1 | 'use strict';
|
---|
2 |
|
---|
3 | // (C) 1995-2013 Jean-loup Gailly and Mark Adler
|
---|
4 | // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
|
---|
5 | //
|
---|
6 | // This software is provided 'as-is', without any express or implied
|
---|
7 | // warranty. In no event will the authors be held liable for any damages
|
---|
8 | // arising from the use of this software.
|
---|
9 | //
|
---|
10 | // Permission is granted to anyone to use this software for any purpose,
|
---|
11 | // including commercial applications, and to alter it and redistribute it
|
---|
12 | // freely, subject to the following restrictions:
|
---|
13 | //
|
---|
14 | // 1. The origin of this software must not be misrepresented; you must not
|
---|
15 | // claim that you wrote the original software. If you use this software
|
---|
16 | // in a product, an acknowledgment in the product documentation would be
|
---|
17 | // appreciated but is not required.
|
---|
18 | // 2. Altered source versions must be plainly marked as such, and must not be
|
---|
19 | // misrepresented as being the original software.
|
---|
20 | // 3. This notice may not be removed or altered from any source distribution.
|
---|
21 |
|
---|
22 | /* eslint-disable space-unary-ops */
|
---|
23 |
|
---|
24 | var utils = require('../utils/common');
|
---|
25 |
|
---|
26 | /* Public constants ==========================================================*/
|
---|
27 | /* ===========================================================================*/
|
---|
28 |
|
---|
29 |
|
---|
30 | //var Z_FILTERED = 1;
|
---|
31 | //var Z_HUFFMAN_ONLY = 2;
|
---|
32 | //var Z_RLE = 3;
|
---|
33 | var Z_FIXED = 4;
|
---|
34 | //var Z_DEFAULT_STRATEGY = 0;
|
---|
35 |
|
---|
36 | /* Possible values of the data_type field (though see inflate()) */
|
---|
37 | var Z_BINARY = 0;
|
---|
38 | var Z_TEXT = 1;
|
---|
39 | //var Z_ASCII = 1; // = Z_TEXT
|
---|
40 | var Z_UNKNOWN = 2;
|
---|
41 |
|
---|
42 | /*============================================================================*/
|
---|
43 |
|
---|
44 |
|
---|
45 | function zero(buf) { var len = buf.length; while (--len >= 0) { buf[len] = 0; } }
|
---|
46 |
|
---|
47 | // From zutil.h
|
---|
48 |
|
---|
49 | var STORED_BLOCK = 0;
|
---|
50 | var STATIC_TREES = 1;
|
---|
51 | var DYN_TREES = 2;
|
---|
52 | /* The three kinds of block type */
|
---|
53 |
|
---|
54 | var MIN_MATCH = 3;
|
---|
55 | var MAX_MATCH = 258;
|
---|
56 | /* The minimum and maximum match lengths */
|
---|
57 |
|
---|
58 | // From deflate.h
|
---|
59 | /* ===========================================================================
|
---|
60 | * Internal compression state.
|
---|
61 | */
|
---|
62 |
|
---|
63 | var LENGTH_CODES = 29;
|
---|
64 | /* number of length codes, not counting the special END_BLOCK code */
|
---|
65 |
|
---|
66 | var LITERALS = 256;
|
---|
67 | /* number of literal bytes 0..255 */
|
---|
68 |
|
---|
69 | var L_CODES = LITERALS + 1 + LENGTH_CODES;
|
---|
70 | /* number of Literal or Length codes, including the END_BLOCK code */
|
---|
71 |
|
---|
72 | var D_CODES = 30;
|
---|
73 | /* number of distance codes */
|
---|
74 |
|
---|
75 | var BL_CODES = 19;
|
---|
76 | /* number of codes used to transfer the bit lengths */
|
---|
77 |
|
---|
78 | var HEAP_SIZE = 2 * L_CODES + 1;
|
---|
79 | /* maximum heap size */
|
---|
80 |
|
---|
81 | var MAX_BITS = 15;
|
---|
82 | /* All codes must not exceed MAX_BITS bits */
|
---|
83 |
|
---|
84 | var Buf_size = 16;
|
---|
85 | /* size of bit buffer in bi_buf */
|
---|
86 |
|
---|
87 |
|
---|
88 | /* ===========================================================================
|
---|
89 | * Constants
|
---|
90 | */
|
---|
91 |
|
---|
92 | var MAX_BL_BITS = 7;
|
---|
93 | /* Bit length codes must not exceed MAX_BL_BITS bits */
|
---|
94 |
|
---|
95 | var END_BLOCK = 256;
|
---|
96 | /* end of block literal code */
|
---|
97 |
|
---|
98 | var REP_3_6 = 16;
|
---|
99 | /* repeat previous bit length 3-6 times (2 bits of repeat count) */
|
---|
100 |
|
---|
101 | var REPZ_3_10 = 17;
|
---|
102 | /* repeat a zero length 3-10 times (3 bits of repeat count) */
|
---|
103 |
|
---|
104 | var REPZ_11_138 = 18;
|
---|
105 | /* repeat a zero length 11-138 times (7 bits of repeat count) */
|
---|
106 |
|
---|
107 | /* eslint-disable comma-spacing,array-bracket-spacing */
|
---|
108 | var extra_lbits = /* extra bits for each length code */
|
---|
109 | [0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0];
|
---|
110 |
|
---|
111 | var extra_dbits = /* extra bits for each distance code */
|
---|
112 | [0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13];
|
---|
113 |
|
---|
114 | var extra_blbits = /* extra bits for each bit length code */
|
---|
115 | [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7];
|
---|
116 |
|
---|
117 | var bl_order =
|
---|
118 | [16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15];
|
---|
119 | /* eslint-enable comma-spacing,array-bracket-spacing */
|
---|
120 |
|
---|
121 | /* The lengths of the bit length codes are sent in order of decreasing
|
---|
122 | * probability, to avoid transmitting the lengths for unused bit length codes.
|
---|
123 | */
|
---|
124 |
|
---|
125 | /* ===========================================================================
|
---|
126 | * Local data. These are initialized only once.
|
---|
127 | */
|
---|
128 |
|
---|
129 | // We pre-fill arrays with 0 to avoid uninitialized gaps
|
---|
130 |
|
---|
131 | var DIST_CODE_LEN = 512; /* see definition of array dist_code below */
|
---|
132 |
|
---|
133 | // !!!! Use flat array instead of structure, Freq = i*2, Len = i*2+1
|
---|
134 | var static_ltree = new Array((L_CODES + 2) * 2);
|
---|
135 | zero(static_ltree);
|
---|
136 | /* The static literal tree. Since the bit lengths are imposed, there is no
|
---|
137 | * need for the L_CODES extra codes used during heap construction. However
|
---|
138 | * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
|
---|
139 | * below).
|
---|
140 | */
|
---|
141 |
|
---|
142 | var static_dtree = new Array(D_CODES * 2);
|
---|
143 | zero(static_dtree);
|
---|
144 | /* The static distance tree. (Actually a trivial tree since all codes use
|
---|
145 | * 5 bits.)
|
---|
146 | */
|
---|
147 |
|
---|
148 | var _dist_code = new Array(DIST_CODE_LEN);
|
---|
149 | zero(_dist_code);
|
---|
150 | /* Distance codes. The first 256 values correspond to the distances
|
---|
151 | * 3 .. 258, the last 256 values correspond to the top 8 bits of
|
---|
152 | * the 15 bit distances.
