1 | import { SVGPathData } from "./SVGPathData";
|
---|
2 | import { CommandA, CommandC } from "./types";
|
---|
3 |
|
---|
4 | export function rotate([x, y]: [number, number], rad: number) {
|
---|
5 | return [
|
---|
6 | x * Math.cos(rad) - y * Math.sin(rad),
|
---|
7 | x * Math.sin(rad) + y * Math.cos(rad),
|
---|
8 | ];
|
---|
9 | }
|
---|
10 |
|
---|
11 | const DEBUG_CHECK_NUMBERS = true;
|
---|
12 | export function assertNumbers(...numbers: number[]) {
|
---|
13 | if (DEBUG_CHECK_NUMBERS) {
|
---|
14 | for (let i = 0; i < numbers.length; i++) {
|
---|
15 | if ("number" !== typeof numbers[i]) {
|
---|
16 | throw new Error(
|
---|
17 | `assertNumbers arguments[${i}] is not a number. ${typeof numbers[i]} == typeof ${numbers[i]}`);
|
---|
18 | }
|
---|
19 | }
|
---|
20 | }
|
---|
21 | return true;
|
---|
22 | }
|
---|
23 |
|
---|
24 | const PI = Math.PI;
|
---|
25 |
|
---|
26 | /**
|
---|
27 | * https://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes
|
---|
28 | * Fixes rX and rY.
|
---|
29 | * Ensures lArcFlag and sweepFlag are 0 or 1
|
---|
30 | * Adds center coordinates: command.cX, command.cY (relative or absolute, depending on command.relative)
|
---|
31 | * Adds start and end arc parameters (in degrees): command.phi1, command.phi2; phi1 < phi2 iff. c.sweepFlag == true
|
---|
32 | */
|
---|
33 | export function annotateArcCommand(c: CommandA, x1: number, y1: number) {
|
---|
34 | c.lArcFlag = (0 === c.lArcFlag) ? 0 : 1;
|
---|
35 | c.sweepFlag = (0 === c.sweepFlag) ? 0 : 1;
|
---|
36 | // tslint:disable-next-line
|
---|
37 | let {rX, rY, x, y} = c;
|
---|
38 |
|
---|
39 | rX = Math.abs(c.rX);
|
---|
40 | rY = Math.abs(c.rY);
|
---|
41 | const [x1_, y1_] = rotate([(x1 - x) / 2, (y1 - y) / 2], -c.xRot / 180 * PI);
|
---|
42 | const testValue = Math.pow(x1_, 2) / Math.pow(rX, 2) + Math.pow(y1_, 2) / Math.pow(rY, 2);
|
---|
43 |
|
---|
44 | if (1 < testValue) {
|
---|
45 | rX *= Math.sqrt(testValue);
|
---|
46 | rY *= Math.sqrt(testValue);
|
---|
47 | }
|
---|
48 | c.rX = rX;
|
---|
49 | c.rY = rY;
|
---|
50 | const c_ScaleTemp = (Math.pow(rX, 2) * Math.pow(y1_, 2) + Math.pow(rY, 2) * Math.pow(x1_, 2));
|
---|
51 | const c_Scale = (c.lArcFlag !== c.sweepFlag ? 1 : -1) *
|
---|
52 | Math.sqrt(Math.max(0, (Math.pow(rX, 2) * Math.pow(rY, 2) - c_ScaleTemp) / c_ScaleTemp));
|
---|
53 | const cx_ = rX * y1_ / rY * c_Scale;
|
---|
54 | const cy_ = -rY * x1_ / rX * c_Scale;
|
---|
55 | const cRot = rotate([cx_, cy_], c.xRot / 180 * PI);
|
---|
56 |
|
---|
57 | c.cX = cRot[0] + (x1 + x) / 2;
|
---|
58 | c.cY = cRot[1] + (y1 + y) / 2;
|
---|
59 | c.phi1 = Math.atan2((y1_ - cy_) / rY, (x1_ - cx_) / rX);
|
---|
60 | c.phi2 = Math.atan2((-y1_ - cy_) / rY, (-x1_ - cx_) / rX);
|
---|
61 | if (0 === c.sweepFlag && c.phi2 > c.phi1) {
|
---|
62 | c.phi2 -= 2 * PI;
|
---|
63 | }
|
---|
64 | if (1 === c.sweepFlag && c.phi2 < c.phi1) {
|
---|
65 | c.phi2 += 2 * PI;
|
---|
66 | }
|
---|
67 | c.phi1 *= 180 / PI;
|
---|
68 | c.phi2 *= 180 / PI;
|
---|
69 | }
|
---|
70 |
|
---|
71 | /**
|
---|
72 | * Solves a quadratic system of equations of the form
|
---|
73 | * a * x + b * y = c
|
---|
74 | * x² + y² = 1
|
---|
75 | * This can be understood as the intersection of the unit circle with a line.
