
|
---|
| 632 | lx++;
|
---|
| 633 |
|
---|
| 634 | if (dist === 0) {
|
---|
| 635 | send_code(s, lc, ltree); /* send a literal byte */
|
---|
| 636 | //Tracecv(isgraph(lc), (stderr," '%c' ", lc));
|
---|
| 637 | } else {
|
---|
| 638 | /* Here, lc is the match length - MIN_MATCH */
|
---|
| 639 | code = _length_code[lc];
|
---|
| 640 | send_code(s, code + LITERALS + 1, ltree); /* send the length code */
|
---|
| 641 | extra = extra_lbits[code];
|
---|
| 642 | if (extra !== 0) {
|
---|
| 643 | lc -= base_length[code];
|
---|
| 644 | send_bits(s, lc, extra); /* send the extra length bits */
|
---|
| 645 | }
|
---|
| 646 | dist--; /* dist is now the match distance - 1 */
|
---|
| 647 | code = d_code(dist);
|
---|
| 648 | //Assert (code < D_CODES, "bad d_code");
|
---|
| 649 |
|
---|
| 650 | send_code(s, code, dtree); /* send the distance code */
|
---|
| 651 | extra = extra_dbits[code];
|
---|
| 652 | if (extra !== 0) {
|
---|
| 653 | dist -= base_dist[code];
|
---|
| 654 | send_bits(s, dist, extra); /* send the extra distance bits */
|
---|
| 655 | }
|
---|
| 656 | } /* literal or match pair ? */
|
---|
| 657 |
|
---|
| 658 | /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
|
---|
| 659 | //Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
|
---|
| 660 | // "pendingBuf overflow");
|
---|
| 661 |
|
---|
| 662 | } while (lx < s.last_lit);
|
---|
| 663 | }
|
---|
| 664 |
|
---|
| 665 | send_code(s, END_BLOCK, ltree);
|
---|
| 666 | }
|
---|
| 667 |
|
---|
| 668 |
|
---|
| 669 | /* ===========================================================================
|
---|
| 670 | * Construct one Huffman tree and assigns the code bit strings and lengths.
|
---|
| 671 | * Update the total bit length for the current block.
|
---|
| 672 | * IN assertion: the field freq is set for all tree elements.
|
---|
| 673 | * OUT assertions: the fields len and code are set to the optimal bit length
|
---|
| 674 | * and corresponding code. The length opt_len is updated; static_len is
|
---|
| 675 | * also updated if stree is not null. The field max_code is set.
|
---|
| 676 | */
|
---|
| 677 | function build_tree(s, desc)
|
---|
| 678 | // deflate_state *s;
|
---|
| 679 | // tree_desc *desc; /* the tree descriptor */
|
---|
| 680 | {
|
---|
| 681 | var tree = desc.dyn_tree;
|
---|
| 682 | var stree = desc.stat_desc.static_tree;
|
---|
| 683 | var has_stree = desc.stat_desc.has_stree;
|
---|
| 684 | var elems = desc.stat_desc.elems;
|
---|
| 685 | var n, m; /* iterate over heap elements */
|
---|
| 686 | var max_code = -1; /* largest code with non zero frequency */
|
---|
| 687 | var node; /* new node being created */
|
---|
| 688 |
|
---|
| 689 | /* Construct the initial heap, with least frequent element in
|
---|
| 690 | * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
|
---|
| 691 | * heap[0] is not used.
|
---|
| 692 | */
|
---|
| 693 | s.heap_len = 0;
|
---|
| 694 | s.heap_max = HEAP_SIZE;
|
---|
| 695 |
|
---|
| 696 | for (n = 0; n < elems; n++) {
|
---|
| 697 | if (tree[n * 2]/*.Freq*/ !== 0) {
|
---|
| 698 | s.heap[++s.heap_len] = max_code = n;
|
---|
| 699 | s.depth[n] = 0;
|
---|
| 700 |
|
---|
| 701 | } else {
|
---|
| 702 | tree[n * 2 + 1]/*.Len*/ = 0;
|
---|
| 703 | }
|
---|
| 704 | }
|
---|
| 705 |
|
---|
| 706 | /* The pkzip format requires that at least one distance code exists,
|
---|
| 707 | * and that at least one bit should be sent even if there is only one
|
---|
| 708 | * possible code. So to avoid special checks later on we force at least
|
---|
| 709 | * two codes of non zero frequency.
