[79a0317] | 1 | import { SVGPathData } from "./SVGPathData";
|
---|
| 2 | import { CommandA, CommandC } from "./types";
|
---|
| 3 |
|
---|
| 4 | export function rotate([x, y]: [number, number], rad: number) {
|
---|
| 5 | return [
|
---|
| 6 | x * Math.cos(rad) - y * Math.sin(rad),
|
---|
| 7 | x * Math.sin(rad) + y * Math.cos(rad),
|
---|
| 8 | ];
|
---|
| 9 | }
|
---|
| 10 |
|
---|
| 11 | const DEBUG_CHECK_NUMBERS = true;
|
---|
| 12 | export function assertNumbers(...numbers: number[]) {
|
---|
| 13 | if (DEBUG_CHECK_NUMBERS) {
|
---|
| 14 | for (let i = 0; i < numbers.length; i++) {
|
---|
| 15 | if ("number" !== typeof numbers[i]) {
|
---|
| 16 | throw new Error(
|
---|
| 17 | `assertNumbers arguments[${i}] is not a number. ${typeof numbers[i]} == typeof ${numbers[i]}`);
|
---|
| 18 | }
|
---|
| 19 | }
|
---|
| 20 | }
|
---|
| 21 | return true;
|
---|
| 22 | }
|
---|
| 23 |
|
---|
| 24 | const PI = Math.PI;
|
---|
| 25 |
|
---|
| 26 | /**
|
---|
| 27 | * https://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes
|
---|
| 28 | * Fixes rX and rY.
|
---|
| 29 | * Ensures lArcFlag and sweepFlag are 0 or 1
|
---|
| 30 | * Adds center coordinates: command.cX, command.cY (relative or absolute, depending on command.relative)
|
---|
| 31 | * Adds start and end arc parameters (in degrees): command.phi1, command.phi2; phi1 < phi2 iff. c.sweepFlag == true
|
---|
| 32 | */
|
---|
| 33 | export function annotateArcCommand(c: CommandA, x1: number, y1: number) {
|
---|
| 34 | c.lArcFlag = (0 === c.lArcFlag) ? 0 : 1;
|
---|
| 35 | c.sweepFlag = (0 === c.sweepFlag) ? 0 : 1;
|
---|
| 36 | // tslint:disable-next-line
|
---|
| 37 | let {rX, rY, x, y} = c;
|
---|
| 38 |
|
---|
| 39 | rX = Math.abs(c.rX);
|
---|
| 40 | rY = Math.abs(c.rY);
|
---|
| 41 | const [x1_, y1_] = rotate([(x1 - x) / 2, (y1 - y) / 2], -c.xRot / 180 * PI);
|
---|
| 42 | const testValue = Math.pow(x1_, 2) / Math.pow(rX, 2) + Math.pow(y1_, 2) / Math.pow(rY, 2);
|
---|
| 43 |
|
---|
| 44 | if (1 < testValue) {
|
---|
| 45 | rX *= Math.sqrt(testValue);
|
---|
| 46 | rY *= Math.sqrt(testValue);
|
---|
| 47 | }
|
---|
| 48 | c.rX = rX;
|
---|
| 49 | c.rY = rY;
|
---|
| 50 | const c_ScaleTemp = (Math.pow(rX, 2) * Math.pow(y1_, 2) + Math.pow(rY, 2) * Math.pow(x1_, 2));
|
---|
| 51 | const c_Scale = (c.lArcFlag !== c.sweepFlag ? 1 : -1) *
|
---|
| 52 | Math.sqrt(Math.max(0, (Math.pow(rX, 2) * Math.pow(rY, 2) - c_ScaleTemp) / c_ScaleTemp));
|
---|
| 53 | const cx_ = rX * y1_ / rY * c_Scale;
|
---|
| 54 | const cy_ = -rY * x1_ / rX * c_Scale;
|
---|
| 55 | const cRot = rotate([cx_, cy_], c.xRot / 180 * PI);
|
---|
| 56 |
|
---|
| 57 | c.cX = cRot[0] + (x1 + x) / 2;
|
---|
| 58 | c.cY = cRot[1] + (y1 + y) / 2;
|
---|
| 59 | c.phi1 = Math.atan2((y1_ - cy_) / rY, (x1_ - cx_) / rX);
|
---|
| 60 | c.phi2 = Math.atan2((-y1_ - cy_) / rY, (-x1_ - cx_) / rX);
|
---|
| 61 | if (0 === c.sweepFlag && c.phi2 > c.phi1) {
|
---|
| 62 | c.phi2 -= 2 * PI;
|
---|
| 63 | }
|
---|
| 64 | if (1 === c.sweepFlag && c.phi2 < c.phi1) {
|
---|
| 65 | c.phi2 += 2 * PI;
|
---|
| 66 | }
|
---|
| 67 | c.phi1 *= 180 / PI;
|
---|
| 68 | c.phi2 *= 180 / PI;
|
---|
| 69 | }
|
---|
| 70 |
|
---|
| 71 | /**
|
---|
| 72 | * Solves a quadratic system of equations of the form
|
---|
| 73 | * a * x + b * y = c
|
---|
| 74 | * x² + y² = 1
|
---|
| 75 | * This can be understood as the intersection of the unit circle with a line.