|
---|
76 | * => y = (c - a x) / b
|
---|
77 | * => x² + (c - a x)² / b² = 1
|
---|
78 | * => x² b² + c² - 2 c a x + a² x² = b²
|
---|
79 | * => (a² + b²) x² - 2 a c x + (c² - b²) = 0
|
---|
80 | */
|
---|
81 | export function intersectionUnitCircleLine(a: number, b: number, c: number): [number, number][] {
|
---|
82 | assertNumbers(a, b, c);
|
---|
83 | // cf. pqFormula
|
---|
84 | const termSqr = a * a + b * b - c * c;
|
---|
85 |
|
---|
86 | if (0 > termSqr) {
|
---|
87 | return [];
|
---|
88 | } else if (0 === termSqr) {
|
---|
89 | return [
|
---|
90 | [
|
---|
91 | (a * c) / (a * a + b * b),
|
---|
92 | (b * c) / (a * a + b * b)]];
|
---|
93 | }
|
---|
94 | const term = Math.sqrt(termSqr);
|
---|
95 |
|
---|
96 | return [
|
---|
97 | [
|
---|
98 | (a * c + b * term) / (a * a + b * b),
|
---|
99 | (b * c - a * term) / (a * a + b * b)],
|
---|
100 | [
|
---|
101 | (a * c - b * term) / (a * a + b * b),
|
---|
102 | (b * c + a * term) / (a * a + b * b)]];
|
---|
103 |
|
---|
104 | }
|
---|
105 |
|
---|
106 | export const DEG = Math.PI / 180;
|
---|
107 |
|
---|
108 | export function lerp(a: number, b: number, t: number) {
|
---|
109 | return (1 - t) * a + t * b;
|
---|
110 | }
|
---|
111 |
|
---|
112 | export function arcAt(c: number, x1: number, x2: number, phiDeg: number) {
|
---|
113 | return c + Math.cos(phiDeg / 180 * PI) * x1 + Math.sin(phiDeg / 180 * PI) * x2;
|
---|
114 | }
|
---|
115 |
|
---|
116 | export function bezierRoot(x0: number, x1: number, x2: number, x3: number) {
|
---|
117 | const EPS = 1e-6;
|
---|
118 | const x01 = x1 - x0;
|
---|
119 | const x12 = x2 - x1;
|
---|
120 | const x23 = x3 - x2;
|
---|
121 | const a = 3 * x01 + 3 * x23 - 6 * x12;
|
---|
122 | const b = (x12 - x01) * 6;
|
---|
123 | const c = 3 * x01;
|
---|
124 | // solve a * t² + b * t + c = 0
|
---|
125 |
|
---|
126 | if (Math.abs(a) < EPS) {
|
---|
127 | // equivalent to b * t + c =>
|
---|
128 | return [-c / b];
|
---|
129 | }
|
---|
130 | return pqFormula(b / a, c / a, EPS);
|
---|
131 |
|
---|
132 | }
|
---|
133 |
|
---|
134 | export function bezierAt(x0: number, x1: number, x2: number, x3: number, t: number) {
|
---|
135 | // console.log(x0, y0, x1, y1, x2, y2, x3, y3, t)
|
---|
136 | const s = 1 - t;
|
---|
137 | const c0 = s * s * s;
|
---|
138 | const c1 = 3 * s * s * t;
|
---|
139 | const c2 = 3 * s * t * t;
|
---|
140 | const c3 = t * t * t;
|
---|
141 |
|
---|
142 | return x0 * c0 + x1 * c1 + x2 * c2 + x3 * c3;
|
---|
143 | }
|
---|
144 |
|
---|
145 | function pqFormula(p: number, q: number, PRECISION = 1e-6) {