|
---|
| 710 | */
|
---|
| 711 | while (s.heap_len < 2) {
|
---|
| 712 | node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0);
|
---|
| 713 | tree[node * 2]/*.Freq*/ = 1;
|
---|
| 714 | s.depth[node] = 0;
|
---|
| 715 | s.opt_len--;
|
---|
| 716 |
|
---|
| 717 | if (has_stree) {
|
---|
| 718 | s.static_len -= stree[node * 2 + 1]/*.Len*/;
|
---|
| 719 | }
|
---|
| 720 | /* node is 0 or 1 so it does not have extra bits */
|
---|
| 721 | }
|
---|
| 722 | desc.max_code = max_code;
|
---|
| 723 |
|
---|
| 724 | /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
|
---|
| 725 | * establish sub-heaps of increasing lengths:
|
---|
| 726 | */
|
---|
| 727 | for (n = (s.heap_len >> 1/*int /2*/); n >= 1; n--) { pqdownheap(s, tree, n); }
|
---|
| 728 |
|
---|
| 729 | /* Construct the Huffman tree by repeatedly combining the least two
|
---|
| 730 | * frequent nodes.
|
---|
| 731 | */
|
---|
| 732 | node = elems; /* next internal node of the tree */
|
---|
| 733 | do {
|
---|
| 734 | //pqremove(s, tree, n); /* n = node of least frequency */
|
---|
| 735 | /*** pqremove ***/
|
---|
| 736 | n = s.heap[1/*SMALLEST*/];
|
---|
| 737 | s.heap[1/*SMALLEST*/] = s.heap[s.heap_len--];
|
---|
| 738 | pqdownheap(s, tree, 1/*SMALLEST*/);
|
---|
| 739 | /***/
|
---|
| 740 |
|
---|
| 741 | m = s.heap[1/*SMALLEST*/]; /* m = node of next least frequency */
|
---|
| 742 |
|
---|
| 743 | s.heap[--s.heap_max] = n; /* keep the nodes sorted by frequency */
|
---|
| 744 | s.heap[--s.heap_max] = m;
|
---|
| 745 |
|
---|
| 746 | /* Create a new node father of n and m */
|
---|
| 747 | tree[node * 2]/*.Freq*/ = tree[n * 2]/*.Freq*/ + tree[m * 2]/*.Freq*/;
|
---|
| 748 | s.depth[node] = (s.depth[n] >= s.depth[m] ? s.depth[n] : s.depth[m]) + 1;
|
---|
| 749 | tree[n * 2 + 1]/*.Dad*/ = tree[m * 2 + 1]/*.Dad*/ = node;
|
---|
| 750 |
|
---|
| 751 | /* and insert the new node in the heap */
|
---|
| 752 | s.heap[1/*SMALLEST*/] = node++;
|
---|
| 753 | pqdownheap(s, tree, 1/*SMALLEST*/);
|
---|
| 754 |
|
---|
| 755 | } while (s.heap_len >= 2);
|
---|
| 756 |
|
---|
| 757 | s.heap[--s.heap_max] = s.heap[1/*SMALLEST*/];
|
---|
| 758 |
|
---|
| 759 | /* At this point, the fields freq and dad are set. We can now
|
---|
| 760 | * generate the bit lengths.
|
---|
| 761 | */
|
---|
| 762 | gen_bitlen(s, desc);
|
---|
| 763 |
|
---|
| 764 | /* The field len is now set, we can generate the bit codes */
|
---|
| 765 | gen_codes(tree, max_code, s.bl_count);
|
---|
| 766 | }
|
---|
| 767 |
|
---|
| 768 |
|
---|
| 769 | /* ===========================================================================
|
---|
| 770 | * Scan a literal or distance tree to determine the frequencies of the codes
|
---|
| 771 | * in the bit length tree.