|
---|
153 | */
|
---|
154 |
|
---|
155 | var _length_code = new Array(MAX_MATCH - MIN_MATCH + 1);
|
---|
156 | zero(_length_code);
|
---|
157 | /* length code for each normalized match length (0 == MIN_MATCH) */
|
---|
158 |
|
---|
159 | var base_length = new Array(LENGTH_CODES);
|
---|
160 | zero(base_length);
|
---|
161 | /* First normalized length for each code (0 = MIN_MATCH) */
|
---|
162 |
|
---|
163 | var base_dist = new Array(D_CODES);
|
---|
164 | zero(base_dist);
|
---|
165 | /* First normalized distance for each code (0 = distance of 1) */
|
---|
166 |
|
---|
167 |
|
---|
168 | function StaticTreeDesc(static_tree, extra_bits, extra_base, elems, max_length) {
|
---|
169 |
|
---|
170 | this.static_tree = static_tree; /* static tree or NULL */
|
---|
171 | this.extra_bits = extra_bits; /* extra bits for each code or NULL */
|
---|
172 | this.extra_base = extra_base; /* base index for extra_bits */
|
---|
173 | this.elems = elems; /* max number of elements in the tree */
|
---|
174 | this.max_length = max_length; /* max bit length for the codes */
|
---|
175 |
|
---|
176 | // show if `static_tree` has data or dummy - needed for monomorphic objects
|
---|
177 | this.has_stree = static_tree && static_tree.length;
|
---|
178 | }
|
---|
179 |
|
---|
180 |
|
---|
181 | var static_l_desc;
|
---|
182 | var static_d_desc;
|
---|
183 | var static_bl_desc;
|
---|
184 |
|
---|
185 |
|
---|
186 | function TreeDesc(dyn_tree, stat_desc) {
|
---|
187 | this.dyn_tree = dyn_tree; /* the dynamic tree */
|
---|
188 | this.max_code = 0; /* largest code with non zero frequency */
|
---|
189 | this.stat_desc = stat_desc; /* the corresponding static tree */
|
---|
190 | }
|
---|
191 |
|
---|
192 |
|
---|
193 |
|
---|
194 | function d_code(dist) {
|
---|
195 | return dist < 256 ? _dist_code[dist] : _dist_code[256 + (dist >>> 7)];
|
---|
196 | }
|
---|
197 |
|
---|
198 |
|
---|
199 | /* ===========================================================================
|
---|
200 | * Output a short LSB first on the stream.
|
---|
201 | * IN assertion: there is enough room in pendingBuf.
|
---|
202 | */
|
---|
203 | function put_short(s, w) {
|
---|
204 | // put_byte(s, (uch)((w) & 0xff));
|
---|
205 | // put_byte(s, (uch)((ush)(w) >> 8));
|
---|
206 | s.pending_buf[s.pending++] = (w) & 0xff;
|
---|
207 | s.pending_buf[s.pending++] = (w >>> 8) & 0xff;
|
---|
208 | }
|
---|
209 |
|
---|
210 |
|
---|
211 | /* ===========================================================================
|
---|
212 | * Send a value on a given number of bits.
|
---|
213 | * IN assertion: length <= 16 and value fits in length bits.
|
---|
214 | */
|
---|
215 | function send_bits(s, value, length) {
|
---|
216 | if (s.bi_valid > (Buf_size - length)) {
|
---|
217 | s.bi_buf |= (value << s.bi_valid) & 0xffff;
|
---|
218 | put_short(s, s.bi_buf);
|
---|
219 | s.bi_buf = value >> (Buf_size - s.bi_valid);
|
---|
220 | s.bi_valid += length - Buf_size;
|
---|
221 | } else {
|
---|
222 | s.bi_buf |= (value << s.bi_valid) & 0xffff;
|
---|
223 | s.bi_valid += length;
|
---|
224 | }
|
---|
225 | }
|
---|
226 |
|
---|
227 |
|
---|
228 | function send_code(s, c, tree) {
|
---|
229 | send_bits(s, tree[c * 2]/*.Code*/, tree[c * 2 + 1]/*.Len*/);
|
---|
230 | }
|
---|
231 |
|
---|
232 |
|
---|
233 | /* ===========================================================================
|
---|
234 | * Reverse the first len bits of a code, using straightforward code (a faster
|
---|
235 | * method would use a table)
|
---|
236 | * IN assertion: 1 <= len <= 15
|
---|
237 | */
|
---|
238 | function bi_reverse(code, len) {
|
---|
239 | var res = 0;
|
---|
240 | do {
|
---|
241 | res |= code & 1;
|
---|
242 | code >>>= 1;
|
---|
243 | res <<= 1;
|
---|
244 | } while (--len > 0);
|
---|
245 | return res >>> 1;
|
---|
246 | }
|
---|
247 |
|
---|
248 |
|
---|
249 | /* ===========================================================================
|
---|
250 | * Flush the bit buffer, keeping at most 7 bits in it.
|
---|
251 | */
|
---|
252 | function bi_flush(s) {
|
---|
253 | if (s.bi_valid === 16) {
|
---|
254 | put_short(s, s.bi_buf);
|
---|
255 | s.bi_buf = 0;
|
---|
256 | s.bi_valid = 0;
|
---|
257 |
|
---|
258 | } else if (s.bi_valid >= 8) {
|
---|
259 | s.pending_buf[s.pending++] = s.bi_buf & 0xff;
|
---|
260 | s.bi_buf >>= 8;
|
---|
261 | s.bi_valid -= 8;
|
---|
262 | }
|
---|
263 | }
|
---|
264 |
|
---|
265 |
|
---|
266 | /* ===========================================================================
|
---|
267 | * Compute the optimal bit lengths for a tree and update the total bit length
|
---|
268 | * for the current block.
|
---|
269 | * IN assertion: the fields freq and dad are set, heap[heap_max] and
|
---|
270 | * above are the tree nodes sorted by increasing frequency.
|
---|
271 | * OUT assertions: the field len is set to the optimal bit length, the
|
---|
272 | * array bl_count contains the frequencies for each bit length.
|
---|
273 | * The length opt_len is updated; static_len is also updated if stree is
|
---|
274 | * not null.
|
---|
275 | */
|
---|
276 | function gen_bitlen(s, desc)
|
---|
277 | // deflate_state *s;
|
---|
278 | // tree_desc *desc; /* the tree descriptor */
|
---|
279 | {
|
---|
280 | var tree = desc.dyn_tree;
|
---|
281 | var max_code = desc.max_code;
|
---|
282 | var stree = desc.stat_desc.static_tree;
|
---|
283 | var has_stree = desc.stat_desc.has_stree;
|
---|
284 | var extra = desc.stat_desc.extra_bits;
|
---|
285 | var base = desc.stat_desc.extra_base;
|
---|
286 | var max_length = desc.stat_desc.max_length;
|
---|
287 | var h; /* heap index */
|
---|
288 | var n, m; /* iterate over the tree elements */
|
---|
289 | var bits; /* bit length */
|
---|
290 | var xbits; /* extra bits */
|
---|
291 | var f; /* frequency */
|
---|
292 | var overflow = 0; /* number of elements with bit length too large */
|
---|
293 |
|
---|
294 | for (bits = 0; bits <= MAX_BITS; bits++) {
|
---|
295 | s.bl_count[bits] = 0;
|
---|
296 | }
|
---|
297 |
|
---|
298 | /* In a first pass, compute the optimal bit lengths (which may
|
---|
299 | * overflow in the case of the bit length tree).
