[6a3a178] | 1 | 'use strict';
|
---|
| 2 |
|
---|
| 3 | const regTransformTypes = /matrix|translate|scale|rotate|skewX|skewY/;
|
---|
| 4 | const regTransformSplit =
|
---|
| 5 | /\s*(matrix|translate|scale|rotate|skewX|skewY)\s*\(\s*(.+?)\s*\)[\s,]*/;
|
---|
| 6 | const regNumericValues = /[-+]?(?:\d*\.\d+|\d+\.?)(?:[eE][-+]?\d+)?/g;
|
---|
| 7 |
|
---|
| 8 | /**
|
---|
| 9 | * @typedef {{ name: string, data: Array<number> }} TransformItem
|
---|
| 10 | */
|
---|
| 11 |
|
---|
| 12 | /**
|
---|
| 13 | * Convert transform string to JS representation.
|
---|
| 14 | *
|
---|
| 15 | * @type {(transformString: string) => Array<TransformItem>}
|
---|
| 16 | */
|
---|
| 17 | exports.transform2js = (transformString) => {
|
---|
| 18 | // JS representation of the transform data
|
---|
| 19 | /**
|
---|
| 20 | * @type {Array<TransformItem>}
|
---|
| 21 | */
|
---|
| 22 | const transforms = [];
|
---|
| 23 | // current transform context
|
---|
| 24 | /**
|
---|
| 25 | * @type {null | TransformItem}
|
---|
| 26 | */
|
---|
| 27 | let current = null;
|
---|
| 28 | // split value into ['', 'translate', '10 50', '', 'scale', '2', '', 'rotate', '-45', '']
|
---|
| 29 | for (const item of transformString.split(regTransformSplit)) {
|
---|
| 30 | var num;
|
---|
| 31 | if (item) {
|
---|
| 32 | // if item is a translate function
|
---|
| 33 | if (regTransformTypes.test(item)) {
|
---|
| 34 | // then collect it and change current context
|
---|
| 35 | current = { name: item, data: [] };
|
---|
| 36 | transforms.push(current);
|
---|
| 37 | // else if item is data
|
---|
| 38 | } else {
|
---|
| 39 | // then split it into [10, 50] and collect as context.data
|
---|
| 40 | // eslint-disable-next-line no-cond-assign
|
---|
| 41 | while ((num = regNumericValues.exec(item))) {
|
---|
| 42 | num = Number(num);
|
---|
| 43 | if (current != null) {
|
---|
| 44 | current.data.push(num);
|
---|
| 45 | }
|
---|
| 46 | }
|
---|
| 47 | }
|
---|
| 48 | }
|
---|
| 49 | }
|
---|
| 50 | // return empty array if broken transform (no data)
|
---|
| 51 | return current == null || current.data.length == 0 ? [] : transforms;
|
---|
| 52 | };
|
---|
| 53 |
|
---|
| 54 | /**
|
---|
| 55 | * Multiply transforms into one.
|
---|
| 56 | *
|
---|
| 57 | * @type {(transforms: Array<TransformItem>) => TransformItem}
|
---|
| 58 | */
|
---|
| 59 | exports.transformsMultiply = (transforms) => {
|
---|
| 60 | // convert transforms objects to the matrices
|
---|
| 61 | const matrixData = transforms.map((transform) => {
|
---|
| 62 | if (transform.name === 'matrix') {
|
---|
| 63 | return transform.data;
|
---|
| 64 | }
|
---|
| 65 | return transformToMatrix(transform);
|
---|
| 66 | });
|
---|
| 67 | // multiply all matrices into one
|
---|
| 68 | const matrixTransform = {
|
---|
| 69 | name: 'matrix',
|
---|
| 70 | data:
|
---|
| 71 | matrixData.length > 0 ? matrixData.reduce(multiplyTransformMatrices) : [],
|
---|
| 72 | };
|
---|
| 73 | return matrixTransform;
|
---|
| 74 | };
|
---|
| 75 |
|
---|
| 76 | /**
|
---|
| 77 | * math utilities in radians.
