source: trip-planner-front/node_modules/svgo/plugins/_transforms.js@ 76712b2

Last change on this file since 76712b2 was 6a3a178, checked in by Ema <ema_spirova@…>, 3 years ago

initial commit

  • Property mode set to 100644
File size: 10.5 KB
Line 
1'use strict';
2
3const regTransformTypes = /matrix|translate|scale|rotate|skewX|skewY/;
4const regTransformSplit =
5 /\s*(matrix|translate|scale|rotate|skewX|skewY)\s*\(\s*(.+?)\s*\)[\s,]*/;
6const regNumericValues = /[-+]?(?:\d*\.\d+|\d+\.?)(?:[eE][-+]?\d+)?/g;
7
8/**
9 * @typedef {{ name: string, data: Array<number> }} TransformItem
10 */
11
12/**
13 * Convert transform string to JS representation.
14 *
15 * @type {(transformString: string) => Array<TransformItem>}
16 */
17exports.transform2js = (transformString) => {
18 // JS representation of the transform data
19 /**
20 * @type {Array<TransformItem>}
21 */
22 const transforms = [];
23 // current transform context
24 /**
25 * @type {null | TransformItem}
26 */
27 let current = null;
28 // split value into ['', 'translate', '10 50', '', 'scale', '2', '', 'rotate', '-45', '']
29 for (const item of transformString.split(regTransformSplit)) {
30 var num;
31 if (item) {
32 // if item is a translate function
33 if (regTransformTypes.test(item)) {
34 // then collect it and change current context
35 current = { name: item, data: [] };
36 transforms.push(current);
37 // else if item is data
38 } else {
39 // then split it into [10, 50] and collect as context.data
40 // eslint-disable-next-line no-cond-assign
41 while ((num = regNumericValues.exec(item))) {
42 num = Number(num);
43 if (current != null) {
44 current.data.push(num);
45 }
46 }
47 }
48 }
49 }
50 // return empty array if broken transform (no data)
51 return current == null || current.data.length == 0 ? [] : transforms;
52};
53
54/**
55 * Multiply transforms into one.
56 *
57 * @type {(transforms: Array<TransformItem>) => TransformItem}
58 */
59exports.transformsMultiply = (transforms) => {
60 // convert transforms objects to the matrices
61 const matrixData = transforms.map((transform) => {
62 if (transform.name === 'matrix') {
63 return transform.data;
64 }
65 return transformToMatrix(transform);
66 });
67 // multiply all matrices into one
68 const matrixTransform = {
69 name: 'matrix',
70 data:
71 matrixData.length > 0 ? matrixData.reduce(multiplyTransformMatrices) : [],
72 };
73 return matrixTransform;
74};
75
76/**
77 * math utilities in radians.
78 */
79const mth = {
80 /**
81 * @type {(deg: number) => number}
82 */
83 rad: (deg) => {
84 return (deg * Math.PI) / 180;
85 },
86
87 /**
88 * @type {(rad: number) => number}
89 */
90 deg: (rad) => {
91 return (rad * 180) / Math.PI;
92 },
93
94 /**
95 * @type {(deg: number) => number}
96 */
97 cos: (deg) => {
98 return Math.cos(mth.rad(deg));
99 },
100
101 /**
102 * @type {(val: number, floatPrecision: number) => number}
103 */
104 acos: (val, floatPrecision) => {
105 return Number(mth.deg(Math.acos(val)).toFixed(floatPrecision));
106 },
107
108 /**
109 * @type {(deg: number) => number}
110 */
111 sin: (deg) => {
112 return Math.sin(mth.rad(deg));
113 },
114
115 /**
116 * @type {(val: number, floatPrecision: number) => number}
117 */
118 asin: (val, floatPrecision) => {
119 return Number(mth.deg(Math.asin(val)).toFixed(floatPrecision));
120 },
121
122 /**
123 * @type {(deg: number) => number}
124 */
125 tan: (deg) => {
126 return Math.tan(mth.rad(deg));
127 },
128
129 /**
130 * @type {(val: number, floatPrecision: number) => number}
131 */
132 atan: (val, floatPrecision) => {
133 return Number(mth.deg(Math.atan(val)).toFixed(floatPrecision));
134 },
135};
136
137/**