|
---|
300 | */
|
---|
301 | tree[s.heap[s.heap_max] * 2 + 1]/*.Len*/ = 0; /* root of the heap */
|
---|
302 |
|
---|
303 | for (h = s.heap_max + 1; h < HEAP_SIZE; h++) {
|
---|
304 | n = s.heap[h];
|
---|
305 | bits = tree[tree[n * 2 + 1]/*.Dad*/ * 2 + 1]/*.Len*/ + 1;
|
---|
306 | if (bits > max_length) {
|
---|
307 | bits = max_length;
|
---|
308 | overflow++;
|
---|
309 | }
|
---|
310 | tree[n * 2 + 1]/*.Len*/ = bits;
|
---|
311 | /* We overwrite tree[n].Dad which is no longer needed */
|
---|
312 |
|
---|
313 | if (n > max_code) { continue; } /* not a leaf node */
|
---|
314 |
|
---|
315 | s.bl_count[bits]++;
|
---|
316 | xbits = 0;
|
---|
317 | if (n >= base) {
|
---|
318 | xbits = extra[n - base];
|
---|
319 | }
|
---|
320 | f = tree[n * 2]/*.Freq*/;
|
---|
321 | s.opt_len += f * (bits + xbits);
|
---|
322 | if (has_stree) {
|
---|
323 | s.static_len += f * (stree[n * 2 + 1]/*.Len*/ + xbits);
|
---|
324 | }
|
---|
325 | }
|
---|
326 | if (overflow === 0) { return; }
|
---|
327 |
|
---|
328 | // Trace((stderr,"\nbit length overflow\n"));
|
---|
329 | /* This happens for example on obj2 and pic of the Calgary corpus */
|
---|
330 |
|
---|
331 | /* Find the first bit length which could increase: */
|
---|
332 | do {
|
---|
333 | bits = max_length - 1;
|
---|
334 | while (s.bl_count[bits] === 0) { bits--; }
|
---|
335 | s.bl_count[bits]--; /* move one leaf down the tree */
|
---|
336 | s.bl_count[bits + 1] += 2; /* move one overflow item as its brother */
|
---|
337 | s.bl_count[max_length]--;
|
---|
338 | /* The brother of the overflow item also moves one step up,
|
---|
339 | * but this does not affect bl_count[max_length]
|
---|
340 | */
|
---|
341 | overflow -= 2;
|
---|
342 | } while (overflow > 0);
|
---|
343 |
|
---|
344 | /* Now recompute all bit lengths, scanning in increasing frequency.
|
---|
345 | * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
|
---|
346 | * lengths instead of fixing only the wrong ones. This idea is taken
|
---|
347 | * from 'ar' written by Haruhiko Okumura.)
|
---|
348 | */
|
---|
349 | for (bits = max_length; bits !== 0; bits--) {
|
---|
350 | n = s.bl_count[bits];
|
---|
351 | while (n !== 0) {
|
---|
352 | m = s.heap[--h];
|
---|
353 | if (m > max_code) { continue; }
|
---|
354 | if (tree[m * 2 + 1]/*.Len*/ !== bits) {
|
---|
355 | // Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
|
---|
356 | s.opt_len += (bits - tree[m * 2 + 1]/*.Len*/) * tree[m * 2]/*.Freq*/;
|
---|
357 | tree[m * 2 + 1]/*.Len*/ = bits;
|
---|
358 | }
|
---|
359 | n--;
|
---|
360 | }
|
---|
361 | }
|
---|
362 | }
|
---|
363 |
|
---|
364 |
|
---|
365 | /* ===========================================================================
|
---|
366 | * Generate the codes for a given tree and bit counts (which need not be
|
---|
367 | * optimal).
|
---|
368 | * IN assertion: the array bl_count contains the bit length statistics for
|
---|
369 | * the given tree and the field len is set for all tree elements.
|
---|
370 | * OUT assertion: the field code is set for all tree elements of non
|
---|
371 | * zero code length.
|
---|
372 | */
|
---|
373 | function gen_codes(tree, max_code, bl_count)
|
---|
374 | // ct_data *tree; /* the tree to decorate */
|
---|
375 | // int max_code; /* largest code with non zero frequency */
|
---|
376 | // ushf *bl_count; /* number of codes at each bit length */
|
---|
377 | {
|
---|
378 | var next_code = new Array(MAX_BITS + 1); /* next code value for each bit length */
|
---|
379 | var code = 0; /* running code value */
|
---|
380 | var bits; /* bit index */
|
---|
381 | var n; /* code index */
|
---|
382 |
|
---|
383 | /* The distribution counts are first used to generate the code values
|
---|
384 | * without bit reversal.
|
---|
385 | */
|
---|
386 | for (bits = 1; bits <= MAX_BITS; bits++) {
|
---|
387 | next_code[bits] = code = (code + bl_count[bits - 1]) << 1;
|
---|
388 | }
|
---|
389 | /* Check that the bit counts in bl_count are consistent. The last code
|
---|
390 | * must be all ones.
|
---|
391 | */
|
---|
392 | //Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
|
---|
393 | // "inconsistent bit counts");
|
---|
394 | //Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
|
---|
395 |
|
---|
396 | for (n = 0; n <= max_code; n++) {
|
---|
397 | var len = tree[n * 2 + 1]/*.Len*/;
|
---|
398 | if (len === 0) { continue; }
|
---|
399 | /* Now reverse the bits */
|
---|
400 | tree[n * 2]/*.Code*/ = bi_reverse(next_code[len]++, len);
|
---|
401 |
|
---|
402 | //Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
|
---|
403 | // n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
|
---|
404 | }
|
---|
405 | }
|
---|
406 |
|
---|
407 |
|
---|
408 | /* ===========================================================================
|
---|
409 | * Initialize the various 'constant' tables.
|
---|
410 | */
|
---|
411 | function tr_static_init() {
|
---|
412 | var n; /* iterates over tree elements */
|
---|
413 | var bits; /* bit counter */
|
---|
414 | var length; /* length value */
|
---|
415 | var code; /* code value */
|
---|
416 | var dist; /* distance index */
|
---|
417 | var bl_count = new Array(MAX_BITS + 1);
|
---|
418 | /* number of codes at each bit length for an optimal tree */
|
---|
419 |
|
---|
420 | // do check in _tr_init()
|
---|
421 | //if (static_init_done) return;
|
---|
422 |
|
---|
423 | /* For some embedded targets, global variables are not initialized: */
|
---|
424 | /*#ifdef NO_INIT_GLOBAL_POINTERS
|
---|
425 | static_l_desc.static_tree = static_ltree;
|
---|
426 | static_l_desc.extra_bits = extra_lbits;
|
---|
427 | static_d_desc.static_tree = static_dtree;
|
---|
428 | static_d_desc.extra_bits = extra_dbits;
|
---|
429 | static_bl_desc.extra_bits = extra_blbits;
|
---|
430 | #endif*/
|
---|
431 |
|
---|
432 | /* Initialize the mapping length (0..255) -> length code (0..28) */
|
---|
433 | length = 0;
|
---|
434 | for (code = 0; code < LENGTH_CODES - 1; code++) {
|
---|
435 | base_length[code] = length;
|
---|
436 | for (n = 0; n < (1 << extra_lbits[code]); n++) {
|
---|