|
---|
| 78 | */
|
---|
| 79 | const mth = {
|
---|
| 80 | /**
|
---|
| 81 | * @type {(deg: number) => number}
|
---|
| 82 | */
|
---|
| 83 | rad: (deg) => {
|
---|
| 84 | return (deg * Math.PI) / 180;
|
---|
| 85 | },
|
---|
| 86 |
|
---|
| 87 | /**
|
---|
| 88 | * @type {(rad: number) => number}
|
---|
| 89 | */
|
---|
| 90 | deg: (rad) => {
|
---|
| 91 | return (rad * 180) / Math.PI;
|
---|
| 92 | },
|
---|
| 93 |
|
---|
| 94 | /**
|
---|
| 95 | * @type {(deg: number) => number}
|
---|
| 96 | */
|
---|
| 97 | cos: (deg) => {
|
---|
| 98 | return Math.cos(mth.rad(deg));
|
---|
| 99 | },
|
---|
| 100 |
|
---|
| 101 | /**
|
---|
| 102 | * @type {(val: number, floatPrecision: number) => number}
|
---|
| 103 | */
|
---|
| 104 | acos: (val, floatPrecision) => {
|
---|
| 105 | return Number(mth.deg(Math.acos(val)).toFixed(floatPrecision));
|
---|
| 106 | },
|
---|
| 107 |
|
---|
| 108 | /**
|
---|
| 109 | * @type {(deg: number) => number}
|
---|
| 110 | */
|
---|
| 111 | sin: (deg) => {
|
---|
| 112 | return Math.sin(mth.rad(deg));
|
---|
| 113 | },
|
---|
| 114 |
|
---|
| 115 | /**
|
---|
| 116 | * @type {(val: number, floatPrecision: number) => number}
|
---|
| 117 | */
|
---|
| 118 | asin: (val, floatPrecision) => {
|
---|
| 119 | return Number(mth.deg(Math.asin(val)).toFixed(floatPrecision));
|
---|
| 120 | },
|
---|
| 121 |
|
---|
| 122 | /**
|
---|
| 123 | * @type {(deg: number) => number}
|
---|
| 124 | */
|
---|
| 125 | tan: (deg) => {
|
---|
| 126 | return Math.tan(mth.rad(deg));
|
---|
| 127 | },
|
---|
| 128 |
|
---|
| 129 | /**
|
---|
| 130 | * @type {(val: number, floatPrecision: number) => number}
|
---|
| 131 | */
|
---|
| 132 | atan: (val, floatPrecision) => {
|
---|
| 133 | return Number(mth.deg(Math.atan(val)).toFixed(floatPrecision));
|
---|
| 134 | },
|
---|
| 135 | };
|
---|
| 136 |
|
---|
| 137 | /**
|
---|
| 138 | * @typedef {{
|
---|
| 139 | * convertToShorts: boolean,
|
---|
| 140 | * floatPrecision: number,
|
---|
| 141 | * transformPrecision: number,
|
---|
| 142 | * matrixToTransform: boolean,
|
---|
| 143 | * shortTranslate: boolean,
|
---|
| 144 | * shortScale: boolean,
|
---|
| 145 | * shortRotate: boolean,
|
---|
| 146 | * removeUseless: boolean,
|
---|
| 147 | * collapseIntoOne: boolean,
|
---|
| 148 | * leadingZero: boolean,
|
---|
| 149 | * negativeExtraSpace: boolean,
|
---|
| 150 | * }} TransformParams
|
---|
| 151 | */
|
---|
| 152 |
|
---|
| 153 | /**
|
---|
| 154 | * Decompose matrix into simple transforms. See
|
---|
| 155 | * https://frederic-wang.fr/decomposition-of-2d-transform-matrices.html
|
---|
| 156 | *
|
---|
| 157 | * @type {(transform: TransformItem, params: TransformParams) => Array<TransformItem>}
|
---|
| 158 | */
|
---|
| 159 | exports.matrixToTransform = (transform, params) => {
|
---|
| 160 | let floatPrecision = params.floatPrecision;
|
---|
| 161 | let data = transform.data;
|
---|
| 162 | let transforms = [];
|
---|
| 163 | let sx = Number(
|
---|
| 164 | Math.hypot(data[0], data[1]).toFixed(params.transformPrecision)
|
---|
| 165 | );
|
---|
| 166 | let sy = Number(
|
---|
| 167 | ((data[0] * data[3] - data[1] * data[2]) / sx).toFixed(
|
---|
| 168 | params.transformPrecision
|
---|
| 169 | )
|
---|
| 170 | );
|
---|
| 171 | let colsSum = data[0] * data[2] + data[1] * data[3];
|
---|
| 172 | let rowsSum = data[0] * data[1] + data[2] * data[3];
|