|
---|
| 772 | */
|
---|
| 773 | function scan_tree(s, tree, max_code)
|
---|
| 774 | // deflate_state *s;
|
---|
| 775 | // ct_data *tree; /* the tree to be scanned */
|
---|
| 776 | // int max_code; /* and its largest code of non zero frequency */
|
---|
| 777 | {
|
---|
| 778 | var n; /* iterates over all tree elements */
|
---|
| 779 | var prevlen = -1; /* last emitted length */
|
---|
| 780 | var curlen; /* length of current code */
|
---|
| 781 |
|
---|
| 782 | var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */
|
---|
| 783 |
|
---|
| 784 | var count = 0; /* repeat count of the current code */
|
---|
| 785 | var max_count = 7; /* max repeat count */
|
---|
| 786 | var min_count = 4; /* min repeat count */
|
---|
| 787 |
|
---|
| 788 | if (nextlen === 0) {
|
---|
| 789 | max_count = 138;
|
---|
| 790 | min_count = 3;
|
---|
| 791 | }
|
---|
| 792 | tree[(max_code + 1) * 2 + 1]/*.Len*/ = 0xffff; /* guard */
|
---|
| 793 |
|
---|
| 794 | for (n = 0; n <= max_code; n++) {
|
---|
| 795 | curlen = nextlen;
|
---|
| 796 | nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;
|
---|
| 797 |
|
---|
| 798 | if (++count < max_count && curlen === nextlen) {
|
---|
| 799 | continue;
|
---|
| 800 |
|
---|
| 801 | } else if (count < min_count) {
|
---|
| 802 | s.bl_tree[curlen * 2]/*.Freq*/ += count;
|
---|
| 803 |
|
---|
| 804 | } else if (curlen !== 0) {
|
---|
| 805 |
|
---|
| 806 | if (curlen !== prevlen) { s.bl_tree[curlen * 2]/*.Freq*/++; }
|
---|
| 807 | s.bl_tree[REP_3_6 * 2]/*.Freq*/++;
|
---|
| 808 |
|
---|
| 809 | } else if (count <= 10) {
|
---|
| 810 | s.bl_tree[REPZ_3_10 * 2]/*.Freq*/++;
|
---|
| 811 |
|
---|
| 812 | } else {
|
---|
| 813 | s.bl_tree[REPZ_11_138 * 2]/*.Freq*/++;
|
---|
| 814 | }
|
---|
| 815 |
|
---|
| 816 | count = 0;
|
---|
| 817 | prevlen = curlen;
|
---|
| 818 |
|
---|
| 819 | if (nextlen === 0) {
|
---|
| 820 | max_count = 138;
|
---|
| 821 | min_count = 3;
|
---|
| 822 |
|
---|
| 823 | } else if (curlen === nextlen) {
|
---|
| 824 | max_count = 6;
|
---|
| 825 | min_count = 3;
|
---|
| 826 |
|
---|
| 827 | } else {
|
---|
| 828 | max_count = 7;
|
---|
| 829 | min_count = 4;
|
---|
| 830 | }
|
---|
| 831 | }
|
---|
| 832 | }
|
---|
| 833 |
|
---|
| 834 |
|
---|
| 835 | /* ===========================================================================
|
---|
| 836 | * Send a literal or distance tree in compressed form, using the codes in
|
---|
| 837 | * bl_tree.