437 | _length_code[length++] = code;
|
---|
438 | }
|
---|
439 | }
|
---|
440 | //Assert (length == 256, "tr_static_init: length != 256");
|
---|
441 | /* Note that the length 255 (match length 258) can be represented
|
---|
442 | * in two different ways: code 284 + 5 bits or code 285, so we
|
---|
443 | * overwrite length_code[255] to use the best encoding:
|
---|
444 | */
|
---|
445 | _length_code[length - 1] = code;
|
---|
446 |
|
---|
447 | /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
|
---|
448 | dist = 0;
|
---|
449 | for (code = 0; code < 16; code++) {
|
---|
450 | base_dist[code] = dist;
|
---|
451 | for (n = 0; n < (1 << extra_dbits[code]); n++) {
|
---|
452 | _dist_code[dist++] = code;
|
---|
453 | }
|
---|
454 | }
|
---|
455 | //Assert (dist == 256, "tr_static_init: dist != 256");
|
---|
456 | dist >>= 7; /* from now on, all distances are divided by 128 */
|
---|
457 | for (; code < D_CODES; code++) {
|
---|
458 | base_dist[code] = dist << 7;
|
---|
459 | for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
|
---|
460 | _dist_code[256 + dist++] = code;
|
---|
461 | }
|
---|
462 | }
|
---|
463 | //Assert (dist == 256, "tr_static_init: 256+dist != 512");
|
---|
464 |
|
---|
465 | /* Construct the codes of the static literal tree */
|
---|
466 | for (bits = 0; bits <= MAX_BITS; bits++) {
|
---|
467 | bl_count[bits] = 0;
|
---|
468 | }
|
---|
469 |
|
---|
470 | n = 0;
|
---|
471 | while (n <= 143) {
|
---|
472 | static_ltree[n * 2 + 1]/*.Len*/ = 8;
|
---|
473 | n++;
|
---|
474 | bl_count[8]++;
|
---|
475 | }
|
---|
476 | while (n <= 255) {
|
---|
477 | static_ltree[n * 2 + 1]/*.Len*/ = 9;
|
---|
478 | n++;
|
---|
479 | bl_count[9]++;
|
---|
480 | }
|
---|
481 | while (n <= 279) {
|
---|
482 | static_ltree[n * 2 + 1]/*.Len*/ = 7;
|
---|
483 | n++;
|
---|
484 | bl_count[7]++;
|
---|
485 | }
|
---|
486 | while (n <= 287) {
|
---|
487 | static_ltree[n * 2 + 1]/*.Len*/ = 8;
|
---|
488 | n++;
|
---|
489 | bl_count[8]++;
|
---|
490 | }
|
---|
491 | /* Codes 286 and 287 do not exist, but we must include them in the
|
---|
492 | * tree construction to get a canonical Huffman tree (longest code
|
---|
493 | * all ones)
|
---|
494 | */
|
---|
495 | gen_codes(static_ltree, L_CODES + 1, bl_count);
|
---|
496 |
|
---|
497 | /* The static distance tree is trivial: */
|
---|
498 | for (n = 0; n < D_CODES; n++) {
|
---|
499 | static_dtree[n * 2 + 1]/*.Len*/ = 5;
|
---|
500 | static_dtree[n * 2]/*.Code*/ = bi_reverse(n, 5);
|
---|
501 | }
|
---|
502 |
|
---|
503 | // Now data ready and we can init static trees
|
---|
504 | static_l_desc = new StaticTreeDesc(static_ltree, extra_lbits, LITERALS + 1, L_CODES, MAX_BITS);
|
---|
505 | static_d_desc = new StaticTreeDesc(static_dtree, extra_dbits, 0, D_CODES, MAX_BITS);
|
---|
506 | static_bl_desc = new StaticTreeDesc(new Array(0), extra_blbits, 0, BL_CODES, MAX_BL_BITS);
|
---|
507 |
|
---|
508 | //static_init_done = true;
|
---|
509 | }
|
---|
510 |
|
---|
511 |
|
---|
512 | /* ===========================================================================
|
---|
513 | * Initialize a new block.
|
---|
514 | */
|
---|
515 | function init_block(s) {
|
---|
516 | var n; /* iterates over tree elements */
|
---|
517 |
|
---|
518 | /* Initialize the trees. */
|
---|
519 | for (n = 0; n < L_CODES; n++) { s.dyn_ltree[n * 2]/*.Freq*/ = 0; }
|
---|
520 | for (n = 0; n < D_CODES; n++) { s.dyn_dtree[n * 2]/*.Freq*/ = 0; }
|
---|
521 | for (n = 0; n < BL_CODES; n++) { s.bl_tree[n * 2]/*.Freq*/ = 0; }
|
---|
522 |
|
---|
523 | s.dyn_ltree[END_BLOCK * 2]/*.Freq*/ = 1;
|
---|
524 | s.opt_len = s.static_len = 0;
|
---|
525 | s.last_lit = s.matches = 0;
|
---|
526 | }
|
---|
527 |
|
---|
528 |
|
---|
529 | /* ===========================================================================
|
---|
530 | * Flush the bit buffer and align the output on a byte boundary
|
---|
531 | */
|
---|
532 | function bi_windup(s)
|
---|
533 | {
|
---|
534 | if (s.bi_valid > 8) {
|
---|
535 | put_short(s, s.bi_buf);
|
---|
536 | } else if (s.bi_valid > 0) {
|
---|
537 | //put_byte(s, (Byte)s->bi_buf);
|
---|
538 | s.pending_buf[s.pending++] = s.bi_buf;
|
---|
539 | }
|
---|
540 | s.bi_buf = 0;
|
---|
541 | s.bi_valid = 0;
|
---|
542 | }
|
---|
543 |
|
---|
544 | /* ===========================================================================
|
---|
545 | * Copy a stored block, storing first the length and its
|
---|
546 | * one's complement if requested.
|
---|
547 | */
|
---|
548 | function copy_block(s, buf, len, header)
|
---|
549 | //DeflateState *s;
|
---|
550 | //charf *buf; /* the input data */
|
---|
551 | //unsigned len; /* its length */
|
---|
552 | //int header; /* true if block header must be written */
|
---|
553 | {
|
---|
554 | bi_windup(s); /* align on byte boundary */
|
---|
555 |
|
---|
556 | if (header) {
|
---|
557 | put_short(s, len);
|
---|
558 | put_short(s, ~len);
|
---|
559 | }
|
---|
560 | // while (len--) {
|
---|
561 | // put_byte(s, *buf++);
|
---|
562 | // }
|
---|
563 | utils.arraySet(s.pending_buf, s.window, buf, len, s.pending);
|
---|
564 | s.pending += len;
|
---|
565 | }
|
---|
566 |
|
---|
567 | /* ===========================================================================
|
---|
568 | * Compares to subtrees, using the tree depth as tie breaker when
|
---|
569 | * the subtrees have equal frequency. This minimizes the worst case length.
|
---|
570 | */
|
---|
571 | function smaller(tree, n, m, depth) {
|
---|
572 | var _n2 = n * 2;
|
---|
573 | var _m2 = m * 2;
|
---|
574 | return (tree[_n2]/*.Freq*/ < tree[_m2]/*.Freq*/ ||
|
---|
575 | (tree[_n2]/*.Freq*/ === tree[_m2]/*.Freq*/ && depth[n] <= depth[m]));
|
---|
576 | }
|
---|
577 |
|
---|
578 | /* ===========================================================================
|
---|
579 | * Restore the heap property by moving down the tree starting at node k,
|
---|
580 | * exchanging a node with the smallest of its two sons if necessary, stopping
|
---|
581 | * when the heap property is re-established (each father smaller than its
|
---|
582 | * two sons).