---|
| 173 | let scaleBefore = rowsSum != 0 || sx == sy;
|
---|
| 174 |
|
---|
| 175 | // [..., ..., ..., ..., tx, ty] → translate(tx, ty)
|
---|
| 176 | if (data[4] || data[5]) {
|
---|
| 177 | transforms.push({
|
---|
| 178 | name: 'translate',
|
---|
| 179 | data: data.slice(4, data[5] ? 6 : 5),
|
---|
| 180 | });
|
---|
| 181 | }
|
---|
| 182 |
|
---|
| 183 | // [sx, 0, tan(a)·sy, sy, 0, 0] → skewX(a)·scale(sx, sy)
|
---|
| 184 | if (!data[1] && data[2]) {
|
---|
| 185 | transforms.push({
|
---|
| 186 | name: 'skewX',
|
---|
| 187 | data: [mth.atan(data[2] / sy, floatPrecision)],
|
---|
| 188 | });
|
---|
| 189 |
|
---|
| 190 | // [sx, sx·tan(a), 0, sy, 0, 0] → skewY(a)·scale(sx, sy)
|
---|
| 191 | } else if (data[1] && !data[2]) {
|
---|
| 192 | transforms.push({
|
---|
| 193 | name: 'skewY',
|
---|
| 194 | data: [mth.atan(data[1] / data[0], floatPrecision)],
|
---|
| 195 | });
|
---|
| 196 | sx = data[0];
|
---|
| 197 | sy = data[3];
|
---|
| 198 |
|
---|
| 199 | // [sx·cos(a), sx·sin(a), sy·-sin(a), sy·cos(a), x, y] → rotate(a[, cx, cy])·(scale or skewX) or
|
---|
| 200 | // [sx·cos(a), sy·sin(a), sx·-sin(a), sy·cos(a), x, y] → scale(sx, sy)·rotate(a[, cx, cy]) (if !scaleBefore)
|
---|
| 201 | } else if (!colsSum || (sx == 1 && sy == 1) || !scaleBefore) {
|
---|
| 202 | if (!scaleBefore) {
|
---|
| 203 | sx = (data[0] < 0 ? -1 : 1) * Math.hypot(data[0], data[2]);
|
---|
| 204 | sy = (data[3] < 0 ? -1 : 1) * Math.hypot(data[1], data[3]);
|
---|
| 205 | transforms.push({ name: 'scale', data: [sx, sy] });
|
---|
| 206 | }
|
---|
| 207 | var angle = Math.min(Math.max(-1, data[0] / sx), 1),
|
---|
| 208 | rotate = [
|
---|
| 209 | mth.acos(angle, floatPrecision) *
|
---|
| 210 | ((scaleBefore ? 1 : sy) * data[1] < 0 ? -1 : 1),
|
---|
| 211 | ];
|
---|
| 212 |
|
---|
| 213 | if (rotate[0]) transforms.push({ name: 'rotate', data: rotate });
|
---|
| 214 |
|
---|
| 215 | if (rowsSum && colsSum)
|
---|
| 216 | transforms.push({
|
---|
| 217 | name: 'skewX',
|
---|
| 218 | data: [mth.atan(colsSum / (sx * sx), floatPrecision)],
|
---|
| 219 | });
|
---|
| 220 |
|
---|
| 221 | // rotate(a, cx, cy) can consume translate() within optional arguments cx, cy (rotation point)
|
---|
| 222 | if (rotate[0] && (data[4] || data[5])) {
|
---|
| 223 | transforms.shift();
|
---|
| 224 | var cos = data[0] / sx,
|
---|
| 225 | sin = data[1] / (scaleBefore ? sx : sy),
|
---|
| 226 | x = data[4] * (scaleBefore ? 1 : sy),
|
---|
| 227 | y = data[5] * (scaleBefore ? 1 : sx),
|
---|
| 228 | denom =
|
---|
| 229 | (Math.pow(1 - cos, 2) + Math.pow(sin, 2)) *
|
---|
| 230 | (scaleBefore ? 1 : sx * sy);
|
---|
| 231 | rotate.push(((1 - cos) * x - sin * y) / denom);
|
---|
| 232 | rotate.push(((1 - cos) * y + sin * x) / denom);
|
---|
| 233 | }
|
---|
| 234 |
|
---|
| 235 | // Too many transformations, return original matrix if it isn't just a scale/translate
|
---|
| 236 | } else if (data[1] || data[2]) {
|
---|
| 237 | return [transform];
|
---|
| 238 | }
|
---|
| 239 |
|
---|
| 240 | if ((scaleBefore && (sx != 1 || sy != 1)) || !transforms.length)
|
---|
| 241 | transforms.push({
|
---|
| 242 | name: 'scale',
|
---|
| 243 | data: sx == sy ? [sx] : [sx, sy],
|
---|
| 244 | });
|
---|
| 245 |
|
---|
| 246 | return transforms;
|
---|
| 247 | };
|
---|
| 248 |
|
---|
| 249 | /**
|
---|
| 250 | * Convert transform to the matrix data.