|
---|
| 838 | */
|
---|
| 839 | function send_tree(s, tree, max_code)
|
---|
| 840 | // deflate_state *s;
|
---|
| 841 | // ct_data *tree; /* the tree to be scanned */
|
---|
| 842 | // int max_code; /* and its largest code of non zero frequency */
|
---|
| 843 | {
|
---|
| 844 | var n; /* iterates over all tree elements */
|
---|
| 845 | var prevlen = -1; /* last emitted length */
|
---|
| 846 | var curlen; /* length of current code */
|
---|
| 847 |
|
---|
| 848 | var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */
|
---|
| 849 |
|
---|
| 850 | var count = 0; /* repeat count of the current code */
|
---|
| 851 | var max_count = 7; /* max repeat count */
|
---|
| 852 | var min_count = 4; /* min repeat count */
|
---|
| 853 |
|
---|
| 854 | /* tree[max_code+1].Len = -1; */ /* guard already set */
|
---|
| 855 | if (nextlen === 0) {
|
---|
| 856 | max_count = 138;
|
---|
| 857 | min_count = 3;
|
---|
| 858 | }
|
---|
| 859 |
|
---|
| 860 | for (n = 0; n <= max_code; n++) {
|
---|
| 861 | curlen = nextlen;
|
---|
| 862 | nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;
|
---|
| 863 |
|
---|
| 864 | if (++count < max_count && curlen === nextlen) {
|
---|
| 865 | continue;
|
---|
| 866 |
|
---|
| 867 | } else if (count < min_count) {
|
---|
| 868 | do { send_code(s, curlen, s.bl_tree); } while (--count !== 0);
|
---|
| 869 |
|
---|
| 870 | } else if (curlen !== 0) {
|
---|
| 871 | if (curlen !== prevlen) {
|
---|
| 872 | send_code(s, curlen, s.bl_tree);
|
---|
| 873 | count--;
|
---|
| 874 | }
|
---|
| 875 | //Assert(count >= 3 && count <= 6, " 3_6?");
|
---|
| 876 | send_code(s, REP_3_6, s.bl_tree);
|
---|
| 877 | send_bits(s, count - 3, 2);
|
---|
| 878 |
|
---|
| 879 | } else if (count <= 10) {
|
---|
| 880 | send_code(s, REPZ_3_10, s.bl_tree);
|
---|
| 881 | send_bits(s, count - 3, 3);
|
---|
| 882 |
|
---|
| 883 | } else {
|
---|
| 884 | send_code(s, REPZ_11_138, s.bl_tree);
|
---|
| 885 | send_bits(s, count - 11, 7);
|
---|
| 886 | }
|
---|
| 887 |
|
---|
| 888 | count = 0;
|
---|
| 889 | prevlen = curlen;
|
---|
| 890 | if (nextlen === 0) {
|
---|
| 891 | max_count = 138;
|
---|
| 892 | min_count = 3;
|
---|
| 893 |
|
---|
| 894 | } else if (curlen === nextlen) {
|
---|
| 895 | max_count = 6;
|
---|
| 896 | min_count = 3;
|
---|
| 897 |
|
---|
| 898 | } else {
|
---|
| 899 | max_count = 7;
|
---|
| 900 | min_count = 4;
|
---|
| 901 | }
|
---|
| 902 | }
|
---|
| 903 | }
|
---|
| 904 |
|
---|
| 905 |
|
---|
| 906 | /* ===========================================================================
|
---|
| 907 | * Construct the Huffman tree for the bit lengths and return the index in
|
---|
| 908 | * bl_order of the last bit length code to send.
|
---|
| 909 | */
|
---|
| 910 | function build_bl_tree(s) {
|
---|
| 911 | var max_blindex; /* index of last bit length code of non zero freq */
|
---|
| 912 |
|
---|
| 913 | /* Determine the bit length frequencies for literal and distance trees */
|
---|
| 914 | scan_tree(s, s.dyn_ltree, s.l_desc.max_code);
|
---|
| 915 | scan_tree(s, s.dyn_dtree, s.d_desc.max_code);
|
---|
| 916 |
|
---|
| 917 | /* Build the bit length tree: */
|
---|
| 918 | build_tree(s, s.bl_desc);
|
---|
| 919 | /* opt_len now includes the length of the tree representations, except
|
---|
| 920 | * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
|
---|
| 921 | */
|
---|
| 922 |
|
---|
| 923 | /* Determine the number of bit length codes to send. The pkzip format
|
---|
| 924 | * requires that at least 4 bit length codes be sent. (appnote.txt says
|
---|
| 925 | * 3 but the actual value used is 4.)
|
---|
| 926 | */
|
---|
| 927 | for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
|
---|
| 928 | if (s.bl_tree[bl_order[max_blindex] * 2 + 1]/*.Len*/ !== 0) {
|
---|
| 929 | break;
|
---|
| 930 | }
|
---|
| 931 | }
|
---|
| 932 | /* Update opt_len to include the bit length tree and counts */
|
---|
| 933 | s.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
|
---|
| 934 | //Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
|
---|
| 935 | // s->opt_len, s->static_len));
|
---|
| 936 |
|
---|
| 937 | return max_blindex;
|
---|
| 938 | }
|
---|
| 939 |
|
---|
| 940 |
|
---|
| 941 | /* ===========================================================================
|
---|
| 942 | * Send the header for a block using dynamic Huffman trees: the counts, the
|
---|
| 943 | * lengths of the bit length codes, the literal tree and the distance tree.