|
---|
583 | */
|
---|
584 | function pqdownheap(s, tree, k)
|
---|
585 | // deflate_state *s;
|
---|
586 | // ct_data *tree; /* the tree to restore */
|
---|
587 | // int k; /* node to move down */
|
---|
588 | {
|
---|
589 | var v = s.heap[k];
|
---|
590 | var j = k << 1; /* left son of k */
|
---|
591 | while (j <= s.heap_len) {
|
---|
592 | /* Set j to the smallest of the two sons: */
|
---|
593 | if (j < s.heap_len &&
|
---|
594 | smaller(tree, s.heap[j + 1], s.heap[j], s.depth)) {
|
---|
595 | j++;
|
---|
596 | }
|
---|
597 | /* Exit if v is smaller than both sons */
|
---|
598 | if (smaller(tree, v, s.heap[j], s.depth)) { break; }
|
---|
599 |
|
---|
600 | /* Exchange v with the smallest son */
|
---|
601 | s.heap[k] = s.heap[j];
|
---|
602 | k = j;
|
---|
603 |
|
---|
604 | /* And continue down the tree, setting j to the left son of k */
|
---|
605 | j <<= 1;
|
---|
606 | }
|
---|
607 | s.heap[k] = v;
|
---|
608 | }
|
---|
609 |
|
---|
610 |
|
---|
611 | // inlined manually
|
---|
612 | // var SMALLEST = 1;
|
---|
613 |
|
---|
614 | /* ===========================================================================
|
---|
615 | * Send the block data compressed using the given Huffman trees
|
---|
616 | */
|
---|
617 | function compress_block(s, ltree, dtree)
|
---|
618 | // deflate_state *s;
|
---|
619 | // const ct_data *ltree; /* literal tree */
|
---|
620 | // const ct_data *dtree; /* distance tree */
|
---|
621 | {
|
---|
622 | var dist; /* distance of matched string */
|
---|
623 | var lc; /* match length or unmatched char (if dist == 0) */
|
---|
624 | var lx = 0; /* running index in l_buf */
|
---|
625 | var code; /* the code to send */
|
---|
626 | var extra; /* number of extra bits to send */
|
---|
627 |
|
---|
628 | if (s.last_lit !== 0) {
|
---|
629 | do {
|
---|
630 | dist = (s.pending_buf[s.d_buf + lx * 2] << 8) | (s.pending_buf[s.d_buf + lx * 2 + 1]);
|
---|
631 | lc = s.pending_buf[s.l_buf + lx];
|
---|
632 | lx++;
|
---|
633 |
|
---|
634 | if (dist === 0) {
|
---|
635 | send_code(s, lc, ltree); /* send a literal byte */
|
---|
636 | //Tracecv(isgraph(lc), (stderr," '%c' ", lc));
|
---|
637 | } else {
|
---|
638 | /* Here, lc is the match length - MIN_MATCH */
|
---|
639 | code = _length_code[lc];
|
---|
640 | send_code(s, code + LITERALS + 1, ltree); /* send the length code */
|
---|
641 | extra = extra_lbits[code];
|
---|
642 | if (extra !== 0) {
|
---|
643 | lc -= base_length[code];
|
---|
644 | send_bits(s, lc, extra); /* send the extra length bits */
|
---|
645 | }
|
---|
646 | dist--; /* dist is now the match distance - 1 */
|
---|
647 | code = d_code(dist);
|
---|
648 | //Assert (code < D_CODES, "bad d_code");
|
---|
649 |
|
---|
650 | send_code(s, code, dtree); /* send the distance code */
|
---|
651 | extra = extra_dbits[code];
|
---|
652 | if (extra !== 0) {
|
---|
653 | dist -= base_dist[code];
|
---|
654 | send_bits(s, dist, extra); /* send the extra distance bits */
|
---|
655 | }
|
---|
656 | } /* literal or match pair ? */
|
---|
657 |
|
---|
658 | /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
|
---|
659 | //Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
|
---|
660 | // "pendingBuf overflow");
|
---|
661 |
|
---|
662 | } while (lx < s.last_lit);
|
---|
663 | }
|
---|
664 |
|
---|
665 | send_code(s, END_BLOCK, ltree);
|
---|
666 | }
|
---|
667 |
|
---|
668 |
|
---|
669 | /* ===========================================================================
|
---|
670 | * Construct one Huffman tree and assigns the code bit strings and lengths.
|
---|
671 | * Update the total bit length for the current block.
|
---|
672 | * IN assertion: the field freq is set for all tree elements.
|
---|
673 | * OUT assertions: the fields len and code are set to the optimal bit length
|
---|
674 | * and corresponding code. The length opt_len is updated; static_len is
|
---|
675 | * also updated if stree is not null. The field max_code is set.
|
---|
676 | */
|
---|
677 | function build_tree(s, desc)
|
---|
678 | // deflate_state *s;
|
---|
679 | // tree_desc *desc; /* the tree descriptor */
|
---|
680 | {
|
---|
681 | var tree = desc.dyn_tree;
|
---|
682 | var stree = desc.stat_desc.static_tree;
|
---|
683 | var has_stree = desc.stat_desc.has_stree;
|
---|
684 | var elems = desc.stat_desc.elems;
|
---|
685 | var n, m; /* iterate over heap elements */
|
---|
686 | var max_code = -1; /* largest code with non zero frequency */
|
---|
687 | var node; /* new node being created */
|
---|
688 |
|
---|
689 | /* Construct the initial heap, with least frequent element in
|
---|
690 | * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
|
---|
691 | * heap[0] is not used.
|
---|
692 | */
|
---|
693 | s.heap_len = 0;
|
---|
694 | s.heap_max = HEAP_SIZE;
|
---|
695 |
|
---|
696 | for (n = 0; n < elems; n++) {
|
---|
697 | if (tree[n * 2]/*.Freq*/ !== 0) {
|
---|
698 | s.heap[++s.heap_len] = max_code = n;
|
---|
699 | s.depth[n] = 0;
|
---|
700 |
|
---|
701 | } else {
|
---|
702 | tree[n * 2 + 1]/*.Len*/ = 0;
|
---|
703 | }
|
---|
704 | }
|
---|
705 |
|
---|
706 | /* The pkzip format requires that at least one distance code exists,
|
---|
707 | * and that at least one bit should be sent even if there is only one
|
---|
708 | * possible code. So to avoid special checks later on we force at least
|
---|
709 | * two codes of non zero frequency.
|
---|
710 | */
|
---|
711 | while (s.heap_len < 2) {
|
---|
712 | node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0);
|
---|
713 | tree[node * 2]/*.Freq*/ = 1;
|
---|
714 | s.depth[node] = 0;
|
---|
715 | s.opt_len--;
|
---|
716 |
|
---|
717 | if (has_stree) {
|
---|
718 | s.static_len -= stree[node * 2 + 1]/*.Len*/;
|
---|
719 | }
|
---|
720 | /* node is 0 or 1 so it does not have extra bits */
|
---|
721 | }
|
---|
722 | desc.max_code = max_code;
|
---|
723 |
|
---|
724 | /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
|
---|
725 | * establish sub-heaps of increasing lengths:
|
---|
726 | */
|
---|
727 | for (n = (s.heap_len >> 1/*int /2*/); n >= 1; n--) { pqdownheap(s, tree, n); }
|
---|
728 |
|
---|
729 | /* Construct the Huffman tree by repeatedly combining the least two
|
---|
730 | * frequent nodes.
|
---|
731 | */
|
---|
732 | node = elems; /* next internal node of the tree */
|
---|
733 | do {
|
---|
734 | //pqremove(s, tree, n); /* n = node of least frequency */
|
---|
735 | /*** pqremove ***/
|
---|
736 | n = s.heap[1/*SMALLEST*/];
|
---|
737 | s.heap[1/*SMALLEST*/] = s.heap[s.heap_len--];
|
---|
738 | pqdownheap(s, tree, 1/*SMALLEST*/);
|
---|
739 | /***/
|
---|
740 |
|
---|
741 | m = s.heap[1/*SMALLEST*/]; /* m = node of next least frequency */
|
---|
742 |
|
---|
743 | s.heap[--s.heap_max] = n; /* keep the nodes sorted by frequency */
|
---|
744 | s.heap[--s.heap_max] = m;
|
---|
745 |
|
---|
746 | /* Create a new node father of n and m */
|
---|
747 | tree[node * 2]/*.Freq*/ = tree[n * 2]/*.Freq*/ + tree[m * 2]/*.Freq*/;
|
---|
748 | s.depth[node] = (s.depth[n] >= s.depth[m] ? s.depth[n] : s.depth[m]) + 1;
|
---|
749 | tree[n * 2 + 1]/*.Dad*/ = tree[m * 2 + 1]/*.Dad*/ = node;
|
---|
750 |
|
---|
751 | /* and insert the new node in the heap */
|
---|
752 | s.heap[1/*SMALLEST*/] = node++;
|
---|
753 | pqdownheap(s, tree, 1/*SMALLEST*/);
|
---|
754 |
|
---|
755 | } while (s.heap_len >= 2);
|
---|
756 |
|
---|
757 | s.heap[--s.heap_max] = s.heap[1/*SMALLEST*/];
|
---|
758 |
|
---|
759 | /* At this point, the fields freq and dad are set. We can now
|
---|
760 | * generate the bit lengths.