|
---|
| 251 | *
|
---|
| 252 | * @type {(transform: TransformItem) => Array<number> }
|
---|
| 253 | */
|
---|
| 254 | const transformToMatrix = (transform) => {
|
---|
| 255 | if (transform.name === 'matrix') {
|
---|
| 256 | return transform.data;
|
---|
| 257 | }
|
---|
| 258 | switch (transform.name) {
|
---|
| 259 | case 'translate':
|
---|
| 260 | // [1, 0, 0, 1, tx, ty]
|
---|
| 261 | return [1, 0, 0, 1, transform.data[0], transform.data[1] || 0];
|
---|
| 262 | case 'scale':
|
---|
| 263 | // [sx, 0, 0, sy, 0, 0]
|
---|
| 264 | return [
|
---|
| 265 | transform.data[0],
|
---|
| 266 | 0,
|
---|
| 267 | 0,
|
---|
| 268 | transform.data[1] || transform.data[0],
|
---|
| 269 | 0,
|
---|
| 270 | 0,
|
---|
| 271 | ];
|
---|
| 272 | case 'rotate':
|
---|
| 273 | // [cos(a), sin(a), -sin(a), cos(a), x, y]
|
---|
| 274 | var cos = mth.cos(transform.data[0]),
|
---|
| 275 | sin = mth.sin(transform.data[0]),
|
---|
| 276 | cx = transform.data[1] || 0,
|
---|
| 277 | cy = transform.data[2] || 0;
|
---|
| 278 | return [
|
---|
| 279 | cos,
|
---|
| 280 | sin,
|
---|
| 281 | -sin,
|
---|
| 282 | cos,
|
---|
| 283 | (1 - cos) * cx + sin * cy,
|
---|
| 284 | (1 - cos) * cy - sin * cx,
|
---|
| 285 | ];
|
---|
| 286 | case 'skewX':
|
---|
| 287 | // [1, 0, tan(a), 1, 0, 0]
|
---|
| 288 | return [1, 0, mth.tan(transform.data[0]), 1, 0, 0];
|
---|
| 289 | case 'skewY':
|
---|
| 290 | // [1, tan(a), 0, 1, 0, 0]
|
---|
| 291 | return [1, mth.tan(transform.data[0]), 0, 1, 0, 0];
|
---|
| 292 | default:
|
---|
| 293 | throw Error(`Unknown transform ${transform.name}`);
|
---|
| 294 | }
|
---|
| 295 | };
|
---|
| 296 |
|
---|
| 297 | /**
|
---|
| 298 | * Applies transformation to an arc. To do so, we represent ellipse as a matrix, multiply it
|
---|
| 299 | * by the transformation matrix and use a singular value decomposition to represent in a form
|
---|
| 300 | * rotate(θ)·scale(a b)·rotate(φ). This gives us new ellipse params a, b and θ.