|
---|
| 944 | * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
|
---|
| 945 | */
|
---|
| 946 | function send_all_trees(s, lcodes, dcodes, blcodes)
|
---|
| 947 | // deflate_state *s;
|
---|
| 948 | // int lcodes, dcodes, blcodes; /* number of codes for each tree */
|
---|
| 949 | {
|
---|
| 950 | var rank; /* index in bl_order */
|
---|
| 951 |
|
---|
| 952 | //Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
|
---|
| 953 | //Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
|
---|
| 954 | // "too many codes");
|
---|
| 955 | //Tracev((stderr, "\nbl counts: "));
|
---|
| 956 | send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */
|
---|
| 957 | send_bits(s, dcodes - 1, 5);
|
---|
| 958 | send_bits(s, blcodes - 4, 4); /* not -3 as stated in appnote.txt */
|
---|
| 959 | for (rank = 0; rank < blcodes; rank++) {
|
---|
| 960 | //Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
|
---|
| 961 | send_bits(s, s.bl_tree[bl_order[rank] * 2 + 1]/*.Len*/, 3);
|
---|
| 962 | }
|
---|
| 963 | //Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
|
---|
| 964 |
|
---|
| 965 | send_tree(s, s.dyn_ltree, lcodes - 1); /* literal tree */
|
---|
| 966 | //Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
|
---|
| 967 |
|
---|
| 968 | send_tree(s, s.dyn_dtree, dcodes - 1); /* distance tree */
|
---|
| 969 | //Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
|
---|
| 970 | }
|
---|
| 971 |
|
---|
| 972 |
|
---|
| 973 | /* ===========================================================================
|
---|
| 974 | * Check if the data type is TEXT or BINARY, using the following algorithm:
|
---|
| 975 | * - TEXT if the two conditions below are satisfied:
|
---|
| 976 | * a) There are no non-portable control characters belonging to the
|
---|
| 977 | * "black list" (0..6, 14..25, 28..31).
|
---|
| 978 | * b) There is at least one printable character belonging to the
|
---|
| 979 | * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
|
---|
| 980 | * - BINARY otherwise.
|
---|
| 981 | * - The following partially-portable control characters form a
|
---|
| 982 | * "gray list" that is ignored in this detection algorithm:
|
---|
| 983 | * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
|
---|
| 984 | * IN assertion: the fields Freq of dyn_ltree are set.
|
---|
| 985 | */
|
---|
| 986 | function detect_data_type(s) {
|
---|
| 987 | /* black_mask is the bit mask of black-listed bytes
|
---|
| 988 | * set bits 0..6, 14..25, and 28..31
|
---|
| 989 | * 0xf3ffc07f = binary 11110011111111111100000001111111
|
---|
| 990 | */
|
---|
| 991 | var black_mask = 0xf3ffc07f;
|
---|
| 992 | var n;
|
---|
| 993 |
|
---|
| 994 | /* Check for non-textual ("black-listed") bytes. */
|
---|
| 995 | for (n = 0; n <= 31; n++, black_mask >>>= 1) {
|
---|
| 996 | if ((black_mask & 1) && (s.dyn_ltree[n * 2]/*.Freq*/ !== 0)) {
|
---|
| 997 | return Z_BINARY;
|
---|
| 998 | }
|
---|
| 999 | }
|
---|
| 1000 |
|
---|
| 1001 | /* Check for textual ("white-listed") bytes. */
|
---|
| 1002 | if (s.dyn_ltree[9 * 2]/*.Freq*/ !== 0 || s.dyn_ltree[10 * 2]/*.Freq*/ !== 0 ||
|
---|
| 1003 | s.dyn_ltree[13 * 2]/*.Freq*/ !== 0) {
|
---|
| 1004 | return Z_TEXT;
|
---|
| 1005 | }
|
---|
| 1006 | for (n = 32; n < LITERALS; n++) {
|
---|
| 1007 | if (s.dyn_ltree[n * 2]/*.Freq*/ !== 0) {
|
---|
| 1008 | return Z_TEXT;
|
---|
| 1009 | }
|
---|
| 1010 | }
|
---|
| 1011 |
|
---|
| 1012 | /* There are no "black-listed" or "white-listed" bytes:
|
---|
| 1013 | * this stream either is empty or has tolerated ("gray-listed") bytes only.