|
---|
761 | */
|
---|
762 | gen_bitlen(s, desc);
|
---|
763 |
|
---|
764 | /* The field len is now set, we can generate the bit codes */
|
---|
765 | gen_codes(tree, max_code, s.bl_count);
|
---|
766 | }
|
---|
767 |
|
---|
768 |
|
---|
769 | /* ===========================================================================
|
---|
770 | * Scan a literal or distance tree to determine the frequencies of the codes
|
---|
771 | * in the bit length tree.
|
---|
772 | */
|
---|
773 | function scan_tree(s, tree, max_code)
|
---|
774 | // deflate_state *s;
|
---|
775 | // ct_data *tree; /* the tree to be scanned */
|
---|
776 | // int max_code; /* and its largest code of non zero frequency */
|
---|
777 | {
|
---|
778 | var n; /* iterates over all tree elements */
|
---|
779 | var prevlen = -1; /* last emitted length */
|
---|
780 | var curlen; /* length of current code */
|
---|
781 |
|
---|
782 | var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */
|
---|
783 |
|
---|
784 | var count = 0; /* repeat count of the current code */
|
---|
785 | var max_count = 7; /* max repeat count */
|
---|
786 | var min_count = 4; /* min repeat count */
|
---|
787 |
|
---|
788 | if (nextlen === 0) {
|
---|
789 | max_count = 138;
|
---|
790 | min_count = 3;
|
---|
791 | }
|
---|
792 | tree[(max_code + 1) * 2 + 1]/*.Len*/ = 0xffff; /* guard */
|
---|
793 |
|
---|
794 | for (n = 0; n <= max_code; n++) {
|
---|
795 | curlen = nextlen;
|
---|
796 | nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;
|
---|
797 |
|
---|
798 | if (++count < max_count && curlen === nextlen) {
|
---|
799 | continue;
|
---|
800 |
|
---|
801 | } else if (count < min_count) {
|
---|
802 | s.bl_tree[curlen * 2]/*.Freq*/ += count;
|
---|
803 |
|
---|
804 | } else if (curlen !== 0) {
|
---|
805 |
|
---|
806 | if (curlen !== prevlen) { s.bl_tree[curlen * 2]/*.Freq*/++; }
|
---|
807 | s.bl_tree[REP_3_6 * 2]/*.Freq*/++;
|
---|
808 |
|
---|
809 | } else if (count <= 10) {
|
---|
810 | s.bl_tree[REPZ_3_10 * 2]/*.Freq*/++;
|
---|
811 |
|
---|
812 | } else {
|
---|
813 | s.bl_tree[REPZ_11_138 * 2]/*.Freq*/++;
|
---|
814 | }
|
---|
815 |
|
---|
816 | count = 0;
|
---|
817 | prevlen = curlen;
|
---|
818 |
|
---|
819 | if (nextlen === 0) {
|
---|
820 | max_count = 138;
|
---|
821 | min_count = 3;
|
---|
822 |
|
---|
823 | } else if (curlen === nextlen) {
|
---|
824 | max_count = 6;
|
---|
825 | min_count = 3;
|
---|
826 |
|
---|
827 | } else {
|
---|
828 | max_count = 7;
|
---|
829 | min_count = 4;
|
---|
830 | }
|
---|
831 | }
|
---|
832 | }
|
---|
833 |
|
---|
834 |
|
---|
835 | /* ===========================================================================
|
---|
836 | * Send a literal or distance tree in compressed form, using the codes in
|
---|
837 | * bl_tree.
|
---|
838 | */
|
---|
839 | function send_tree(s, tree, max_code)
|
---|
840 | // deflate_state *s;
|
---|
841 | // ct_data *tree; /* the tree to be scanned */
|
---|
842 | // int max_code; /* and its largest code of non zero frequency */
|
---|
843 | {
|
---|
844 | var n; /* iterates over all tree elements */
|
---|
845 | var prevlen = -1; /* last emitted length */
|
---|
846 | var curlen; /* length of current code */
|
---|
847 |
|
---|
848 | var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */
|
---|
849 |
|
---|
850 | var count = 0; /* repeat count of the current code */
|
---|
851 | var max_count = 7; /* max repeat count */
|
---|
852 | var min_count = 4; /* min repeat count */
|
---|
853 |
|
---|
854 | /* tree[max_code+1].Len = -1; */ /* guard already set */
|
---|
855 | if (nextlen === 0) {
|
---|
856 | max_count = 138;
|
---|
857 | min_count = 3;
|
---|
858 | }
|
---|
859 |
|
---|
860 | for (n = 0; n <= max_code; n++) {
|
---|
861 | curlen = nextlen;
|
---|
862 | nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;
|
---|
863 |
|
---|
864 | if (++count < max_count && curlen === nextlen) {
|
---|
865 | continue;
|
---|
866 |
|
---|
867 | } else if (count < min_count) {
|
---|
868 | do { send_code(s, curlen, s.bl_tree); } while (--count !== 0);
|
---|
869 |
|
---|
870 | } else if (curlen !== 0) {
|
---|
871 | if (curlen !== prevlen) {
|
---|
872 | send_code(s, curlen, s.bl_tree);
|
---|
873 | count--;
|
---|
874 | }
|
---|
875 | //Assert(count >= 3 && count <= 6, " 3_6?");
|
---|
876 | send_code(s, REP_3_6, s.bl_tree);
|
---|
877 | send_bits(s, count - 3, 2);
|
---|
878 |
|
---|
879 | } else if (count <= 10) {
|
---|
880 | send_code(s, REPZ_3_10, s.bl_tree);
|
---|
881 | send_bits(s, count - 3, 3);
|
---|
882 |
|
---|
883 | } else {
|
---|
884 | send_code(s, REPZ_11_138, s.bl_tree);
|
---|
885 | send_bits(s, count - 11, 7);
|
---|
886 | }
|
---|
887 |
|
---|
888 | count = 0;
|
---|
889 | prevlen = curlen;
|
---|
890 | if (nextlen === 0) {
|
---|
891 | max_count = 138;
|
---|
892 | min_count = 3;
|
---|
893 |
|
---|
894 | } else if (curlen === nextlen) {
|
---|
895 | max_count = 6;
|
---|
896 | min_count = 3;
|
---|
897 |
|
---|
898 | } else {
|
---|
899 | max_count = 7;
|
---|
900 | min_count = 4;
|
---|
901 | }
|
---|
902 | }
|
---|
903 | }
|
---|
904 |
|
---|
905 |
|
---|
906 | /* ===========================================================================
|
---|
907 | * Construct the Huffman tree for the bit lengths and return the index in
|
---|
908 | * bl_order of the last bit length code to send.
|
---|
909 | */
|
---|
910 | function build_bl_tree(s) {
|
---|
911 | var max_blindex; /* index of last bit length code of non zero freq */
|
---|
912 |
|
---|
913 | /* Determine the bit length frequencies for literal and distance trees */
|
---|
914 | scan_tree(s, s.dyn_ltree, s.l_desc.max_code);
|
---|
915 | scan_tree(s, s.dyn_dtree, s.d_desc.max_code);
|
---|
916 |
|
---|
917 | /* Build the bit length tree: */
|
---|
918 | build_tree(s, s.bl_desc);
|
---|
919 | /* opt_len now includes the length of the tree representations, except
|
---|
920 | * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
|
---|
921 | */
|
---|
922 |
|
---|
923 | /* Determine the number of bit length codes to send. The pkzip format
|
---|
924 | * requires that at least 4 bit length codes be sent. (appnote.txt says
|
---|
925 | * 3 but the actual value used is 4.)