|
---|
146 | // 4 times the discriminant:in
|
---|
147 | const discriminantX4 = p * p / 4 - q;
|
---|
148 |
|
---|
149 | if (discriminantX4 < -PRECISION) {
|
---|
150 | return [];
|
---|
151 | } else if (discriminantX4 <= PRECISION) {
|
---|
152 | return [-p / 2];
|
---|
153 | }
|
---|
154 | const root = Math.sqrt(discriminantX4);
|
---|
155 |
|
---|
156 | return [-(p / 2) - root, -(p / 2) + root];
|
---|
157 |
|
---|
158 | }
|
---|
159 |
|
---|
160 | export function a2c(arc: CommandA, x0: number, y0: number): CommandC[] {
|
---|
161 | if (!arc.cX) {
|
---|
162 | annotateArcCommand(arc, x0, y0);
|
---|
163 | }
|
---|
164 |
|
---|
165 | const phiMin = Math.min(arc.phi1!, arc.phi2!), phiMax = Math.max(arc.phi1!, arc.phi2!), deltaPhi = phiMax - phiMin;
|
---|
166 | const partCount = Math.ceil(deltaPhi / 90 );
|
---|
167 |
|
---|
168 | const result: CommandC[] = new Array(partCount);
|
---|
169 | let prevX = x0, prevY = y0;
|
---|
170 | for (let i = 0; i < partCount; i++) {
|
---|
171 | const phiStart = lerp(arc.phi1!, arc.phi2!, i / partCount);
|
---|
172 | const phiEnd = lerp(arc.phi1!, arc.phi2!, (i + 1) / partCount);
|
---|
173 | const deltaPhi = phiEnd - phiStart;
|
---|
174 | const f = 4 / 3 * Math.tan(deltaPhi * DEG / 4);
|
---|
175 | // x1/y1, x2/y2 and x/y coordinates on the unit circle for phiStart/phiEnd
|
---|
176 | const [x1, y1] = [
|
---|
177 | Math.cos(phiStart * DEG) - f * Math.sin(phiStart * DEG),
|
---|
178 | Math.sin(phiStart * DEG) + f * Math.cos(phiStart * DEG)];
|
---|
179 | const [x, y] = [Math.cos(phiEnd * DEG), Math.sin(phiEnd * DEG)];
|
---|
180 | const [x2, y2] = [x + f * Math.sin(phiEnd * DEG), y - f * Math.cos(phiEnd * DEG)];
|
---|
181 | result[i] = {relative: arc.relative, type: SVGPathData.CURVE_TO } as any;
|
---|
182 | const transform = (x: number, y: number) => {
|
---|
183 | const [xTemp, yTemp] = rotate([x * arc.rX, y * arc.rY], arc.xRot);
|
---|
184 | return [arc.cX! + xTemp, arc.cY! + yTemp];
|
---|
185 | };
|
---|
186 | [result[i].x1, result[i].y1] = transform(x1, y1);
|
---|
187 | [result[i].x2, result[i].y2] = transform(x2, y2);
|
---|
188 | [result[i].x, result[i].y] = transform(x, y);
|
---|
189 | if (arc.relative) {
|
---|
190 | result[i].x1 -= prevX;
|
---|
191 | result[i].y1 -= prevY;
|
---|
192 | result[i].x2 -= prevX;
|
---|
193 | result[i].y2 -= prevY;
|
---|
194 | result[i].x -= prevX;
|
---|
195 | result[i].y -= prevY;
|
---|
196 | }
|
---|
197 | [prevX, prevY] = [result[i].x, result[i].y];
|
---|
198 | }
|
---|
199 | return result;
|
---|
200 | }
|
---|