[6a3a178] | 1 | /*
|
---|
| 2 | Copyright (c) 2011 Andrei Mackenzie
|
---|
| 3 |
|
---|
| 4 | Permission is hereby granted, free of charge, to any person obtaining a copy of
|
---|
| 5 | this software and associated documentation files (the "Software"), to deal in
|
---|
| 6 | the Software without restriction, including without limitation the rights to
|
---|
| 7 | use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
---|
| 8 | the Software, and to permit persons to whom the Software is furnished to do so,
|
---|
| 9 | subject to the following conditions:
|
---|
| 10 |
|
---|
| 11 | The above copyright notice and this permission notice shall be included in all
|
---|
| 12 | copies or substantial portions of the Software.
|
---|
| 13 |
|
---|
| 14 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
---|
| 15 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
---|
| 16 | FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
---|
| 17 | COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
---|
| 18 | IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
---|
| 19 | CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
---|
| 20 | */
|
---|
| 21 |
|
---|
| 22 | // levenshtein distance algorithm, pulled from Andrei Mackenzie's MIT licensed.
|
---|
| 23 | // gist, which can be found here: https://gist.github.com/andrei-m/982927
|
---|
| 24 | 'use strict'
|
---|
| 25 | // Compute the edit distance between the two given strings
|
---|
| 26 | module.exports = function levenshtein (a, b) {
|
---|
| 27 | if (a.length === 0) return b.length
|
---|
| 28 | if (b.length === 0) return a.length
|
---|
| 29 |
|
---|
| 30 | const matrix = []
|
---|
| 31 |
|
---|
| 32 | // increment along the first column of each row
|
---|
| 33 | let i
|
---|
| 34 | for (i = 0; i <= b.length; i++) {
|
---|
| 35 | matrix[i] = [i]
|
---|
| 36 | }
|
---|
| 37 |
|
---|
| 38 | // increment each column in the first row
|
---|
| 39 | let j
|
---|
| 40 | for (j = 0; j <= a.length; j++) {
|
---|
| 41 | matrix[0][j] = j
|
---|
| 42 | }
|
---|
| 43 |
|
---|
| 44 | // Fill in the rest of the matrix
|
---|
| 45 | for (i = 1; i <= b.length; i++) {
|
---|
| 46 | for (j = 1; j <= a.length; j++) {
|
---|
| 47 | if (b.charAt(i - 1) === a.charAt(j - 1)) {
|
---|
| 48 | matrix[i][j] = matrix[i - 1][j - 1]
|
---|
| 49 | } else {
|
---|
| 50 | matrix[i][j] = Math.min(matrix[i - 1][j - 1] + 1, // substitution
|
---|
| 51 | Math.min(matrix[i][j - 1] + 1, // insertion
|
---|
| 52 | matrix[i - 1][j] + 1)) // deletion
|
---|
| 53 | }
|
---|
| 54 | }
|
---|
| 55 | }
|
---|
| 56 |
|
---|
| 57 | return matrix[b.length][a.length]
|
---|
| 58 | }
|
---|