|
---|
926 | */
|
---|
927 | for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
|
---|
928 | if (s.bl_tree[bl_order[max_blindex] * 2 + 1]/*.Len*/ !== 0) {
|
---|
929 | break;
|
---|
930 | }
|
---|
931 | }
|
---|
932 | /* Update opt_len to include the bit length tree and counts */
|
---|
933 | s.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
|
---|
934 | //Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
|
---|
935 | // s->opt_len, s->static_len));
|
---|
936 |
|
---|
937 | return max_blindex;
|
---|
938 | }
|
---|
939 |
|
---|
940 |
|
---|
941 | /* ===========================================================================
|
---|
942 | * Send the header for a block using dynamic Huffman trees: the counts, the
|
---|
943 | * lengths of the bit length codes, the literal tree and the distance tree.
|
---|
944 | * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
|
---|
945 | */
|
---|
946 | function send_all_trees(s, lcodes, dcodes, blcodes)
|
---|
947 | // deflate_state *s;
|
---|
948 | // int lcodes, dcodes, blcodes; /* number of codes for each tree */
|
---|
949 | {
|
---|
950 | var rank; /* index in bl_order */
|
---|
951 |
|
---|
952 | //Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
|
---|
953 | //Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
|
---|
954 | // "too many codes");
|
---|
955 | //Tracev((stderr, "\nbl counts: "));
|
---|
956 | send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */
|
---|
957 | send_bits(s, dcodes - 1, 5);
|
---|
958 | send_bits(s, blcodes - 4, 4); /* not -3 as stated in appnote.txt */
|
---|
959 | for (rank = 0; rank < blcodes; rank++) {
|
---|
960 | //Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
|
---|
961 | send_bits(s, s.bl_tree[bl_order[rank] * 2 + 1]/*.Len*/, 3);
|
---|
962 | }
|
---|
963 | //Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
|
---|
964 |
|
---|
965 | send_tree(s, s.dyn_ltree, lcodes - 1); /* literal tree */
|
---|
966 | //Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
|
---|
967 |
|
---|
968 | send_tree(s, s.dyn_dtree, dcodes - 1); /* distance tree */
|
---|
969 | //Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
|
---|
970 | }
|
---|
971 |
|
---|
972 |
|
---|
973 | /* ===========================================================================
|
---|
974 | * Check if the data type is TEXT or BINARY, using the following algorithm:
|
---|
975 | * - TEXT if the two conditions below are satisfied:
|
---|
976 | * a) There are no non-portable control characters belonging to the
|
---|
977 | * "black list" (0..6, 14..25, 28..31).
|
---|
978 | * b) There is at least one printable character belonging to the
|
---|
979 | * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
|
---|
980 | * - BINARY otherwise.
|
---|
981 | * - The following partially-portable control characters form a
|
---|
982 | * "gray list" that is ignored in this detection algorithm:
|
---|
983 | * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
|
---|
984 | * IN assertion: the fields Freq of dyn_ltree are set.
|
---|
985 | */
|
---|
986 | function detect_data_type(s) {
|
---|
987 | /* black_mask is the bit mask of black-listed bytes
|
---|
988 | * set bits 0..6, 14..25, and 28..31
|
---|
989 | * 0xf3ffc07f = binary 11110011111111111100000001111111
|
---|
990 | */
|
---|
991 | var black_mask = 0xf3ffc07f;
|
---|
992 | var n;
|
---|
993 |
|
---|
994 | /* Check for non-textual ("black-listed") bytes. */
|
---|
995 | for (n = 0; n <= 31; n++, black_mask >>>= 1) {
|
---|
996 | if ((black_mask & 1) && (s.dyn_ltree[n * 2]/*.Freq*/ !== 0)) {
|
---|
997 | return Z_BINARY;
|
---|
998 | }
|
---|
999 | }
|
---|
1000 |
|
---|
1001 | /* Check for textual ("white-listed") bytes. */
|
---|
1002 | if (s.dyn_ltree[9 * 2]/*.Freq*/ !== 0 || s.dyn_ltree[10 * 2]/*.Freq*/ !== 0 ||
|
---|
1003 | s.dyn_ltree[13 * 2]/*.Freq*/ !== 0) {
|
---|
1004 | return Z_TEXT;
|
---|
1005 | }
|
---|
1006 | for (n = 32; n < LITERALS; n++) {
|
---|
1007 | if (s.dyn_ltree[n * 2]/*.Freq*/ !== 0) {
|
---|
1008 | return Z_TEXT;
|
---|
1009 | }
|
---|
1010 | }
|
---|
1011 |
|
---|
1012 | /* There are no "black-listed" or "white-listed" bytes:
|
---|
1013 | * this stream either is empty or has tolerated ("gray-listed") bytes only.
|
---|
1014 | */
|
---|
1015 | return Z_BINARY;
|
---|
1016 | }
|
---|
1017 |
|
---|
1018 |
|
---|
1019 | var static_init_done = false;
|
---|
1020 |
|
---|
1021 | /* ===========================================================================
|
---|
1022 | * Initialize the tree data structures for a new zlib stream.
|
---|
1023 | */
|
---|
1024 | function _tr_init(s)
|
---|
1025 | {
|
---|
1026 |
|
---|
1027 | if (!static_init_done) {
|
---|
1028 | tr_static_init();
|
---|
1029 | static_init_done = true;
|
---|
1030 | }
|
---|
1031 |
|
---|
1032 | s.l_desc = new TreeDesc(s.dyn_ltree, static_l_desc);
|
---|
1033 | s.d_desc = new TreeDesc(s.dyn_dtree, static_d_desc);
|
---|
1034 | s.bl_desc = new TreeDesc(s.bl_tree, static_bl_desc);
|
---|
1035 |
|
---|
1036 | s.bi_buf = 0;
|
---|
1037 | s.bi_valid = 0;
|
---|
1038 |
|
---|
1039 | /* Initialize the first block of the first file: */
|
---|
1040 | init_block(s);
|
---|
1041 | }
|
---|
1042 |
|
---|
1043 |
|
---|
1044 | /* ===========================================================================
|
---|
1045 | * Send a stored block
|
---|
1046 | */
|
---|
1047 | function _tr_stored_block(s, buf, stored_len, last)
|
---|
1048 | //DeflateState *s;
|
---|
1049 | //charf *buf; /* input block */
|
---|
1050 | //ulg stored_len; /* length of input block */
|
---|
1051 | //int last; /* one if this is the last block for a file */
|
---|
1052 | {
|
---|
1053 | send_bits(s, (STORED_BLOCK << 1) + (last ? 1 : 0), 3); /* send block type */
|
---|
1054 | copy_block(s, buf, stored_len, true); /* with header */
|
---|
1055 | }
|
---|
1056 |
|
---|
1057 |
|
---|
1058 | /* ===========================================================================
|
---|
1059 | * Send one empty static block to give enough lookahead for inflate.
|
---|
1060 | * This takes 10 bits, of which 7 may remain in the bit buffer.
|
---|
1061 | */
|
---|
1062 | function _tr_align(s) {
|
---|
1063 | send_bits(s, STATIC_TREES << 1, 3);
|
---|
1064 | send_code(s, END_BLOCK, static_ltree);
|
---|
1065 | bi_flush(s);
|
---|
1066 | }
|
---|
1067 |
|
---|
1068 |
|
---|
1069 | /* ===========================================================================
|
---|
1070 | * Determine the best encoding for the current block: dynamic trees, static
|
---|
1071 | * trees or store, and output the encoded block to the zip file.