|
---|
| 301 | * SVD is being done with the formulae provided by Wolffram|Alpha (svd {{m0, m2}, {m1, m3}})
|
---|
| 302 | *
|
---|
| 303 | * @type {(
|
---|
| 304 | * cursor: [x: number, y: number],
|
---|
| 305 | * arc: Array<number>,
|
---|
| 306 | * transform: Array<number>
|
---|
| 307 | * ) => Array<number>}
|
---|
| 308 | */
|
---|
| 309 | exports.transformArc = (cursor, arc, transform) => {
|
---|
| 310 | const x = arc[5] - cursor[0];
|
---|
| 311 | const y = arc[6] - cursor[1];
|
---|
| 312 | let a = arc[0];
|
---|
| 313 | let b = arc[1];
|
---|
| 314 | const rot = (arc[2] * Math.PI) / 180;
|
---|
| 315 | const cos = Math.cos(rot);
|
---|
| 316 | const sin = Math.sin(rot);
|
---|
| 317 | // skip if radius is 0
|
---|
| 318 | if (a > 0 && b > 0) {
|
---|
| 319 | let h =
|
---|
| 320 | Math.pow(x * cos + y * sin, 2) / (4 * a * a) +
|
---|
| 321 | Math.pow(y * cos - x * sin, 2) / (4 * b * b);
|
---|
| 322 | if (h > 1) {
|
---|
| 323 | h = Math.sqrt(h);
|
---|
| 324 | a *= h;
|
---|
| 325 | b *= h;
|
---|
| 326 | }
|
---|
| 327 | }
|
---|
| 328 | const ellipse = [a * cos, a * sin, -b * sin, b * cos, 0, 0];
|
---|
| 329 | const m = multiplyTransformMatrices(transform, ellipse);
|
---|
| 330 | // Decompose the new ellipse matrix
|
---|
| 331 | const lastCol = m[2] * m[2] + m[3] * m[3];
|
---|
| 332 | const squareSum = m[0] * m[0] + m[1] * m[1] + lastCol;
|
---|
| 333 | const root =
|
---|
| 334 | Math.hypot(m[0] - m[3], m[1] + m[2]) * Math.hypot(m[0] + m[3], m[1] - m[2]);
|
---|
| 335 |
|
---|
| 336 | if (!root) {
|
---|
| 337 | // circle
|
---|
| 338 | arc[0] = arc[1] = Math.sqrt(squareSum / 2);
|
---|
| 339 | arc[2] = 0;
|
---|
| 340 | } else {
|
---|
| 341 | const majorAxisSqr = (squareSum + root) / 2;
|
---|
| 342 | const minorAxisSqr = (squareSum - root) / 2;
|
---|
| 343 | const major = Math.abs(majorAxisSqr - lastCol) > 1e-6;
|
---|
| 344 | const sub = (major ? majorAxisSqr : minorAxisSqr) - lastCol;
|
---|
| 345 | const rowsSum = m[0] * m[2] + m[1] * m[3];
|
---|
| 346 | const term1 = m[0] * sub + m[2] * rowsSum;
|
---|
| 347 | const term2 = m[1] * sub + m[3] * rowsSum;
|
---|
| 348 | arc[0] = Math.sqrt(majorAxisSqr);
|
---|
| 349 | arc[1] = Math.sqrt(minorAxisSqr);
|
---|
| 350 | arc[2] =
|
---|
| 351 | (((major ? term2 < 0 : term1 > 0) ? -1 : 1) *
|
---|
| 352 | Math.acos((major ? term1 : term2) / Math.hypot(term1, term2)) *
|
---|
| 353 | 180) /
|
---|
| 354 | Math.PI;
|
---|
| 355 | }
|
---|
| 356 |
|
---|
| 357 | if (transform[0] < 0 !== transform[3] < 0) {
|
---|
| 358 | // Flip the sweep flag if coordinates are being flipped horizontally XOR vertically
|
---|
| 359 | arc[4] = 1 - arc[4];
|
---|
| 360 | }
|
---|
| 361 |
|
---|
| 362 | return arc;
|
---|
| 363 | };
|
---|
| 364 |
|
---|
| 365 | /**
|
---|
| 366 | * Multiply transformation matrices.
|
---|
| 367 | *
|
---|
| 368 | * @type {(a: Array<number>, b: Array<number>) => Array<number>}
|
---|
| 369 | */
|
---|
| 370 | const multiplyTransformMatrices = (a, b) => {
|
---|
| 371 | return [
|
---|
| 372 | a[0] * b[0] + a[2] * b[1],
|
---|
| 373 | a[1] * b[0] + a[3] * b[1],
|
---|
| 374 | a[0] * b[2] + a[2] * b[3],
|
---|
| 375 | a[1] * b[2] + a[3] * b[3],
|
---|
| 376 | a[0] * b[4] + a[2] * b[5] + a[4],
|
---|
| 377 | a[1] * b[4] + a[3] * b[5] + a[5],
|
---|
| 378 | ];
|
---|
| 379 | };
|
---|