|
---|
| 1014 | */
|
---|
| 1015 | return Z_BINARY;
|
---|
| 1016 | }
|
---|
| 1017 |
|
---|
| 1018 |
|
---|
| 1019 | var static_init_done = false;
|
---|
| 1020 |
|
---|
| 1021 | /* ===========================================================================
|
---|
| 1022 | * Initialize the tree data structures for a new zlib stream.
|
---|
| 1023 | */
|
---|
| 1024 | function _tr_init(s)
|
---|
| 1025 | {
|
---|
| 1026 |
|
---|
| 1027 | if (!static_init_done) {
|
---|
| 1028 | tr_static_init();
|
---|
| 1029 | static_init_done = true;
|
---|
| 1030 | }
|
---|
| 1031 |
|
---|
| 1032 | s.l_desc = new TreeDesc(s.dyn_ltree, static_l_desc);
|
---|
| 1033 | s.d_desc = new TreeDesc(s.dyn_dtree, static_d_desc);
|
---|
| 1034 | s.bl_desc = new TreeDesc(s.bl_tree, static_bl_desc);
|
---|
| 1035 |
|
---|
| 1036 | s.bi_buf = 0;
|
---|
| 1037 | s.bi_valid = 0;
|
---|
| 1038 |
|
---|
| 1039 | /* Initialize the first block of the first file: */
|
---|
| 1040 | init_block(s);
|
---|
| 1041 | }
|
---|
| 1042 |
|
---|
| 1043 |
|
---|
| 1044 | /* ===========================================================================
|
---|
| 1045 | * Send a stored block
|
---|
| 1046 | */
|
---|
| 1047 | function _tr_stored_block(s, buf, stored_len, last)
|
---|
| 1048 | //DeflateState *s;
|
---|
| 1049 | //charf *buf; /* input block */
|
---|
| 1050 | //ulg stored_len; /* length of input block */
|
---|
| 1051 | //int last; /* one if this is the last block for a file */
|
---|
| 1052 | {
|
---|
| 1053 | send_bits(s, (STORED_BLOCK << 1) + (last ? 1 : 0), 3); /* send block type */
|
---|
| 1054 | copy_block(s, buf, stored_len, true); /* with header */
|
---|
| 1055 | }
|
---|
| 1056 |
|
---|
| 1057 |
|
---|
| 1058 | /* ===========================================================================
|
---|
| 1059 | * Send one empty static block to give enough lookahead for inflate.
|
---|
| 1060 | * This takes 10 bits, of which 7 may remain in the bit buffer.
|
---|
| 1061 | */
|
---|
| 1062 | function _tr_align(s) {
|
---|
| 1063 | send_bits(s, STATIC_TREES << 1, 3);
|
---|
| 1064 | send_code(s, END_BLOCK, static_ltree);
|
---|
| 1065 | bi_flush(s);
|
---|
| 1066 | }
|
---|
| 1067 |
|
---|
| 1068 |
|
---|
| 1069 | /* ===========================================================================
|
---|
| 1070 | * Determine the best encoding for the current block: dynamic trees, static
|
---|
| 1071 | * trees or store, and output the encoded block to the zip file.
|
---|
| 1072 | */
|
---|
| 1073 | function _tr_flush_block(s, buf, stored_len, last)
|
---|
| 1074 | //DeflateState *s;
|
---|
| 1075 | //charf *buf; /* input block, or NULL if too old */
|
---|
| 1076 | //ulg stored_len; /* length of input block */
|
---|
| 1077 | //int last; /* one if this is the last block for a file */
|
---|
| 1078 | {
|
---|
| 1079 | var opt_lenb, static_lenb; /* opt_len and static_len in bytes */
|
---|
| 1080 | var max_blindex = 0; /* index of last bit length code of non zero freq */
|
---|
| 1081 |
|
---|
| 1082 | /* Build the Huffman trees unless a stored block is forced */
|
---|
| 1083 | if (s.level > 0) {
|
---|
| 1084 |
|
---|
| 1085 | /* Check if the file is binary or text */
|
---|
| 1086 | if (s.strm.data_type === Z_UNKNOWN) {
|
---|
| 1087 | s.strm.data_type = detect_data_type(s);
|
---|
| 1088 | }
|
---|
| 1089 |
|
---|
| 1090 | /* Construct the literal and distance trees */
|
---|
| 1091 | build_tree(s, s.l_desc);
|
---|
| 1092 | // Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
|
---|
| 1093 | // s->static_len));
|
---|
| 1094 |
|
---|
| 1095 | build_tree(s, s.d_desc);
|
---|
| 1096 | // Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
|
---|
| 1097 | // s->static_len));
|
---|
| 1098 | /* At this point, opt_len and static_len are the total bit lengths of
|
---|
| 1099 | * the compressed block data, excluding the tree representations.