|
---|
| 76 | * => y = (c - a x) / b
|
---|
| 77 | * => x² + (c - a x)² / b² = 1
|
---|
| 78 | * => x² b² + c² - 2 c a x + a² x² = b²
|
---|
| 79 | * => (a² + b²) x² - 2 a c x + (c² - b²) = 0
|
---|
| 80 | */
|
---|
| 81 | export function intersectionUnitCircleLine(a: number, b: number, c: number): [number, number][] {
|
---|
| 82 | assertNumbers(a, b, c);
|
---|
| 83 | // cf. pqFormula
|
---|
| 84 | const termSqr = a * a + b * b - c * c;
|
---|
| 85 |
|
---|
| 86 | if (0 > termSqr) {
|
---|
| 87 | return [];
|
---|
| 88 | } else if (0 === termSqr) {
|
---|
| 89 | return [
|
---|
| 90 | [
|
---|
| 91 | (a * c) / (a * a + b * b),
|
---|
| 92 | (b * c) / (a * a + b * b)]];
|
---|
| 93 | }
|
---|
| 94 | const term = Math.sqrt(termSqr);
|
---|
| 95 |
|
---|
| 96 | return [
|
---|
| 97 | [
|
---|
| 98 | (a * c + b * term) / (a * a + b * b),
|
---|
| 99 | (b * c - a * term) / (a * a + b * b)],
|
---|
| 100 | [
|
---|
| 101 | (a * c - b * term) / (a * a + b * b),
|
---|
| 102 | (b * c + a * term) / (a * a + b * b)]];
|
---|
| 103 |
|
---|
| 104 | }
|
---|
| 105 |
|
---|
| 106 | export const DEG = Math.PI / 180;
|
---|
| 107 |
|
---|
| 108 | export function lerp(a: number, b: number, t: number) {
|
---|
| 109 | return (1 - t) * a + t * b;
|
---|
| 110 | }
|
---|
| 111 |
|
---|
| 112 | export function arcAt(c: number, x1: number, x2: number, phiDeg: number) {
|
---|
| 113 | return c + Math.cos(phiDeg / 180 * PI) * x1 + Math.sin(phiDeg / 180 * PI) * x2;
|
---|
| 114 | }
|
---|
| 115 |
|
---|
| 116 | export function bezierRoot(x0: number, x1: number, x2: number, x3: number) {
|
---|
| 117 | const EPS = 1e-6;
|
---|
| 118 | const x01 = x1 - x0;
|
---|
| 119 | const x12 = x2 - x1;
|
---|
| 120 | const x23 = x3 - x2;
|
---|
| 121 | const a = 3 * x01 + 3 * x23 - 6 * x12;
|
---|
| 122 | const b = (x12 - x01) * 6;
|
---|
| 123 | const c = 3 * x01;
|
---|
| 124 | // solve a * t² + b * t + c = 0
|
---|
| 125 |
|
---|
| 126 | if (Math.abs(a) < EPS) {
|
---|
| 127 | // equivalent to b * t + c =>
|
---|
| 128 | return [-c / b];
|
---|
| 129 | }
|
---|
| 130 | return pqFormula(b / a, c / a, EPS);
|
---|
| 131 |
|
---|
| 132 | }
|
---|
| 133 |
|
---|
| 134 | export function bezierAt(x0: number, x1: number, x2: number, x3: number, t: number) {
|
---|
| 135 | // console.log(x0, y0, x1, y1, x2, y2, x3, y3, t)
|
---|
| 136 | const s = 1 - t;
|
---|
| 137 | const c0 = s * s * s;
|
---|
| 138 | const c1 = 3 * s * s * t;
|
---|
| 139 | const c2 = 3 * s * t * t;
|
---|
| 140 | const c3 = t * t * t;
|
---|
| 141 |
|
---|
| 142 | return x0 * c0 + x1 * c1 + x2 * c2 + x3 * c3;
|
---|
| 143 | }
|
---|
| 144 |
|
---|
| 145 | function pqFormula(p: number, q: number, PRECISION = 1e-6) {