138 * @typedef {{
139 * convertToShorts: boolean,
140 * floatPrecision: number,
141 * transformPrecision: number,
142 * matrixToTransform: boolean,
143 * shortTranslate: boolean,
144 * shortScale: boolean,
145 * shortRotate: boolean,
146 * removeUseless: boolean,
147 * collapseIntoOne: boolean,
148 * leadingZero: boolean,
149 * negativeExtraSpace: boolean,
150 * }} TransformParams
151 */
152
153/**
154 * Decompose matrix into simple transforms. See
155 * https://frederic-wang.fr/decomposition-of-2d-transform-matrices.html
156 *
157 * @type {(transform: TransformItem, params: TransformParams) => Array<TransformItem>}
158 */
159exports.matrixToTransform = (transform, params) => {
160 let floatPrecision = params.floatPrecision;
161 let data = transform.data;
162 let transforms = [];
163 let sx = Number(
164 Math.hypot(data[0], data[1]).toFixed(params.transformPrecision)
165 );
166 let sy = Number(
167 ((data[0] * data[3] - data[1] * data[2]) / sx).toFixed(
168 params.transformPrecision
169 )
170 );
171 let colsSum = data[0] * data[2] + data[1] * data[3];
172 let rowsSum = data[0] * data[1] + data[2] * data[3];
173 let scaleBefore = rowsSum != 0 || sx == sy;
174
175 // [..., ..., ..., ..., tx, ty] → translate(tx, ty)
176 if (data[4] || data[5]) {
177 transforms.push({
178 name: 'translate',
179 data: data.slice(4, data[5] ? 6 : 5),
180 });
181 }
182
183 // [sx, 0, tan(a)·sy, sy, 0, 0] → skewX(a)·scale(sx, sy)
184 if (!data[1] && data[2]) {
185 transforms.push({
186 name: 'skewX',
187 data: [mth.atan(data[2] / sy, floatPrecision)],
188 });
189
190 // [sx, sx·tan(a), 0, sy, 0, 0] → skewY(a)·scale(sx, sy)
191 } else if (data[1] && !data[2]) {
192 transforms.push({
193 name: 'skewY',
194 data: [mth.atan(data[1] / data[0], floatPrecision)],
195 });
196 sx = data[0];
197 sy = data[3];
198
199 // [sx·cos(a), sx·sin(a), sy·-sin(a), sy·cos(a), x, y] → rotate(a[, cx, cy])·(scale or skewX) or
200 // [sx·cos(a), sy·sin(a), sx·-sin(a), sy·cos(a), x, y] → scale(sx, sy)·rotate(a[, cx, cy]) (if !scaleBefore)
201 } else if (!colsSum || (sx == 1 && sy == 1) || !scaleBefore) {
202 if (!scaleBefore) {
203 sx = (data[0] < 0 ? -1 : 1) * Math.hypot(data[0], data[2]);
204 sy = (data[3] < 0 ? -1 : 1) * Math.hypot(data[1], data[3]);
205 transforms.push({ name: 'scale', data: [sx, sy] });
206 }
207 var angle = Math.min(Math.max(-1, data[0] / sx), 1),
208 rotate = [
209 mth.acos(angle, floatPrecision) *
210 ((scaleBefore ? 1 : sy) * data[1] < 0 ? -1 : 1),
211 ];
212
213 if (rotate[0]) transforms.push({ name: 'rotate', data: rotate });
214
215 if (rowsSum && colsSum)
216 transforms.push({
217 name: 'skewX',
218 data: [mth.atan(colsSum / (sx * sx), floatPrecision)],
219 });
220
221 // rotate(a, cx, cy) can consume translate() within optional arguments cx, cy (rotation point)
222 if (rotate[0] && (data[4] || data[5])) {
223 transforms.shift();
224 var cos = data[0] / sx,
225 sin = data[1] / (scaleBefore ? sx : sy),
226 x = data[4] * (scaleBefore ? 1 : sy),
227 y = data[5] * (scaleBefore ? 1 : sx),
228 denom =
229 (Math.pow(1 - cos, 2) + Math.pow(sin, 2)) *
230 (scaleBefore ? 1 : sx * sy);
231 rotate.push(((1 - cos) * x - sin * y) / denom);
232 rotate.push(((1 - cos) * y + sin * x) / denom);
233 }
234
235 // Too many transformations, return original matrix if it isn't just a scale/translate
236 } else if (data[1] || data[2]) {
237 return [transform];
238 }
239
240 if ((scaleBefore && (sx != 1 || sy != 1)) || !transforms.length)
241 transforms.push({
242 name: 'scale',
243 data: sx == sy ? [sx] : [sx, sy],
244 });
245
246 return transforms;
247};
248
249/**
250 * Convert transform to the matrix data.