|
---|
| 1100 | */
|
---|
| 1101 |
|
---|
| 1102 | /* Build the bit length tree for the above two trees, and get the index
|
---|
| 1103 | * in bl_order of the last bit length code to send.
|
---|
| 1104 | */
|
---|
| 1105 | max_blindex = build_bl_tree(s);
|
---|
| 1106 |
|
---|
| 1107 | /* Determine the best encoding. Compute the block lengths in bytes. */
|
---|
| 1108 | opt_lenb = (s.opt_len + 3 + 7) >>> 3;
|
---|
| 1109 | static_lenb = (s.static_len + 3 + 7) >>> 3;
|
---|
| 1110 |
|
---|
| 1111 | // Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
|
---|
| 1112 | // opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
|
---|
| 1113 | // s->last_lit));
|
---|
| 1114 |
|
---|
| 1115 | if (static_lenb <= opt_lenb) { opt_lenb = static_lenb; }
|
---|
| 1116 |
|
---|
| 1117 | } else {
|
---|
| 1118 | // Assert(buf != (char*)0, "lost buf");
|
---|
| 1119 | opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
|
---|
| 1120 | }
|
---|
| 1121 |
|
---|
| 1122 | if ((stored_len + 4 <= opt_lenb) && (buf !== -1)) {
|
---|
| 1123 | /* 4: two words for the lengths */
|
---|
| 1124 |
|
---|
| 1125 | /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
|
---|
| 1126 | * Otherwise we can't have processed more than WSIZE input bytes since
|
---|
| 1127 | * the last block flush, because compression would have been
|
---|
| 1128 | * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
|
---|
| 1129 | * transform a block into a stored block.
|
---|
| 1130 | */
|
---|
| 1131 | _tr_stored_block(s, buf, stored_len, last);
|
---|
| 1132 |
|
---|
| 1133 | } else if (s.strategy === Z_FIXED || static_lenb === opt_lenb) {
|
---|
| 1134 |
|
---|
| 1135 | send_bits(s, (STATIC_TREES << 1) + (last ? 1 : 0), 3);
|
---|
| 1136 | compress_block(s, static_ltree, static_dtree);
|
---|
| 1137 |
|
---|
| 1138 | } else {
|
---|
| 1139 | send_bits(s, (DYN_TREES << 1) + (last ? 1 : 0), 3);
|
---|
| 1140 | send_all_trees(s, s.l_desc.max_code + 1, s.d_desc.max_code + 1, max_blindex + 1);
|
---|
| 1141 | compress_block(s, s.dyn_ltree, s.dyn_dtree);
|
---|
| 1142 | }
|
---|
| 1143 | // Assert (s->compressed_len == s->bits_sent, "bad compressed size");
|
---|
| 1144 | /* The above check is made mod 2^32, for files larger than 512 MB
|
---|
| 1145 | * and uLong implemented on 32 bits.
|
---|
| 1146 | */
|
---|
| 1147 | init_block(s);
|
---|
| 1148 |
|
---|
| 1149 | if (last) {
|
---|
| 1150 | bi_windup(s);
|
---|
| 1151 | }
|
---|
| 1152 | // Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
|
---|
| 1153 | // s->compressed_len-7*last));
|
---|
| 1154 | }
|
---|
| 1155 |
|
---|
| 1156 | /* ===========================================================================
|
---|
| 1157 | * Save the match info and tally the frequency counts. Return true if
|
---|
| 1158 | * the current block must be flushed.