|
---|
| 146 | // 4 times the discriminant:in
|
---|
| 147 | const discriminantX4 = p * p / 4 - q;
|
---|
| 148 |
|
---|
| 149 | if (discriminantX4 < -PRECISION) {
|
---|
| 150 | return [];
|
---|
| 151 | } else if (discriminantX4 <= PRECISION) {
|
---|
| 152 | return [-p / 2];
|
---|
| 153 | }
|
---|
| 154 | const root = Math.sqrt(discriminantX4);
|
---|
| 155 |
|
---|
| 156 | return [-(p / 2) - root, -(p / 2) + root];
|
---|
| 157 |
|
---|
| 158 | }
|
---|
| 159 |
|
---|
| 160 | export function a2c(arc: CommandA, x0: number, y0: number): CommandC[] {
|
---|
| 161 | if (!arc.cX) {
|
---|
| 162 | annotateArcCommand(arc, x0, y0);
|
---|
| 163 | }
|
---|
| 164 |
|
---|
| 165 | const phiMin = Math.min(arc.phi1!, arc.phi2!), phiMax = Math.max(arc.phi1!, arc.phi2!), deltaPhi = phiMax - phiMin;
|
---|
| 166 | const partCount = Math.ceil(deltaPhi / 90 );
|
---|
| 167 |
|
---|
| 168 | const result: CommandC[] = new Array(partCount);
|
---|
| 169 | let prevX = x0, prevY = y0;
|
---|
| 170 | for (let i = 0; i < partCount; i++) {
|
---|
| 171 | const phiStart = lerp(arc.phi1!, arc.phi2!, i / partCount);
|
---|
| 172 | const phiEnd = lerp(arc.phi1!, arc.phi2!, (i + 1) / partCount);
|
---|
| 173 | const deltaPhi = phiEnd - phiStart;
|
---|
| 174 | const f = 4 / 3 * Math.tan(deltaPhi * DEG / 4);
|
---|
| 175 | // x1/y1, x2/y2 and x/y coordinates on the unit circle for phiStart/phiEnd
|
---|
| 176 | const [x1, y1] = [
|
---|
| 177 | Math.cos(phiStart * DEG) - f * Math.sin(phiStart * DEG),
|
---|
| 178 | Math.sin(phiStart * DEG) + f * Math.cos(phiStart * DEG)];
|
---|
| 179 | const [x, y] = [Math.cos(phiEnd * DEG), Math.sin(phiEnd * DEG)];
|
---|
| 180 | const [x2, y2] = [x + f * Math.sin(phiEnd * DEG), y - f * Math.cos(phiEnd * DEG)];
|
---|
| 181 | result[i] = {relative: arc.relative, type: SVGPathData.CURVE_TO } as any;
|
---|
| 182 | const transform = (x: number, y: number) => {
|
---|
| 183 | const [xTemp, yTemp] = rotate([x * arc.rX, y * arc.rY], arc.xRot);
|
---|
| 184 | return [arc.cX! + xTemp, arc.cY! + yTemp];
|
---|
| 185 | };
|
---|
| 186 | [result[i].x1, result[i].y1] = transform(x1, y1);
|
---|
| 187 | [result[i].x2, result[i].y2] = transform(x2, y2);
|
---|
| 188 | [result[i].x, result[i].y] = transform(x, y);
|
---|
| 189 | if (arc.relative) {
|
---|
| 190 | result[i].x1 -= prevX;
|
---|
| 191 | result[i].y1 -= prevY;
|
---|
| 192 | result[i].x2 -= prevX;
|
---|
| 193 | result[i].y2 -= prevY;
|
---|
| 194 | result[i].x -= prevX;
|
---|
| 195 | result[i].y -= prevY;
|
---|
| 196 | }
|
---|
| 197 | [prevX, prevY] = [result[i].x, result[i].y];
|
---|
| 198 | }
|
---|
| 199 | return result;
|
---|
| 200 | }
|
---|