251 *
252 * @type {(transform: TransformItem) => Array<number> }
253 */
254const transformToMatrix = (transform) => {
255 if (transform.name === 'matrix') {
256 return transform.data;
257 }
258 switch (transform.name) {
259 case 'translate':
260 // [1, 0, 0, 1, tx, ty]
261 return [1, 0, 0, 1, transform.data[0], transform.data[1] || 0];
262 case 'scale':
263 // [sx, 0, 0, sy, 0, 0]
264 return [
265 transform.data[0],
266 0,
267 0,
268 transform.data[1] || transform.data[0],
269 0,
270 0,
271 ];
272 case 'rotate':
273 // [cos(a), sin(a), -sin(a), cos(a), x, y]
274 var cos = mth.cos(transform.data[0]),
275 sin = mth.sin(transform.data[0]),
276 cx = transform.data[1] || 0,
277 cy = transform.data[2] || 0;
278 return [
279 cos,
280 sin,
281 -sin,
282 cos,
283 (1 - cos) * cx + sin * cy,
284 (1 - cos) * cy - sin * cx,
285 ];
286 case 'skewX':
287 // [1, 0, tan(a), 1, 0, 0]
288 return [1, 0, mth.tan(transform.data[0]), 1, 0, 0];
289 case 'skewY':
290 // [1, tan(a), 0, 1, 0, 0]
291 return [1, mth.tan(transform.data[0]), 0, 1, 0, 0];
292 default:
293 throw Error(`Unknown transform ${transform.name}`);
294 }
295};
296
297/**
298 * Applies transformation to an arc. To do so, we represent ellipse as a matrix, multiply it
299 * by the transformation matrix and use a singular value decomposition to represent in a form
300 * rotate(θ)·scale(a b)·rotate(φ). This gives us new ellipse params a, b and θ.
301 * SVD is being done with the formulae provided by Wolffram|Alpha (svd {{m0, m2}, {m1, m3}})
302 *
303 * @type {(
304 * cursor: [x: number, y: number],
305 * arc: Array<number>,
306 * transform: Array<number>
307 * ) => Array<number>}
308 */
309exports.transformArc = (cursor, arc, transform) => {
310 const x = arc[5] - cursor[0];
311 const y = arc[6] - cursor[1];
312 let a = arc[0];
313 let b = arc[1];
314 const rot = (arc[2] * Math.PI) / 180;
315 const cos = Math.cos(rot);
316 const sin = Math.sin(rot);
317 // skip if radius is 0
318 if (a > 0 && b > 0) {
319 let h =
320 Math.pow(x * cos + y * sin, 2) / (4 * a * a) +
321 Math.pow(y * cos - x * sin, 2) / (4 * b * b);
322 if (h > 1) {
323 h = Math.sqrt(h);
324 a *= h;
325 b *= h;
326 }
327 }
328 const ellipse = [a * cos, a * sin, -b * sin, b * cos, 0, 0];
329 const m = multiplyTransformMatrices(transform, ellipse);
330 // Decompose the new ellipse matrix
331 const lastCol = m[2] * m[2] + m[3] * m[3];
332 const squareSum = m[0] * m[0] + m[1] * m[1] + lastCol;
333 const root =
334 Math.hypot(m[0] - m[3], m[1] + m[2]) * Math.hypot(m[0] + m[3], m[1] - m[2]);
335
336 if (!root) {
337 // circle
338 arc[0] = arc[1] = Math.sqrt(squareSum / 2);
339 arc[2] = 0;
340 } else {
341 const majorAxisSqr = (squareSum + root) / 2;
342 const minorAxisSqr = (squareSum - root) / 2;
343 const major = Math.abs(majorAxisSqr - lastCol) > 1e-6;
344 const sub = (major ? majorAxisSqr : minorAxisSqr) - lastCol;
345 const rowsSum = m[0] * m[2] + m[1] * m[3];
346 const term1 = m[0] * sub + m[2] * rowsSum;
347 const term2 = m[1] * sub + m[3] * rowsSum;
348 arc[0] = Math.sqrt(majorAxisSqr);
349 arc[1] = Math.sqrt(minorAxisSqr);
350 arc[2] =
351 (((major ? term2 < 0 : term1 > 0) ? -1 : 1) *
352 Math.acos((major ? term1 : term2) / Math.hypot(term1, term2)) *
353 180) /
354 Math.PI;
355 }
356
357 if (transform[0] < 0 !== transform[3] < 0) {
358 // Flip the sweep flag if coordinates are being flipped horizontally XOR vertically
359 arc[4] = 1 - arc[4];
360 }
361
362 return arc;
363};
364
365/**
366 * Multiply transformation matrices.
367 *
368 * @type {(a: Array<number>, b: Array<number>) => Array<number>}
369 */
370const multiplyTransformMatrices = (a, b) => {
371 return [
372 a[0] * b[0] + a[2] * b[1],
373 a[1] * b[0] + a[3] * b[1],
374 a[0] * b[2] + a[2] * b[3],
375 a[1] * b[2] + a[3] * b[3],
376 a[0] * b[4] + a[2] * b[5] + a[4],
377 a[1] * b[4] + a[3] * b[5] + a[5],
378 ];
379};
Note: See TracBrowser for help on using the repository browser.