|
---|
| 1159 | */
|
---|
| 1160 | function _tr_tally(s, dist, lc)
|
---|
| 1161 | // deflate_state *s;
|
---|
| 1162 | // unsigned dist; /* distance of matched string */
|
---|
| 1163 | // unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
|
---|
| 1164 | {
|
---|
| 1165 | //var out_length, in_length, dcode;
|
---|
| 1166 |
|
---|
| 1167 | s.pending_buf[s.d_buf + s.last_lit * 2] = (dist >>> 8) & 0xff;
|
---|
| 1168 | s.pending_buf[s.d_buf + s.last_lit * 2 + 1] = dist & 0xff;
|
---|
| 1169 |
|
---|
| 1170 | s.pending_buf[s.l_buf + s.last_lit] = lc & 0xff;
|
---|
| 1171 | s.last_lit++;
|
---|
| 1172 |
|
---|
| 1173 | if (dist === 0) {
|
---|
| 1174 | /* lc is the unmatched char */
|
---|
| 1175 | s.dyn_ltree[lc * 2]/*.Freq*/++;
|
---|
| 1176 | } else {
|
---|
| 1177 | s.matches++;
|
---|
| 1178 | /* Here, lc is the match length - MIN_MATCH */
|
---|
| 1179 | dist--; /* dist = match distance - 1 */
|
---|
| 1180 | //Assert((ush)dist < (ush)MAX_DIST(s) &&
|
---|
| 1181 | // (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
|
---|
| 1182 | // (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
|
---|
| 1183 |
|
---|
| 1184 | s.dyn_ltree[(_length_code[lc] + LITERALS + 1) * 2]/*.Freq*/++;
|
---|
| 1185 | s.dyn_dtree[d_code(dist) * 2]/*.Freq*/++;
|
---|
| 1186 | }
|
---|
| 1187 |
|
---|
| 1188 | // (!) This block is disabled in zlib defaults,
|
---|
| 1189 | // don't enable it for binary compatibility
|
---|
| 1190 |
|
---|
| 1191 | //#ifdef TRUNCATE_BLOCK
|
---|
| 1192 | // /* Try to guess if it is profitable to stop the current block here */
|
---|
| 1193 | // if ((s.last_lit & 0x1fff) === 0 && s.level > 2) {
|
---|
| 1194 | // /* Compute an upper bound for the compressed length */
|
---|
| 1195 | // out_length = s.last_lit*8;
|
---|
| 1196 | // in_length = s.strstart - s.block_start;
|
---|
| 1197 | //
|
---|
| 1198 | // for (dcode = 0; dcode < D_CODES; dcode++) {
|
---|
| 1199 | // out_length += s.dyn_dtree[dcode*2]/*.Freq*/ * (5 + extra_dbits[dcode]);
|
---|
| 1200 | // }
|
---|
| 1201 | // out_length >>>= 3;
|
---|
| 1202 | // //Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
|
---|
| 1203 | // // s->last_lit, in_length, out_length,
|
---|
| 1204 | // // 100L - out_length*100L/in_length));
|
---|
| 1205 | // if (s.matches < (s.last_lit>>1)/*int /2*/ && out_length < (in_length>>1)/*int /2*/) {
|
---|
| 1206 | // return true;
|
---|
| 1207 | // }
|
---|
| 1208 | // }
|
---|
| 1209 | //#endif
|
---|
| 1210 |
|
---|
| 1211 | return (s.last_lit === s.lit_bufsize - 1);
|
---|
| 1212 | /* We avoid equality with lit_bufsize because of wraparound at 64K
|
---|
| 1213 | * on 16 bit machines and because stored blocks are restricted to
|
---|
| 1214 | * 64K-1 bytes.
|
---|
| 1215 | */
|
---|
| 1216 | }
|
---|
| 1217 |
|
---|
| 1218 | exports._tr_init = _tr_init;
|
---|
| 1219 | exports._tr_stored_block = _tr_stored_block;
|
---|
| 1220 | exports._tr_flush_block = _tr_flush_block;
|
---|
| 1221 | exports._tr_tally = _tr_tally;
|
---|
| 1222 | exports._tr_align = _tr_align;
|
---|