|
---|
1072 | */
|
---|
1073 | function _tr_flush_block(s, buf, stored_len, last)
|
---|
1074 | //DeflateState *s;
|
---|
1075 | //charf *buf; /* input block, or NULL if too old */
|
---|
1076 | //ulg stored_len; /* length of input block */
|
---|
1077 | //int last; /* one if this is the last block for a file */
|
---|
1078 | {
|
---|
1079 | var opt_lenb, static_lenb; /* opt_len and static_len in bytes */
|
---|
1080 | var max_blindex = 0; /* index of last bit length code of non zero freq */
|
---|
1081 |
|
---|
1082 | /* Build the Huffman trees unless a stored block is forced */
|
---|
1083 | if (s.level > 0) {
|
---|
1084 |
|
---|
1085 | /* Check if the file is binary or text */
|
---|
1086 | if (s.strm.data_type === Z_UNKNOWN) {
|
---|
1087 | s.strm.data_type = detect_data_type(s);
|
---|
1088 | }
|
---|
1089 |
|
---|
1090 | /* Construct the literal and distance trees */
|
---|
1091 | build_tree(s, s.l_desc);
|
---|
1092 | // Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
|
---|
1093 | // s->static_len));
|
---|
1094 |
|
---|
1095 | build_tree(s, s.d_desc);
|
---|
1096 | // Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
|
---|
1097 | // s->static_len));
|
---|
1098 | /* At this point, opt_len and static_len are the total bit lengths of
|
---|
1099 | * the compressed block data, excluding the tree representations.
|
---|
1100 | */
|
---|
1101 |
|
---|
1102 | /* Build the bit length tree for the above two trees, and get the index
|
---|
1103 | * in bl_order of the last bit length code to send.
|
---|
1104 | */
|
---|
1105 | max_blindex = build_bl_tree(s);
|
---|
1106 |
|
---|
1107 | /* Determine the best encoding. Compute the block lengths in bytes. */
|
---|
1108 | opt_lenb = (s.opt_len + 3 + 7) >>> 3;
|
---|
1109 | static_lenb = (s.static_len + 3 + 7) >>> 3;
|
---|
1110 |
|
---|
1111 | // Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
|
---|
1112 | // opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
|
---|
1113 | // s->last_lit));
|
---|
1114 |
|
---|
1115 | if (static_lenb <= opt_lenb) { opt_lenb = static_lenb; }
|
---|
1116 |
|
---|
1117 | } else {
|
---|
1118 | // Assert(buf != (char*)0, "lost buf");
|
---|
1119 | opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
|
---|
1120 | }
|
---|
1121 |
|
---|
1122 | if ((stored_len + 4 <= opt_lenb) && (buf !== -1)) {
|
---|
1123 | /* 4: two words for the lengths */
|
---|
1124 |
|
---|
1125 | /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
|
---|
1126 | * Otherwise we can't have processed more than WSIZE input bytes since
|
---|
1127 | * the last block flush, because compression would have been
|
---|
1128 | * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
|
---|
1129 | * transform a block into a stored block.
|
---|
1130 | */
|
---|
1131 | _tr_stored_block(s, buf, stored_len, last);
|
---|
1132 |
|
---|
1133 | } else if (s.strategy === Z_FIXED || static_lenb === opt_lenb) {
|
---|
1134 |
|
---|
1135 | send_bits(s, (STATIC_TREES << 1) + (last ? 1 : 0), 3);
|
---|
1136 | compress_block(s, static_ltree, static_dtree);
|
---|
1137 |
|
---|
1138 | } else {
|
---|
1139 | send_bits(s, (DYN_TREES << 1) + (last ? 1 : 0), 3);
|
---|
1140 | send_all_trees(s, s.l_desc.max_code + 1, s.d_desc.max_code + 1, max_blindex + 1);
|
---|
1141 | compress_block(s, s.dyn_ltree, s.dyn_dtree);
|
---|
1142 | }
|
---|
1143 | // Assert (s->compressed_len == s->bits_sent, "bad compressed size");
|
---|
1144 | /* The above check is made mod 2^32, for files larger than 512 MB
|
---|
1145 | * and uLong implemented on 32 bits.
|
---|
1146 | */
|
---|
1147 | init_block(s);
|
---|
1148 |
|
---|
1149 | if (last) {
|
---|
1150 | bi_windup(s);
|
---|
1151 | }
|
---|
1152 | // Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
|
---|
1153 | // s->compressed_len-7*last));
|
---|
1154 | }
|
---|
1155 |
|
---|
1156 | /* ===========================================================================
|
---|
1157 | * Save the match info and tally the frequency counts. Return true if
|
---|
1158 | * the current block must be flushed.
|
---|
1159 | */
|
---|
1160 | function _tr_tally(s, dist, lc)
|
---|
1161 | // deflate_state *s;
|
---|
1162 | // unsigned dist; /* distance of matched string */
|
---|
1163 | // unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
|
---|
1164 | {
|
---|
1165 | //var out_length, in_length, dcode;
|
---|
1166 |
|
---|
1167 | s.pending_buf[s.d_buf + s.last_lit * 2] = (dist >>> 8) & 0xff;
|
---|
1168 | s.pending_buf[s.d_buf + s.last_lit * 2 + 1] = dist & 0xff;
|
---|
1169 |
|
---|
1170 | s.pending_buf[s.l_buf + s.last_lit] = lc & 0xff;
|
---|
1171 | s.last_lit++;
|
---|
1172 |
|
---|
1173 | if (dist === 0) {
|
---|
1174 | /* lc is the unmatched char */
|
---|
1175 | s.dyn_ltree[lc * 2]/*.Freq*/++;
|
---|
1176 | } else {
|
---|
1177 | s.matches++;
|
---|
1178 | /* Here, lc is the match length - MIN_MATCH */
|
---|
1179 | dist--; /* dist = match distance - 1 */
|
---|
1180 | //Assert((ush)dist < (ush)MAX_DIST(s) &&
|
---|
1181 | // (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
|
---|
1182 | // (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
|
---|
1183 |
|
---|
1184 | s.dyn_ltree[(_length_code[lc] + LITERALS + 1) * 2]/*.Freq*/++;
|
---|
1185 | s.dyn_dtree[d_code(dist) * 2]/*.Freq*/++;
|
---|
1186 | }
|
---|
1187 |
|
---|
1188 | // (!) This block is disabled in zlib defaults,
|
---|
1189 | // don't enable it for binary compatibility
|
---|
1190 |
|
---|
1191 | //#ifdef TRUNCATE_BLOCK
|
---|
1192 | // /* Try to guess if it is profitable to stop the current block here */
|
---|
1193 | // if ((s.last_lit & 0x1fff) === 0 && s.level > 2) {
|
---|
1194 | // /* Compute an upper bound for the compressed length */
|
---|
1195 | // out_length = s.last_lit*8;
|
---|
1196 | // in_length = s.strstart - s.block_start;
|
---|
1197 | //
|
---|
1198 | // for (dcode = 0; dcode < D_CODES; dcode++) {
|
---|
1199 | // out_length += s.dyn_dtree[dcode*2]/*.Freq*/ * (5 + extra_dbits[dcode]);
|
---|
1200 | // }
|
---|
1201 | // out_length >>>= 3;
|
---|
1202 | // //Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
|
---|
1203 | // // s->last_lit, in_length, out_length,
|
---|
1204 | // // 100L - out_length*100L/in_length));
|
---|
1205 | // if (s.matches < (s.last_lit>>1)/*int /2*/ && out_length < (in_length>>1)/*int /2*/) {
|
---|
1206 | // return true;
|
---|
1207 | // }
|
---|
1208 | // }
|
---|
1209 | //#endif
|
---|
1210 |
|
---|
1211 | return (s.last_lit === s.lit_bufsize - 1);
|
---|
1212 | /* We avoid equality with lit_bufsize because of wraparound at 64K
|
---|
1213 | * on 16 bit machines and because stored blocks are restricted to
|
---|
1214 | * 64K-1 bytes.
|
---|
1215 | */
|
---|
1216 | }
|
---|
1217 |
|
---|
1218 | exports._tr_init = _tr_init;
|
---|
1219 | exports._tr_stored_block = _tr_stored_block;
|
---|
1220 | exports._tr_flush_block = _tr_flush_block;
|
---|
1221 | exports._tr_tally = _tr_tally;
|
---|
1222 | exports._tr_align = _tr_align;
|
---|